
Controlling Emergency Vehicles in Urban Traffic with Genetic

Algorithms

Monica Patrascu
1
 Vlad Constantinescu

1,2
 Andreea Ion

1

1
Department of Automatic Control and Systems Engineering, University Politehnica of Bucharest, Romania

2
Institute of Space Science, Bucharest, Romania

{monica.patrascu, vlad.constantinescu, andreea.ion}@acse.pub.ro

Abstract
Emergency officers could often benefit from a route

planning system that is based on constant traffic

monitoring and complex decision making, seeking to

give victims another breath of hope by assisting

emergency units with reaching them on time. The main

challenge is providing responses in a continuously

evolving environment within a prescribed time frame,

while using limited resources and information that is

often incomplete or uncertain. This paper presents a

route control concept for emergency vehicles through

urban traffic. The proposed genetic controller is

designed to dynamically reassess the route while the

vehicle passes through the road network, continuously

generating new routes based on current traffic. The

algorithm is tested in an agent based simulation model

that includes both traffic participants and a distributed

traffic control system.

Keywords: genetic algorithm, emergency response,
control systems, distributed control, agent based

simulation model

1 Introduction

In complex and distributed urban environments, the

services that provide quality of life and safety have to

deal with unpredictable events and incomplete data.

Moreover, intelligent transport systems are becoming

increasingly important as they aim to provide solutions

to crucial issues related to transportation networks,

such as congestion and various incidents. One of the

most important activities in the protection of human

life is the intervention of emergency responders, for

which an important issue in the unpredictable urban

road networks is the time required for an emergency

vehicle to reach an event scene. Congestion and the

various obstacles that may appear during the journey

on the chosen path can increase travel time and

therefore reduce the chances of ensuring the safety of

human life (Blackwell et al, 2002; Pons et al 2005;

Sladjana et al 2011; Rushworth et al 2014).

Thus, re-calculating the routes of emergency

vehicle during their journey based on environmental

changes is a way to avoid these obstacles.

Real-time decision problems are also playing an

increasingly important role in transportation

management, as advances in communication and

information technologies allow real-time information

to be quickly obtained and processed. Therefore,

dynamic vehicle route generation has become more

and more efficient, especially in urban areas.

The problem of finding the most efficient routes for

the quick access of the emergency vehicles in the

current urban traffic is very important in terms of

protecting and saving human lives. From an economic

and social point of view, implementing the developed

algorithms would increase the number of saved lives,

reduce congestion and accident risk, would reduce fuel

consumption and the time spent in traffic and by doing

so, would also reduce the number of people affected by

stress on the road.

The most important technological benefit regarding

evolutionary computing is the possibility to integrate

techniques typically associated with modeling complex

systems in representing the possible solutions to

optimization problems solved with the help of

evolutionary algorithms. This opens the way to using

these class of algorithms for solving problems that

cannot be modeled using formal techniques and that

can only be solved by using heuristic methods. The

future applications of evolutionary computing are not

restricted to vehicle routing; they include different

other optimization problems, from designing control

systems for processes affected by non-linearity and

uncertainties, modeling complex and biological

processes, algorithms for the optimization of sensor

spreading over an area, to designing and tuning the

command rules for distributed control systems applied

to large-scale processes.

The initial route generation problem has been

initially regarded as a variant of the travelling salesman

problem (Dantzing et al 1959). Beside this classical

formulation of the routing problem, a series of other

approaches have been studied (Toth et al 2002). For

route reconfiguration, the initial studies (Seguin et al

1997) have first taken into account the static routing

problem (Psaraftis 1980; Madsen et al 1995), followed

by more in depth analyses of the differences between

dynamic and static routing (Psaraftis, 1988; Goel et al

2006).

Another perspective for solving the problem of

dynamic vehicle routing takes into account

evolutionary computing algorithms, either by using

algorithms inspired from biology (Potvin, 2009) or

EUROSIM 2016 & SIMS 2016

243DOI: 10.3384/ecp17142243 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

machine learning techniques such as supervised

learning or genetic programming (Benyahia et al

1998). A technique based on hybrid genetic algorithms

was used (Jih et al 1999) for solving the problem of

routing a vehicle with size constrains. Another example

relies on Dijkstra algorithms (Barrachina et al 2014)

and evolutionary strategies for finding an optimum

path in a short period of time. Another approach

presented in the project Emergency Vehicle Priority

implies controlling the traffic lights in favor of the

emergency crews (White, 2012), but this solution

affects the rest of the urban traffic. A way of solving

the routing problem using genetic algorithms is by

combining (Chand et al 2010) the Bin Packing (BPP)

with the traveling salesman problem. In the most recent

approaches, the solution to this problem was obtained

using the Intelligent Water-drop algorithm (Kaur et al

2014).

There are multiple approaches to the application of

multi-agent systems in dynamic reconfiguration of

routes (Shah 2012), such as MARS, Jabatos or Ant

System, but they were used for management problems

of transport resources (e.g. assigning buses to routes by

minimizing the number of vehicles required and

maximizing the number of requests in the system).

One solution (Darbucha 2013) for the dynamic

routing problem is a combination of agent-based

systems and dispatcher-based routing strategies. Other

similar approaches (Talbot et al 2010) using multi-

criteria decision-making, but at a global level

dispatcher. In this case, real time data is received by

the dispatcher which computes the emergency vehicle

route. If an obstacle is blocking this route, the

dispatcher is informed and can take other decisions.

This simulation is limited at dispatcher level by

introducing an additional node between data processing

and decision-making algorithm.

This paper is organized as follows. In section 2, the

authors present the design of the proposed control

system, along with the principles of genetic algorithms.

In section 3 a case study is discussed, for which an

agent based simulation model has been developed in

order to simulate traffic in an urban area. Finally,

section 4 contains the conclusions.

2 Proposed system design

The concept introduced in this paper focuses on

obtaining routes for emergency crews in an urban

environment. Urban conglomerates (especially in areas

that had not been initially developed for the amount of

vehicles that can be found in today's society) suffer

from traffic congestions. Therefore, the shortest path

between two points is not necessarily the fastest. In this

paper, the objective is to find the shortest routes with

the least amount of traffic at any moment, while also

considering that the occupancy of a road segment

might change during travel.

In order to achieve this goal, we propose the use of

a Genetic Algorithm (GA) for computing the shortest

of the least occupied routes through a network of

intersections. The algorithm takes into account the

degree of occupation for each intersection and chooses

the route with the least amount of traffic.

Genetic Algorithms (GAs) are optimization

heuristics able to perform rapid searches in large

amounts of uncertain or incomplete data, with an

inherent structure that allows parallelization. Given

how GAs most often offer sub-optimal solutions is not

a deterrent for the considered routing problem, because

the urban traffic is in constant evolution and change.

Thus, it is unadvisable to spend too much time and/or

computing power on searching for a route that might

not be as viable in the next minutes.

GAs are designed to search in multiple directions at

once through the solution space, starting even from the

initialization phase, in which a random pool of

solutions (called a population) is generated. These

solutions, known as individuals, are then allowed to

evolve based on the principles of the Darwinist natural

selection. Using mechanisms of selection (choosing

certain individuals to contribute to creating the next

generation as parents), recombination (generating new

individuals by combining the characteristics of the

selected parent), and mutation (necessary to maintain

population diversity), a GA runs continuously,

evaluating at each step all the possible solutions of the

considered problem until a stop criterion is met (for

instance, after a certain number of generations, or after

reaching a certain tolerance for the solution). The

evaluation procedure is run through what is known as a

fitness function, that returns to which degree an

individual can be deemed fit or not to be a viable

solution.

Due to their heuristic nature, GAs can integrate,

within the fitness function, objectives and performance

indexes that are not necessarily defined in a formal

manner. Moreover, adding more and more conditions

in order to declare a possible individual as a fit solution

to the considered problem is not computationally

taxing (for instance, due to objective fusion techniques

that might be hard to do with non-heuristic

descriptions).

 In recent research, GAs have been applied to

problems in various fields. Their popularity keeps

increasing due to their ease of use, effectiveness, or

applicability. In control systems design (Fleming et al

2002) GAs have been efficiently used with both

feedback (Lewin 1994) and feedforward controllers

(Lewin 1996), modelling (Huang 2012) and parameter

estimation (Bush et al 2011). In other fields, GAs have

been used for various problems, either as stand alone

procedures (Patrascu et al 2016), or in combinations

EUROSIM 2016 & SIMS 2016

244DOI: 10.3384/ecp17142243 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

with other intelligent methods, like fuzzy systems

(Alcala-Fdez et al 2009) or neural networks (Tao et al

2004).

In a real world implementation, the dynamic route

generation algorithm would be developed to run

independently onboard emergency vehicles, integrating

traffic data from sensors throughout the city. It uses

mobile computational resources available locally to the

vehicle, thus eliminating the need for a central

aggregation hub and offering scalability in case of

major disasters, when more emergency crews are

required in different parts of the city.

As the vehicle travels to the destination, the degree

of occupation of the intersections along the route can

change. In this case, the route is updated taking into

account the new traffic data. The least occupied route

is chosen based on the value of the corresponding

fitness function (that computes a total degree of

occupation for the entire suggested route).

Figure 1 presents the general principle of the

proposed system. After a random initialization of the

solution population, the GA computes the fitness

function for each individual and, if necessary, genetic

operators are applied to the population. The processes

of evaluation, selection, and recombination are

repeated until an individual with a high enough fitness

is found or up to a maximum number of generations.

Once a new route is generated by the GA, it is then

transmitted to the driver.

At this point, whether the driver chooses to follow

the suggested route or not, the GA starts its next run, in

order to generate a new route by the time the vehicle

reaches the next intersection along its path.

The entire system presented in figure 1 can be

regarded as a control system in which the Genetic

Algorithm (as controller) receives a destination (as a

setpoint) and adjusts the trajectory (controlled output)

of the emergency vehicle (plant) through a

geographical area. The other traffic participants and the

driver decision to ignore the suggested route are

integrated into the control loop as disturbances. Each

new suggested route is being transmitted to the driver

at each node of the road network (intersection) as a

command.

Thus, the control problem of emergency crew

routes can defined as: an emergency vehicle

(ambulance, fire truck, police car, etc.) receives a

respond request to a given site while encountering as

little traffic as possible during its journey. The

emergency vehicle must travel from point A to point B,

through an urban area comprised of a road network and

traffic participants (regular vehicles and pedestrians).

The objective of the GA is to dynamically generate

new routes for the emergency vehicle, supply these

routes to the driver as the vehicle approaches each

intersection, while taking into account traffic data that

might be incomplete or inaccurate.

In what concerns the GA encoding of the vehicle

routes, these are formed of a numeric representation in

vectorial form, in which each position contains a route

section identifier and the degree of occupation on the

road segment leading to its associated intersection. The

entire route is given by the position of each route

section in the vector (its index).

Thus, an individual (or chromosome) is formed of

genes that represent a route section each.

A route section is formed of that segment of a road

between two intersections, on the traveling direction of

the emergency vehicle. One road segment is associated

with the intersection it travels towards, while the

position of the emergency vehicle through a route is

given by the road section & intersection pair it

currently travels through. Thus, a path is formed of a

starting point (either the initial position point A, or the

current position), and as many route sections (road

segment & intersection) as there can be delimited until

the destination point B. For example, a path through 3

intersections will contain 4 genes.

A route section identifier can be defined as a

coordinate pair or an unique identifier. This coordinate

point can be, for instance, a physical geographical

location for the beginning of each route section, a pair

of coordinates for the start and finish of the route

section, or even an ID number associated with each

route section. For simplicity, in what follows, the

Figure 1. General principle of the dynamic route generation with genetic algorithms.

EUROSIM 2016 & SIMS 2016

245DOI: 10.3384/ecp17142243 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

notation r will be used to denominate route section

identifiers.

Thus, a route φ is comprised of n route sections

defined by their position ri in the urban area and their

degree of occupancy Di. Each pair (ri, Di)i has an

associated index i that depicts their order in composing

the route:

 nnniii DrDrDrDr),(...),(...),(),(111000

When computing the fitness of an individual, the

algorithm takes into account both the degree of

occupation of the road segments on the possible paths

to the event site and the distance the destination.

For a path formed of n intersections, the route

fitness F is computed by analyzing each section and

cumulating the results for the entire route:

n

i i

i

rrg

D
F

1 0

1

,

where δ is a scaling factor, Di is degree of

occupancy on the i-th section of the route, and g(r0,ri)

is a function that scales the penalty given to those

sections of the route that are farthest from the starting

section r0 (either the initial section or the current

section the emergency vehicle is traveling through).

The fitness value F of the route needs to be

maximized, therefore the best routes are the ones with

the lowest degree of occupancy.

The closer a road section (delimited by the

intersections through which the vehicle must travel),

the more it is contributing to the computed fitness

value than the further ones. In this way, when

calculating the fitness of a possible route, less

importance is given to the degree of occupancy of

farther intersections, as it may change by the time the

vehicle is actually there.

3 Case Study

In order to test the proposed system, a simulation

model needs to be designed that incorporated the

complexity of urban traffic systems. In this respect, the

most recent development in complex systems

modelling belong to the field of Agent Based

Modelling and Simulation (Patrascu et al. 2015), which

provides engineers with Agent Based Simulation

Models (ABSM) that are able to describe the

behaviours of heterogeneous traffic participants, as

well as their interactions and interdependencies.

In an ABSM, an agent is a persistent entity

characterised by internal states. This entity interacts

with its environment or with other agents, ultimately

causing changes in the environment or in the states of

the other agents. An ABSM is a collection of agents,

their states, and the rules that govern interactions from

agents to agents, from agents to the environment, and

from the environment to the agents.

Every agent of an ABSM has inputs and outputs,

but it can also regulate their own internal states through

local feedback loops. The internal state of an agent is

governed by rules. Moreover, the behaviour of an agent

is represented by the set of actions it performs

(outputs) according to internal state and inputs.

As a whole, the ABSM has its own states, inputs,

and outputs, but from a holistic perspective, the states

of the entire simulation model integrates the complex

interactions between the agents involved, by using

rules to describe these behaviours. Most often, ABSM

are evolving complex systems, used in generative

experiments (Bertolotti, 2014), in order to test the

viability of a solution that has little chance to be

formally evaluated in realistic computing times (much

like in the case of heuristics).

3.1 ABSM description

The agent-based simulation presented in this paper was

implemented using the NetLogo (Wilensky et al 2015)

environment, which offers access to the advantages of

using agent based simulation models (ABSM)

previously stated. Moreover, NetLogo offers way to

implement user interfaces that is easy and accessible to

researchers who don't necessarily have a strong

programming background. NetLogo has been

sucessfully used for proving and testing complex

systems theorems and hypotheses. An in depth

discussion on the advantages and disadvantages of

using NetLogo for the simulation of complex control

systems can be found in our previous work (Patrascu et

al. 2015).

Thus, we illustrate the application of genetic

algorithms in computing the quickest route (from the

degree of occupation perspective) of an emergency

vehicle through a simulated urban environment. The

simulation application allows the user to set the

number and types of crossroads present in the world

model. Before starting the simulation, one can also

chose the duration of different traffic light phases, the

priorities for incoming traffic in a crossroad, as well as

the rate at which new vehicles are inserted in the

simulation. In this setup stage, the user can also chose

the parameters that control the genetic algorithm

responsible for planning the quickest route for the

emergency vehicle.

For simulation purposes, the generated environment

contains roads with four lanes (two lanes per travel

direction) and specific traffic lights for turning left or

going straight in order to increase the complexity of the

road network model, as would be expected to happen

in real urban areas: multiple lanes, directional traffic

lights and so on. After starting the simulation, an

emergency vehicle can be added to the environment.

The parameters indicating the start and destination

EUROSIM 2016 & SIMS 2016

246DOI: 10.3384/ecp17142243 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

position of the emergency vehicle, as well as its

priority, can be set from the model's interface.

The traffic participants are simulated using mobile

agents and consist of normal and emergency vehicles

and pedestrians. The simulation environment,

NetLogo, uses two types of agents: fixed and mobile.

The fixed agents build the static parts of the simulation

model, which, for the agent-based model compose their

relevant environment, while the mobile agents are used

to simulate dynamic entities. In this case, vehicles are

mobile agents. Their behaviour is modelled using

knowledge-based representations in a manner that most

accurately describes the decision making processes of

drivers. NetLogo offers the possibility of modelling

these entities as complex or simplistic as the user

desires. In this paper, the vehicle (and thus driver)

behaviour is as close as possible to the behaviour of

vehicles in real world traffic.

Emergency vehicles have a higher priority through

traffic than civilian ones. The pedestrians behave

similarly to the vehicles, with the exception that they

can only move on the sidewalks. In figure 2 an

example of simulated environment is presented,

highlighting the intersection that the emergency vehicle

(police) is currently traversing. The police car can be

seen entering the inner crossroad area from the east and

traveling west.

After creating the emergency vehicle, the user can

chose to highlight and inspect the police car as it

travels through the urban environment. This is

implemented by opening a new window (presented in

figure 2) that shows a zoom of the world model,

centered on the emergency vehicle, and that follows it

as it travels. In the zoom window presented here, we

can see the state of the traffic lights in each

intersection. The pedestrians obey the traffic lights

placed in the corners of the intersection, while the

vehicles follow the signals of the lights placed between

the lanes. For vehicles, the traffic light closer to the

center of the crossroad is for turning left and the other

one for going straight. In figure 2, on the east-to-west

road, we can see the traffic light for going straight

showing a green light and the one for turning left

showing red, thus allowing the police car to traverse

the intersection and stopping the two civilian cars

occupying the next lane from turning left. The route for

the emergency vehicle is computed when the agent that

models this vehicle is inserted in the simulation

environment. The user can chose to have the route

updated each time the vehicle crosses an intersection,

or just request one calculation, at the beginning of the

vehicle's journey.

During the simulation, at each time step, the phases

of the traffic lights are computed for each crossroad,

using a distributed traffic control system based on

vehicle priority. Each traffic light phase (North, East,

West, South) is computed using the corresponding road

occupancy data, which is obtained from sensors placed

on each road section entering the intersection. When a

civilian vehicle enters a road section, the occupancy is

increased by 1 and when the vehicle leaves the road

section, it is decreased by the same amount. In the case

of an emergency vehicle, the occupancy is modified

according to the priority of the vehicle. For more

information regarding these types of control systems

and their simulation using ABSM, please consult our

previous work (Patrascu et al 2015).

Figure 2. ABSM world overview.

As the simulation runs, at each time step, new

vehicles are inserted in the simulation environment.

The user can set the frequency for inserting vehicles

from the east and west or north and south side of the

map. The vehicles can only be inserted on a lane

connected to the edge of the map if there is available

room. Depending on a user setting, the civilian

vehicles can give way to the emergency vehicles by

temporary switching lanes.

3.2 A simulation example

For a more facile visualization, the world model

presented in this case study has the road sections

(segment & intersection pairs) displayed in a grid. In

what follows, we have chosen a 4x4 grid of

intersections. Each route section is depicted by an

identifier of the form (x, y) where x is the position on

each line of the grid, while y is the position on each

column. For example, (1, 3) is the intersection marked

A in figure 3. The starting point of the emergency

vehicle (police car) is marked A in figure 3, while the

final destination is B, at coordinates (4, 2).

For the first experiment (Exp.1), the GA presented

in the previous sections will be run as the vehicle

departs from point A. In the second experiment

(Exp.2), the GA will be run at the entry of each route

section, re-generating the vehicle's route dynamically

EUROSIM 2016 & SIMS 2016

247DOI: 10.3384/ecp17142243 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

as it travels through the urban area. The results of both

experiments are presented in table 1 (where D is a

matrix containing the degrees of occupancy for each

route section, and φ is the route returned by the GA).

For Exp.1, the GA is run only at point A. For Exp.2,

the table shows the first 2 runs of the GA, first in point

A and then in the next intersection, showing how the

occupancy of the road segments has changed while the

vehicle has travelled through the first route section,

from (1, 3) to (2, 3).

Figure 3. Starting point and destination of the emergency

vehicle.

Table 1. Simulation run results

 Exp.1 Exp. 2

GA run

at point

A (1, 3)

D

3691618

52101438

46121040

377834

52141719

63151753

57281952

44141134

φ

[(1,3), (2,3), (3,3),

(4,3), (4,2)]
Total Cars: 46

[(1,3), (2,3), (2,2),

(3,2), (4,2)]
Total Cars: 76

GA run

at point
(2, 3)

D

44103129

61281850

42292051

58141844

43181125

67112051

66182255

4581642

φ

[(2,3), (3,3), (4,3), (4,2)]

Total Cars: 89

New route:

[(2,3), (3,3), (4,3), (4,2)]
Total Cars: 53

Old route:
[(2,3), (2,2), (3,2), (4,2)]

Total Cars: 69

In the first experiment, the vehicle's route is

computed only once, at the beginning of its journey. As

the vehicle travels through the area, the degree of

occupancy might change on the previously selected

routes. For instance, there is an alternate route starting

at (2, 3) that has less vehicles traveling through it. To

account for the changes in the environment, in the

second experiment, the GA has been run at the

beginning of each route section in order to determine if

the route should be kept or dynamically changed. In

table 1 a new and old route comparison is shown to

illustrate this phenomenon.

The system we proposed in section 2 achieves its

objectives of selecting the routes with the lowest

degree of occupancy in a given urban area. Moreover,

the system is capable of dynamically re-generating the

emergency vehicle's route based on new traffic data

and changes in the urban road network.

The preliminary testing conducted in this study

shows great potential for the further development of

evolutionary algorithms as controllers in closed loop

systems. The next step in a thorough validation

procedure is to develop simulation models that use real

world maps, followed by real world testing. These are

some of the main steps in the cycle of control systems

development, which are designed to take a formal idea

and make sure the final product works smoothly and

within required performances.

4 Conclusions

In this study, a system for generating emergency

vehicles routes has been presented. The system is able

to account for changes in the environment or in urban

traffic and dynamically supply new, better routes to the

emergency vehicle drivers.

For this, a genetic algorithm has been designed that

can recalculate the paths of the emergency responders

while they are already on their journey to an event site.

The entire route adjustment procedure is encapsulated

in a control system scheme, in which the controlled

variable is the route of the vehicle, while the other

traffic participants are disturbances. The proposed

system has been tested in a simulated environment

specifically designed to emulate the complexity of the

urban traffic.

Among the advantages of this type of system are:

the possibility to run locally, on each emergency

vehicle, thus eliminating the need for a central server

type entity and overloaded communication networks;

the possibility of implementation on devices that are

already available (smartphones or tablets); not relying

on traffic control systems, that can sometimes be

overwhelmed, that can only manage an intersection at a

time, or that can, at times, be offline (for maintenance

or other reasons).

EUROSIM 2016 & SIMS 2016

248DOI: 10.3384/ecp17142243 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Moreover, for this type of system, context

awareness is implicitly achieved. The intrinsic nature

of control systems allows them to both collect

information from the environment (either by direct

sensing or by accessing real time traffic databases), and

to interact with the it via the driver. Complete

automation, although attractive from a point of view of

vehicle autonomy, removes the driver from the

decision making process. Thus, the middle ground we

proposed seems the most reasonable.

Some of the limitations of this sort of system are

related to the inherent heuristic nature of genetic

algorithms, the proposed method requiring perhaps a

sort of hybridization with formal methods,

metaheuristics, memetic algorithms.

Further research endeavours in what concerns the

proposed dynamic route generation using genetic

algorithms include the design of specialized selection

methods and chromosome encoding for routes and the

test of the presented system, first in simulated

environments with higher complexity, and then in real

world scenarios.

Acknowledgements

We would like to thank our former student Eugen

Marius Petre for his work within the EMAS (Emergent

Multiscale Agents and Services) Research Group.

References

S. Andjelic, G. Panic, and A. Sijacki. Emergency response

time after out-of-hospital cardiac arrest. European journal

of internal medicine, 22(4): 386-393, 2011.

G. Asvin and G. Volker. Solving a dynamic real-life vehicle

routing problem. Operations research proceedings: 367-

372, 2006.

B. O. Bush, J.-P. Hosom, A. Kain, and A. Amano-

Kusumoto. Using a genetic algorithm to estimate

parameters of a coarticulation model. In Twelfth Annual

Conference of the International Speech Communication

Association, pages 2677-2680, 2011.

C.-F. Huang. A hybrid stock selection model using genetic

algorithms and support vector regression. Applied Soft

Computing, 12(2): 807-818, 2012.

D. R. Lewin. A genetic algorithm for MIMO feedback

control system design. Adv. Control Chem. Process, 101:

2014, 1994.

D. R. Lewin. Multivariable feedforward control design using

disturbance cost maps and a genetic algorithm. Computers

& chemical engineering, 20(12): 1477-1489, 1996.

D. Barbucha. A multi-agent approach to the dynamic vehicle

routing problem with time windows. In International

Conference on Computational Collective Intelligence,

pages 467-476, 2013.

G. B. Dantzig and J. H. Ramser. The truck dispatching

problem. Management science, 6(1): 80-91, 1959.

G. F. Rushworth, C. Bloe, H. L. Diack, R. Reilly, C. Murray,

D. Stewart, and S. J. Leslie. Pre-hospital ECG e-

transmission for patients with suspected myocardial

infarction in the highlands of Scotland. International

journal of environmental research and public health,

11(2): 2346-2360, 2014.

H. N. Psaraftis. A dynamic programming solution to the

single vehicle many-to-many immediate request dial-a-ride

problem. Transportation Science, 14(2): 130-154, 1980.

H. N. Psaraftis. Dynamic vehicle routing: Status and

prospects. Annals of operations research, 61(1): 143-164,

1995.

I. Benyahia and J.-Y. Potvin. Decision support for vehicle

dispatching using genetic programming. IEEE

Transactions on Systems, Man, and Cybernetics-Part A:

Systems and Humans, 28(3): 306-314, 1998.

J. White. Emergency vehicle priority. The Queensland

Surveying and Spatial Conference, Brisbane Australia,

2012.

J. Barrachina, P. Garrido, M. Fogue, F. J. Martinez, J.-C.

Cano, C. T. Calafate, and P. Manzoni. Reducing

emergency services arrival time by using vehicular

communications and Evolution Strategies. Expert Systems

with Applications, 41(4): 1206-1217, 2014.

J.-Y. Potvin. A review of bio-inspired algorithms for vehicle

routing. Bio-inspired algorithms for the vehicle routing

problem, 1-34, 2009.

J. Alcalá-Fdez, R. Alcalá, M. J. Gacto, and F. Herrera.

Learning the membership function contexts for mining

fuzzy association rules by using genetic algorithms. Fuzzy

Sets and Systems, 160(7): 905-921, 2009.

M. M. Shah. Artificial Intelligence: Vehicle Routing

Problem and Multi Agent System. International Journal of

Computer Applications, DRISTI(1): 1-3, 2012.

M. Patrascu and A. Ion. Evolutionary Modeling of Industrial

Plants and Design of PID Controllers. In H. E. Ponce

Espinosa, editor, Nature-Inspired Computing for Control

Systems, volume 40 of Studies in Systems, Decision and

Control, pages 73-119, 2016.

M. Patrascu, A. Ion, and V. Constantinescu. Agent based

simulation applied to the design of control systems for

emergency vehicles access. In ITS Telecommunications

(ITST), 2015 14th International Conference on, 50-54,

2015.

O. B. G. Madsen, H. F. Ravn, and J. M. Rygaard. A heuristic

algorithm for a dial-a-ride problem with time windows,

multiple capacities, and multiple objectives. Annals of

operations Research, 60(1): 193-208, 1995.

P. Chand, B. S. P. Mishra, and S. Dehuri. A multi objective

genetic algorithm for solving vehicle routing problem.

International Journal of Information Technology and

Knowledge Management, 2(2): 503-506, 2010.

P. Toth and D. Vigo. The vehicle routing problem, ser.

SIAM monographs on discrete mathematics and

applications. Society for Industrial and Applied

Mathematics, 2002.

P. J. Fleming and R. C. Purshouse. Evolutionary algorithms

in control systems engineering: a survey. Control

engineering practice, 10(11): 1223-1241, 2002.

P. T. Pons, J. S. Haukoos, W. Bludworth, T. Cribley, K. A.

Pons and V. J. Markovchick. Paramedic response time:

EUROSIM 2016 & SIMS 2016

249DOI: 10.3384/ecp17142243 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

does it affect patient survival?. Academic Emergency

Medicine, 12(7): 594-600, 2005.

Q. Tao, X. Liu, and M. Xue. A dynamic genetic algorithm

based on continuous neural networks for a kind of non-

convex optimization problems. Applied mathematics and

computation, 150(3): 811-820, 2004.

R. Kaur, R. Kaur, and N. Kaur. A Modified transmission

Algorithm for Resolving Vehicle Routing Problem by

Intelligent Water drop Algorithm. International Journal on

Recent and Innovation Trends in Computing and

Communication, 2(10): 3108-3112, 2014.

R. Séguin, J.-Y. Potvin, M. Gendreau, T. G. Crainic, and P.

Marcotte. Real-time decision problems: An operational

research perspective. Journal of the Operational Research

Society, 48(2): 162-174, 1997.

T. H. Blackwell and K. S. Jay. Response time effectiveness:

comparison of response time and survival in an urban

emergency medical services system. Academic Emergency

Medicine, 9(4): 288-295, 2002.

T. Bertolotti. Generative and Demonstrative Experiments. In

L. Magnani, editor, Model-Based Reasoning in Science

and Technology, volume 8 of Studies in Applied

Philosophy, Epistemology and Rational Ethics, pages 479-

498, 2014.

U. Wilensky and W. Rand. An introduction to agent-based

modeling: modeling natural, social, and engineered

complex systems with NetLogo, MIT Press, 2015.

V. Talbot and I. Benyahia. Complex Application

Architecture Dynamic Reconfiguration Based on Multi-

criteria Decision Making. International Journal of

Software Engineering & Applications, 1(4): 19-37, 2010.

W.-R. Jih and J. Y.-J. Hsu. Dynamic vehicle routing using

hybrid genetic algorithms. In Proceedings of the 1999

IEEE International Conference on Robotics and

Automation, Detroit, USA, pages 453-458, 1999.

EUROSIM 2016 & SIMS 2016

250DOI: 10.3384/ecp17142243 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	Introduction
	Calculation formulas
	Calculation of Intra-Ocular Lens for Non-Normal Eyes

	Back ground of studies
	Artificial Neural Network
	Real data
	Collected Data
	Specification of Patients Data Selected for Collection
	Specification of Preprocessing Parameters

	Results
	Objective
	ANN training
	ANN settings
	Results

	Conclusion
	Future work
	Introduction
	Homeostasis, Disturbance Rejection and Set Point Tracking
	Controller Motifs

	Results
	Dynamic Properties of Controller Motifs
	Tuning of Individual Controllers

	Conclusions
	Introduction
	Modelling the pharmacokinetics of propofol
	The 3-compartmental model
	Effect-site concentration model
	Model parameters

	Model verification
	Simulation results
	Propofol inflow
	Plasmatic concentration
	Effect-site concentration
	Evaluation of the predictive quality of the model

	Conclusion
	Introduction
	Modular Model Predictive Control Concept
	Building Setup
	Modular Predictive Control Concept

	Energy Supply Level - ESS - Models
	Linear Models
	Hybrid Models

	Model Predictive Controllers
	Objective Function
	LMPC
	MI-MPC

	Simulation Results
	Simulation Setup
	Demonstration of MPCC Performance
	Comparison between MPCC and RBC

	Conclusion
	Introduction
	Data Properties
	Macro Money Systems in QEs
	Behavior in QE1=(2008m11,2010m06)
	Behavior in QE2+=(2010m11,2012m08)
	Behavior in QE3=(2012m09,2014m10)

	Transmission Path of Housing Price from Reserve to Economic Activity
	Decomposition of M2 into Transaction and Precautionary Money Demands in (1975m10, 2016m03)
	Estimation of Precautionary Money Demand
	The Role of Business Condition u(t)=napm-50 in Transmission Mechanism of QEMP during QE1, QE2+ and QE3

	Conclusion
	Introduction
	Mathematical Model
	Model Parameters and Geometry
	Results and Discussions
	Conclusions
	Introduction
	Field Excitation Control
	Capability Curve
	Classical Control

	Concept and Formulation of MPC
	MPC as Excitation Control
	Modeling and Control Workflow

	Tuning the MPC Controller
	Time Response
	Open Circuit Conditions

	First-swing Angle Stability Enhancement
	Long-term Voltage Stability Enhancement
	Steady-state Voltage Stability
	Power System Simulator
	LTVS Simulations

	Discussion
	Conclusion
	Introduction
	Grid impedance model
	Impedance-based instability studies
	Practical implementation
	Conclusion
	Aknowledgements
	Introduction
	Literature Review
	Circulating Fluidized Bed Boilers
	Characteristics of RDF
	Agglomeration

	Methodology
	Description of Model
	Mass and Energy Balances
	Hydrodynamics

	Results and Discussion
	Validation
	Agglomerate Prediction

	Conclusion
	Introduction
	Theory
	Stability of Grid-Connected System
	Maximum-Length Binary Sequence

	Implementation in dSPACE
	System Setup
	Experiment

	Conclusions
	Introduction
	Governing Equation for Flow Modeling
	KP Numerical Scheme
	Simulation of the River Flow
	Results and Discussion
	Simulation Results
	Simulation Results for Numerical Stability Analysis

	Conclusion
	Introduction
	Air preparation process
	Fuzzy identification
	Takagi-Sugeno fuzzy model
	Fuzzy clustering

	Data collection
	Structure selection
	Input and output variables
	Representation of the systems' dynamics
	Fuzzy models granularity

	Fuzzy clustering and model validation
	Comments on resulting model performance

	Control experiments
	PID control
	Supervisory logic

	Conclusions
	Introduction
	First step - DES model
	Second Step - Portfolio optimization

	Stochastic DES model through markovian properties
	Product-Form Networks - Convolution algorithm
	Marginal probability
	Mean response time

	Load-haulage cycle
	DES model: Load-haulage system
	Project portfolio formulation
	Conclusion
	Introduction
	Overview of the Method
	Computing the Encounter Probabilities
	Example

	State Transition Matrix
	Projectile with a Single Sensor Fuzed Submunition
	Example
	Projectile with Two Sensor Fuzed Submunitions

	Failure Probability of the System
	Conclusion
	Hydro-pneumatic Accumulator
	Recent Research
	Purpose of This Study

	Logical Structure of Simulation Model
	Physics of Piston Type Hydro-Pneumatic Accumulator
	Nitrogen gas
	Mechanical Structure
	Hydraulic Fluid

	Conceptual Model

	Mathematical Model
	Equations for Nitrogen Gas
	Equations for Piston
	Equations for Friction
	Equations for Hydraulic Fluid
	Equations for Orifice

	Modelling in MATLAB/Simulink
	Calibration and Validation of the Simulation Model
	Testing Setup
	Laboratory Tests
	Validation

	Conclusion
	Introduction
	Contributions
	Setup for the analysis
	Experimental data
	Compressor Map
	Compressor Isentropic Efficiency
	Corrected Mass Flow
	Data Treatment

	 Pressure Losses in Gas Stand
	Pressure Loss in Straight Pipe
	Friction Factor - Laminar Flow
	Friction Factor - Turbulent Flow
	Pressure Loss In Bend
	Pressure Loss in Inlet Nozzle and Outlet Diffuser
	Adjust Measured Data
	Calculate New Compressor Efficiency

	Effect of pressure losses on measured compressor efficiency
	Compressor and Pipes Dimensions
	Case 1: Straight Pipes
	Case 2: Pipes with Diffuser and Nozzle
	Case 3: Pipes with Diffuser, Nozzle and Bend

	Summary and Discussion
	Future Work
	Conclusion
	Introduction
	Traffic Regulation: Stage selection
	Signal Control Schemes
	Pre-timed network control
	Max-Pressure Practical (MPract)

	Modelling and Simulation Overview
	An event-driven approach
	PointQ design

	Case Study-Data description
	From theory to applications
	System Stability
	Trajectory Delay Measurement
	Queue Delay Measurement
	Varying Traffic Conditions

	 PointQ versus AIMSUN Network Performance
	Evolution of phase (137,154)
	Evolution of phase (254,237)

	Conclusion
	Introduction
	Background
	MVB and Master Transfer
	Multifunction Vehicle Bus
	Mastership Transfer

	Model Checking with temporal logic

	System Modelling
	Bus Administrator Modelling
	basic data structure
	finite state machine of Bus Administrator

	Communication and Timing Modelling
	communication mechanism of BusAdmin
	timing mechanism

	Property Modelling
	Property Classification
	safety property
	liveness property

	Live sequence charts
	Observer Automata modelling

	Experiments
	Conclusion
	Introduction
	Experimental data
	Modeling
	Compressor
	Turbine
	EGR Blowers
	Auxiliary Blower
	Exhaust Back Pressure
	Combustion Species and Thermodynamic Parameters

	Parameterization Procedure
	Complete stationary parameterization
	Dynamic estimation

	Model Validation
	Conclusions
	Nomenclature
	Introduction
	Fundamentals
	Safe Active Learning
	The high pressure fuel supply system

	Design and Implementation
	Training of the hyperparameters
	The discriminative model
	The risk function
	The path to the next sample
	The algorithm

	Evaluation
	Evaluation in simulation
	Evaluation at a test vehicle

	Conclusion
	Introduction
	Modelling
	Centre of Gravity
	Aerodynamic Forces
	Definition of Angles
	Lever Arms
	Catenary
	Equations of Motion
	Velocities
	Self Stabilisation
	Complete Model

	Model Parameters
	Simulation Results
	Gliding Flight
	Towing Process

	Conclusions
	Introduction
	Context
	Compton scattering tomography (CST)

	Modelling of the new CST modality
	Proposed setup by back-scattering
	Direct problem : Image formation
	The half-space Radon transform (HRT)
	Image formation

	Inverse problem : Object Reconstruction
	Inversion of the HRT
	Filtered back-projection

	Simulation of the new CST modality
	Energy resolution of the detector
	Spatial discretization
	Window functions

	Conclusion and perspectives
	Introduction
	Powertrain model
	Problem formulation
	Tip-in problem constraints
	Boundary conditions for the tip-in problem
	Path constraints during tip-in

	Optimal control problem formulation
	Numerical solution of optimal control problems

	Optimal control results
	Extreme transients
	Compromise between time, Jerk and energy
	Jerk-Energy trade-off
	Efficient state and control transients

	Conclusions
	An Improved Kriging Model Based on Differential Evolution
	1 Introduction
	2 Theory of kriging model
	3 Kriging model based on DE algorithm
	3.1 Theory of DE algorithm
	3.2 Kriging interpolation based on DE algorithm
	3.3 Process of kriging Model based on DE algorithm

	4 An engineering example
	4.1 Setting DE algorithm parameters
	4.2 Data preprocessing
	4.3 Model computation and optimization

	5 Conclusion
	Introduction
	Model for slug flow
	Simulation for slug flow
	State estimation
	Control strategies
	Model predictive control
	PI control

	Simulation results and discussion
	Control structure I
	Control structure II
	Control structure III

	Computational time for MPC
	Maximum valve opening
	Conclusion
	Introduction
	Description of the loading bridge
	Modelling with Modelica
	Package of mechanical components Mechanics
	Package of causal components Blocks
	Structure and components of the overall model
	Model of the loading bridge
	World
	Cart
	Pendulum
	Drive

	Controller in Matlab Simulink environment
	Experiments
	Open loop experiments
	Closed loop experiments

	Conclusion
	Introduction
	MMT - Mathematics, Modelling and Tools
	Structure of MMT
	Usage of MMT

	Maple T.A. - Maple Testing and Assessment
	Structure MTA
	Usage MTA
	Mathapps
	MTA - Moodle Connector

	Case Study
	Conclusion
	Outlook
	Introduction
	Signal processing
	DFT and derivatives
	lp-norms and MIT-indices
	Nadaraya-Watson nonparametric regression

	Measurements and gearbox properties
	Load haul dumper front axle
	Water power station gearboxes

	Calculations from the LHD measurements
	Calculations from the WPS measurements
	Conclusion
	Introduction
	Preliminaries
	Problem Statement
	Vector Smoothing Splines

	Trajectory Planning
	Trajectory between Two Lines
	Centerline and Intermediate Time Instants
	Smoothing Spline Trajectory

	Numerical Examples
	Path with Piecewise Linear Boundaries
	Path in Obstacle Avoidance Problem

	Concluding Remarks
	Introduction
	Literature Review
	Dynamic multi-workstation model based on electrical components

	Simulation Model with a PI Controller
	Test and Results
	Final Remarks
	Introduction
	Related Work
	Methodology
	DataSet

	Semantic Identification Through Multiple Classifiers
	Global Feature Extraction through Wavelet Decomposition
	Deep Learning of Neural Network

	Image Retrieval
	Performance Analysis
	Conclusion
	Motivation
	Related work
	Data set and pre-processing
	Defining the curvature of a steel plate
	Experiment
	Discussion
	Conclusion
	Introduction
	New Evolutionary Computation
	Island model parallel distributed in NN-DEGA
	Self-adaptive using Neural Network
	Reconstruction of differential vector
	Elite strategy

	Numerical Experiments
	Benchmark Functions
	Experiment Results
	Comparison for Robustness

	Conclusion
	Introduction
	Classical RF Prediction
	Fuzzy Clustering Prediction
	Analysis
	Conclusion
	Introduction
	Dynamic Artificial Neural Network
	Back Propagation Through Time (BPTT)
	Real Time Recurrent Learning (RTRL)
	Extended Kalman Filter Learning (EKF)

	Experimental Set-up
	Results
	Simulation Study
	Experimental Study

	Conclusion
	Introduction
	Overview of Toolbox
	DANN Main
	Uploading data set
	Division of data set
	Validation check
	Bias
	Learning algorithm
	Learning parameters
	Past inputs and outputs
	Additional parameters

	Parameter Tuning
	Plot Menu
	Performance plot
	Regression plot
	Prediction plot
	Parameter plot
	Error plot

	Additional information
	Installing the MATLAB DANN toolbox

	Case Studies
	Case I: BPTT learning algorithm for flow measurement
	Case II: EKF learning algorithm for temperature measurement
	Case III: RTRL learning algorithm for mortality prediction

	Conclusion
	Modeling and Simulation of Train Networks Using Max-Plus Algebra
	1. Introduction
	2. Max-plus algebra
	3. Scheduled max-plus linear systems
	4. Timetable stability
	4.1 Delay sensitivity analysis
	4.2 Dynamic Delay Propagation
	4.3 Recovery Matrix

	5. Conclusion
	Introduction
	Construction of DBN metamodels
	Utilization of DBN metamodels
	Example analysis - simulated operation of air base
	Conclusion
	Introduction
	Metastable liquids

	Model for two phase flow and phase transition
	The van der Waals equation of state

	Solver
	Stiff pressure relaxation
	Stiff thermodynamic relaxation

	Experiments
	Simulation set-up
	Results and discussion
	Conclusion
	Introduction
	ParModelica
	Previous Research on PDEs in Modelica
	Partial Differential Equations (PDE)
	Explicit Form

	Numerics
	Discretisation
	Runge-Kutta with Variable Step Length

	General-Purpose Computing on Graphics Processing Units (GPGPU)
	PDEs in Modelica
	Algorithmic Modelica and ParModelica
	Solver Framework
	User Defined State Derivative and Settings
	Types Used by the Solver
	Solvers

	Use Case — Heat in Plane
	Poor Insulation and Constant Temperature
	Constant Temperature Depending on Location

	Performance Measurement
	Pros & Cons of Solver Written in Modelica
	Conclusions
	Blood Flow in the Abdominal Aorta Post 'Chimney' Endovascular Aneurysm Repair
	1 Introduction
	2 Methodology
	2.1 Governing Equations
	2.2 Anatomical Model
	2.3 Numerical Model
	2.4 Numerical Discretization

	3 Results
	3.1 Validation
	3.2 Flow Patterns
	3.3 Flow Regime

	4 Discussion and Conclusions
	Introduction
	Spin-Image Algorithm
	The Proposed Parallel Spin-Images Algorithm
	Results and Analysis
	Platform Specification
	Experimental Data
	Results

	Conclusions and future work
	Introduction
	Overview of Python API
	Goal
	Installing the OMPython Extension
	Status
	Description of the API
	Python Class and Constructor
	Utility Routines, Converting Modelica FMU
	Getting and Setting Information
	Operating on Python Object: Simulation, Optimization
	Operating on Python Object: Linearization

	Use of API for Model Analysis
	Case Study: Simple Tank Filled with Liquid
	Model Summary
	Modelica Encoding of Model
	Use of Python API
	Basic Simulation of Model
	Parameter Sensitivity/Monte Carlo Simulation

	Discussion and Conclusions
	Introduction
	Related Work
	Virtual Testing of Open embedded Systems
	Simulator Coupling for Network Simulation
	Network Fault Injection Testing
	Case Study
	Conclusions and future work
	Validation Method for Hardware-in-the-Loop Simulation Models
	1 Introduction
	2 Validation Methods
	2.1 Open-Loop Operation
	2.2 Independent Closed-Loop Operation
	2.3 Compensated Closed-Loop Operation

	3 Related Work
	3.1 Example Circuit
	3.2 Simulation Models

	4 Simulation Results
	4.1 Models with Different Switching Delays
	4.2 Discrete-Time Models
	4.3 Fixed-Point Models

	5 Conclusion
	Introduction
	Control Engineering: The Teacher's Challenge
	New Curriculum For Teaching Automatic Control
	Luma Activity
	Conclusion
	Introduction
	The Activated Sludge Process
	Mass balances and expression for the sludge age
	The settler

	ASP with ideal settler model
	Steady-state solutions
	Substrate input-output relationship for constant sludge age

	ASP with DZC settler model
	Steady-state solutions
	Substrate input-output relation for constant sludge age

	An approximation for S* given 0
	Numerical example
	Theorem 1
	Theorem 2

	Conclusions
	Introduction
	Materials and Methods
	Gaussian Mixture Models
	GMM based fault detection criteria

	Case Study: Monitoring a Secondary Settler
	Results
	Discussions
	Conclusions
	Introduction
	Industrial Process Description
	SIAAP Waste water and sewage Sludge Treatment Process
	Incineration Process
	The Furnace
	The Heat Exchanger

	Identification Process Overview
	Sludge Incineration sub-models: Input-output interaction.
	Identification Strategy

	Validation Methods
	Absolute Criteria
	Relative reference-model criteria

	Results and Discussions
	Relative Reference-Model Criteria Results

	Conclusion
	1 Introduction
	2 Modelling
	2.1 Basic Process Components
	2.2 Boiler Evaporator Loop
	2.3 Test Model

	3 Simulation Tests
	3.1 Comparison of Numerical Solvers
	3.2 Effects of Initial State and Parameters

	4 Conclusions
	Introduction
	TCP-100 solar field description
	Mathematical modeling of TCP-100 solar field
	 Optical and geometric efficiencies
	Characteristics of the heat transfer fluid
	Thermal losses

	Simulations
	Conclusion
	Introduction
	Description of a Basic Gas Turbine Model
	Compressor
	Combustion Chamber
	Turbine Module

	Computational Causality And Conditions for Numerical Convergence
	First Principles Compression and Expansion Maps
	Compression Case
	Expansion Case

	Simulation Results
	Conclusion
	Appendix
	Introduction
	Modelling methodology, libraries and tools
	Plant Description
	Innovative aspects
	OTSG topology

	Device modelling
	Re-used components
	Custom component models
	Separator
	Feedwater heater
	Deaerator
	MS fluid model

	Plant modelling
	OTSG model
	Turbine model
	Feedwater preheaters train
	Plant control system
	Complete plant model

	Simulation objectives - methodology
	Simulation performance
	Conclusion
	Introduction
	Formal Problem Statement and SVM
	SVM by Set-Valued Training Data
	A Modification of the AdaBoost
	Imprecise Updating Weights of Robots
	Conclusion
	Introduction
	Methodology
	Power grid connection
	Electrolyser
	Interim gas storages
	Methanation
	MEA CO2 capture
	CH4 compression

	Control sequences
	CH4 compression
	Start-up
	Power grid connection
	Methanation reactor
	Electrolysers
	Interim gas storages
	CH4 compression

	Shutdown
	Methanation reactor
	CH4 compression
	Interim gas storages
	Electrolysers

	Results
	Conclusion and future work
	Acknowledgment
	Introduction
	Mathematical Model
	Assumptions
	Development of Model
	Material Balance
	Energy Balance
	Heat Exchanger

	Simulation Results and Discussion
	Simulation Results
	Comparison with Previous Work

	Conclusions
	1 Introduction
	2 Herding behavior of rhinos
	2.1 A synoptic model of space use
	2.2 Population size updating model

	3 Rhino herd (RH) algorithm
	3.1 Synoptic model
	3.2 Population size updating model
	3.3 RH algorithm

	4 Simulation results
	5 Discussions and conclusions
	Acknowledgements
	References

	Introduction
	Structure and Kinematics of the Double-Spiral Mobile Robot
	Structure
	Forward kinematics
	Gripper positions
	COG

	NESM
	Numerical Case Study
	Conditions and methods
	Results

	Discussion
	Conclusion
	Introduction
	Data analysis
	Nonlinear scaling
	Interactions
	Uncertainty
	Natural language

	Recursive analysis
	Scaling
	Interactions
	Fuzzy logic
	Smart adaptive systems

	Temporal analysis
	Trend indices
	Fluctuations
	Changes of operating conditions

	Conclusion
	Introduction
	MOEA/D
	Algorithm
	Focused Issue

	Proposed Method: Chain-Reaction Initial Solution Arrangement
	Aim and Concept
	Method

	Experimental Settings
	Results and Discussion
	Search Performance at Final Generation
	Search Performance over Generations

	Conclusions
	Introduction
	Modeling demand-side management
	Markets
	Actors
	Other elements

	Controlling consumption
	Optimizing scheduling
	Controlling (via) frequency

	Discussion and conclusions
	Introduction
	Components and Parameters of Musical Expression
	Learning Support System of Musical Representation
	Generation of Example of Musical Expression
	Construction of Kansei Space
	Image Estimation
	Parameter Values Estimation using Fuzzy Inference
	Interactive Modification of Musical Expression

	Comparison of Parameter of Musical Expression
	Advice for Parameter of Musical Expression

	Range of Learner's Musical Expression on Kansei Space
	Estimation of Range of Musical Expression
	Advice about Impression

	Experiment
	Results and Discussions

	Conclusion
	Introduction
	Formulating the GA Optimization
	The Problem Encoding
	The Objective Function (Fitness)
	Selecting The GA Operators
	Tuning the GA Parameters

	FPGA Implementation
	GA's HDL Entities
	Fitness
	Selection
	Crossover
	Mutation
	Generating Pseudo Random Sequences
	Replacement

	Performance Evaluation
	Functional Verification
	Fitness
	Selection
	Replacement
	Crossover
	Mutation
	LFSRs
	Comparator

	Integrating GA into the SoC
	Interfacing GA with the HPS
	Controlling GA from the Linux host

	Conclusion and Future Work
	Introduction
	Related Work
	Earthmoving Simulator
	Workspace Subdivision with Scoop Area
	High Point and Zero Contour Methods
	Simulation Results and Discussion
	Conclusion and Future Work
	Introduction
	SDNized Wireless LAN Testbed
	 Central Manager
	 Aggregator and Transport Network
	 Network Edge
	 Android Measurement Application
	Experiment Automation

	Mobility Management - A Use-Case Scenario Implementation
	Mobility Handling in Developed Testbed
	Logging
	Running the Experiment
	Parsing and aggregating results

	Conclusion

