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Abstract
Emergency officers could often benefit from a route

planning system that is based on constant traffic

monitoring and complex decision making, seeking to

give victims another breath of hope by assisting

emergency units with reaching them on time. The main

challenge is providing responses in a continuously

evolving environment within a prescribed time frame,

while using limited resources and information that is

often incomplete or uncertain. This paper presents a

route control concept for emergency vehicles through

urban traffic. The proposed genetic controller is

designed to dynamically reassess the route while the

vehicle passes through the road network, continuously

generating new routes based on current traffic. The

algorithm is tested in an agent based simulation model

that includes both traffic participants and a distributed

traffic control system.

Keywords:   genetic algorithm, emergency response,
control systems, distributed control, agent based

simulation model

1 Introduction

In complex and distributed urban environments, the

services that provide quality of life and safety have to

deal with unpredictable events and incomplete data.

Moreover, intelligent transport systems are becoming

increasingly important as they aim to provide solutions

to crucial issues related to transportation networks,

such as congestion and various incidents. One of the

most important activities in the protection of human

life is the intervention of emergency responders, for

which an important issue in the unpredictable urban

road networks is the time required for an emergency

vehicle to reach an event scene. Congestion and the

various obstacles that may appear during the journey

on the chosen path can increase travel time and

therefore reduce the chances of ensuring the safety of

human life (Blackwell et al, 2002; Pons et al 2005;

Sladjana et al 2011; Rushworth et al 2014).

Thus, re-calculating the routes of emergency

vehicle during their journey based on environmental

changes is a way to avoid these obstacles.

Real-time decision problems are also playing an

increasingly important role in transportation

management, as advances in communication and

information technologies allow real-time information 

to be quickly obtained and processed. Therefore, 

dynamic vehicle route generation has become more 

and more efficient, especially in urban areas. 

The problem of finding the most efficient routes for 

the quick access of the emergency vehicles in the 

current urban traffic is very important in terms of 

protecting and saving human lives. From an economic 

and social point of view, implementing the developed 

algorithms would increase the number of saved lives, 

reduce congestion and accident risk, would reduce fuel 

consumption and the time spent in traffic and by doing 

so, would also reduce the number of people affected by 

stress on the road. 

The most important technological benefit regarding 

evolutionary computing is the possibility to integrate 

techniques typically associated with modeling complex 

systems in representing the possible solutions to 

optimization problems solved with the help of 

evolutionary algorithms. This opens the way to using 

these class of algorithms for solving problems that 

cannot be modeled using formal techniques and that 

can only be solved by using heuristic methods. The 

future applications of evolutionary computing are not 

restricted to vehicle routing; they include different 

other optimization problems, from designing control 

systems for processes affected by non-linearity and 

uncertainties, modeling complex and biological 

processes, algorithms for the optimization of sensor 

spreading over an area, to designing and tuning the 

command rules for distributed control  systems applied 

to large-scale processes. 

The initial route generation problem has been 

initially regarded as a variant of the travelling salesman 

problem (Dantzing et al 1959). Beside this classical 

formulation of the routing problem, a series of other 

approaches have been studied (Toth et al 2002). For 

route reconfiguration, the initial studies (Seguin et al 

1997) have first taken into account the static routing 

problem (Psaraftis 1980; Madsen et al 1995), followed 

by more in depth analyses of the differences between 

dynamic and static routing (Psaraftis, 1988; Goel et al 

2006).  

Another perspective for solving the problem of 

dynamic vehicle routing takes into account 

evolutionary computing algorithms, either by using 

algorithms inspired from biology (Potvin, 2009) or 
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machine learning techniques such as supervised 

learning or genetic programming (Benyahia et al 

1998). A technique based on hybrid genetic algorithms 

was used (Jih et al 1999) for solving the problem of 

routing a vehicle with size constrains. Another example 

relies on Dijkstra algorithms (Barrachina et al 2014) 

and evolutionary strategies for finding an optimum 

path in a short period of time. Another approach 

presented in the project Emergency Vehicle Priority 

implies controlling the traffic lights in favor of the 

emergency crews (White, 2012), but this solution 

affects the rest of the urban traffic. A way of solving 

the routing problem using genetic algorithms is by 

combining (Chand et al 2010) the Bin Packing (BPP) 

with the traveling salesman problem. In the most recent 

approaches, the solution to this problem was obtained 

using the Intelligent Water-drop algorithm (Kaur et al 

2014). 

There are multiple approaches to the application of 

multi-agent systems in dynamic reconfiguration of 

routes (Shah 2012), such as MARS, Jabatos or Ant 

System, but they were used for management problems 

of transport resources (e.g. assigning buses to routes by 

minimizing the number of vehicles required and 

maximizing the number of requests in the system). 

One solution (Darbucha 2013) for the dynamic 

routing problem is a combination of agent-based 

systems and dispatcher-based routing strategies. Other 

similar approaches (Talbot et al 2010) using multi-

criteria decision-making, but at a global level 

dispatcher. In this case, real time data is received by 

the dispatcher which computes the emergency vehicle 

route. If an obstacle is blocking this route, the 

dispatcher is informed and can take other decisions. 

This simulation is limited at dispatcher level by 

introducing an additional node between data processing 

and decision-making algorithm. 

This paper is organized as follows. In section 2, the 

authors present the design of the proposed control 

system, along with the principles of genetic algorithms. 

In section 3 a case study is discussed, for which an 

agent based simulation model has been developed in 

order to simulate traffic in an urban area. Finally, 

section 4 contains the conclusions. 

2 Proposed system design 

The concept introduced in this paper focuses on 

obtaining routes for emergency crews in an urban 

environment. Urban conglomerates (especially in areas 

that had not been initially developed for the amount of 

vehicles that can be found in today's society) suffer 

from traffic congestions. Therefore, the shortest path 

between two points is not necessarily the fastest. In this 

paper, the objective is to find the shortest routes with 

the least amount of traffic at any moment, while also 

considering that the occupancy of a road segment 

might change during travel.  

In order to achieve this goal, we propose the use of 

a Genetic Algorithm (GA) for computing the shortest 

of the least occupied routes through a network of 

intersections. The algorithm takes into account the 

degree of occupation for each intersection and chooses 

the route with the least amount of traffic.  

Genetic Algorithms (GAs) are optimization 

heuristics able to perform rapid searches in large 

amounts of uncertain or incomplete data, with an 

inherent structure that allows parallelization. Given 

how GAs most often offer sub-optimal solutions is not 

a deterrent for the considered routing problem, because 

the urban traffic is in constant evolution and change. 

Thus, it is unadvisable to spend too much time and/or 

computing power on searching for a route that might 

not be as viable in the next minutes.  

GAs are designed to search in multiple directions at 

once through the solution space, starting even from the 

initialization phase, in which a random pool of 

solutions (called a population) is generated. These 

solutions, known as individuals, are then allowed to 

evolve based on the principles of the Darwinist natural 

selection. Using mechanisms of selection (choosing 

certain individuals to contribute to creating the next 

generation as parents), recombination (generating new 

individuals by combining the characteristics of the 

selected parent), and mutation (necessary to maintain 

population diversity), a GA runs continuously, 

evaluating at each step all the possible solutions of the 

considered problem until a stop criterion is met (for 

instance, after a certain number of generations, or after 

reaching a certain tolerance for the solution). The 

evaluation procedure is run through what is known as a 

fitness function, that returns to which degree an 

individual can be deemed fit or not to be a viable 

solution. 

Due to their heuristic nature, GAs can integrate, 

within the fitness function, objectives and performance 

indexes that are not necessarily defined in a formal 

manner. Moreover, adding more and more conditions 

in order to declare a possible individual as a fit solution 

to the considered problem is not computationally 

taxing (for instance, due to objective fusion techniques 

that might be hard to do with non-heuristic 

descriptions).  

 In recent research, GAs have been applied to 

problems in various fields. Their popularity keeps 

increasing due to their ease of use, effectiveness, or 

applicability. In control systems design (Fleming et al 

2002) GAs have been efficiently used with both 

feedback (Lewin 1994) and feedforward controllers 

(Lewin 1996), modelling (Huang 2012) and parameter 

estimation (Bush et al 2011). In other fields, GAs have 

been used for various problems, either as stand alone 

procedures (Patrascu et al 2016), or in combinations 
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with other intelligent methods, like fuzzy systems 

(Alcala-Fdez et al 2009) or neural networks (Tao et al 

2004). 

In a real world implementation, the dynamic route 

generation algorithm would be developed to run 

independently onboard emergency vehicles, integrating 

traffic data from sensors throughout the city. It uses 

mobile computational resources available locally to the 

vehicle, thus eliminating the need for a central 

aggregation hub and offering scalability in case of 

major disasters, when more emergency crews are 

required in different parts of the city. 

As the vehicle travels to the destination, the degree 

of occupation of the intersections along the route can 

change. In this case, the route is updated taking into 

account the new traffic data. The least occupied route 

is chosen based on the value of the corresponding 

fitness function (that computes a total degree of 

occupation for the entire suggested route).  

Figure 1 presents the general principle of the 

proposed system. After a random initialization of the 

solution population, the GA computes the fitness 

function for each individual and, if necessary, genetic 

operators are applied to the population. The processes 

of evaluation, selection, and recombination are 

repeated until an individual with a high enough fitness 

is found or up to a maximum number of generations. 

Once a new route is generated by the GA, it is then 

transmitted to the driver.  

At this point, whether the driver chooses to follow 

the suggested route or not, the GA starts its next run, in 

order to generate a new route by the time the vehicle 

reaches the next intersection along its path. 

The entire system presented in figure 1 can be 

regarded as a control system in which the Genetic 

Algorithm (as controller) receives a destination (as a 

setpoint) and adjusts the trajectory (controlled output) 

of the emergency vehicle (plant) through a 

geographical area. The other traffic participants and the 

driver decision to ignore the suggested route are 

integrated into the control loop as disturbances. Each 

new suggested route is being transmitted to the driver 

at each node of the road network (intersection) as a 

command.   

Thus, the control problem of emergency crew 

routes can defined as: an emergency vehicle 

(ambulance, fire truck, police car, etc.) receives a 

respond request to a given site while encountering as 

little traffic as possible during its journey. The 

emergency vehicle must travel from point A to point B, 

through an urban area comprised of a road network and 

traffic participants (regular vehicles and pedestrians).  

The objective of the GA is to dynamically generate 

new routes for the emergency vehicle, supply these 

routes to the driver as the vehicle approaches each 

intersection, while taking into account traffic data that 

might be incomplete or inaccurate. 

In what concerns the GA encoding of the vehicle 

routes, these are formed of a numeric representation in 

vectorial form, in which each position contains a route 

section identifier and the degree of occupation on the 

road segment leading to its associated intersection. The 

entire route is given by the position of each route 

section in the vector (its index). 

Thus, an individual (or chromosome) is formed of 

genes that represent a route section each. 

A route section is formed of that segment of a road 

between two intersections, on the traveling direction of 

the emergency vehicle. One road segment is associated 

with the intersection it travels towards, while the 

position of the emergency vehicle through a route is 

given by the road section & intersection pair it 

currently travels through. Thus, a path is formed of a 

starting point (either the initial position point A, or the 

current position), and as many route sections (road 

segment & intersection) as there can be delimited until 

the destination point B. For example, a path through 3 

intersections will contain 4 genes.   

A route section identifier can be defined as a 

coordinate pair or an unique identifier. This coordinate 

point can be, for instance, a physical geographical 

location for the beginning of each route section, a pair 

of coordinates for the start and finish of the route 

section, or even an ID number associated with each 

route section. For simplicity, in what follows, the 

 

Figure 1. General principle of the dynamic route generation with genetic algorithms. 
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notation r will be used to denominate route section 

identifiers. 

Thus, a route φ is comprised of n route sections 

defined by their position ri in the urban area and their 

degree of occupancy Di. Each pair (ri, Di)i has an 

associated index i that depicts their order in composing 

the route: 

 nnniii DrDrDrDr ),(...),(...),(),( 111000 

When computing the fitness of an individual, the 

algorithm takes into account both the degree of 

occupation of the road segments on the possible paths 

to the event site and the distance the destination.  

For a path formed of n intersections, the route 

fitness F is computed by analyzing each section and 

cumulating the results for the entire route:  
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where δ is a scaling factor, Di is degree of 

occupancy on the i-th section of the route, and g(r0,ri) 

is a function that scales the penalty given to those 

sections of the route that are farthest from the starting 

section r0 (either the initial section or the current 

section the emergency vehicle is traveling through). 

The fitness value F of the route needs to be 

maximized, therefore the best routes are the ones with 

the lowest degree of occupancy. 

The closer a road section (delimited by the 

intersections through which the vehicle must travel), 

the more it is contributing to the computed fitness 

value than the further ones. In this way, when 

calculating the fitness of a possible route, less 

importance is given to the degree of occupancy of 

farther intersections, as it may change by the time the 

vehicle is actually there. 

3 Case Study 

In order to test the proposed system, a simulation 

model needs to be designed that incorporated the 

complexity of urban traffic systems. In this respect, the 

most recent development in complex systems 

modelling belong to the field of Agent Based 

Modelling and Simulation (Patrascu et al. 2015), which 

provides engineers with Agent Based Simulation 

Models (ABSM) that are able to describe the 

behaviours of heterogeneous traffic participants, as 

well as their interactions and interdependencies.  

In an ABSM, an agent is a persistent entity 

characterised by internal states. This entity interacts 

with its environment or with other agents, ultimately 

causing changes in the environment or in the states of 

the other agents. An ABSM is a collection of agents, 

their states, and the rules that govern interactions from 

agents to agents, from agents to the environment, and 

from the environment to the agents.  

Every agent of an ABSM has inputs and outputs, 

but it can also regulate their own internal states through 

local feedback loops. The internal state of an agent is 

governed by rules. Moreover, the behaviour of an agent 

is represented by the set of actions it performs 

(outputs) according to internal state and inputs. 

As a whole, the ABSM has its own states, inputs, 

and outputs, but from a holistic perspective, the states 

of the entire simulation model integrates the complex 

interactions between the agents involved, by using 

rules to describe these behaviours. Most often, ABSM 

are evolving complex systems, used in generative 

experiments (Bertolotti, 2014), in order to test the 

viability of a solution that has little chance to be 

formally evaluated in realistic computing times (much 

like in the case of heuristics). 

3.1 ABSM description 

The agent-based simulation presented in this paper was 

implemented using the NetLogo (Wilensky et al 2015) 

environment, which offers access to the advantages of 

using agent based simulation models (ABSM) 

previously stated. Moreover, NetLogo offers way to 

implement user interfaces that is easy and accessible to 

researchers who don't necessarily have a strong 

programming background. NetLogo has been 

sucessfully used for proving and testing complex 

systems theorems and hypotheses. An in depth 

discussion on the advantages and disadvantages of 

using NetLogo for the simulation of complex control 

systems can be found in our previous work (Patrascu et 

al. 2015). 

Thus, we illustrate the application of genetic 

algorithms in computing the quickest route (from the 

degree of occupation perspective) of an emergency 

vehicle through a simulated urban environment. The 

simulation application allows the user to set the 

number and types of crossroads present in the world 

model. Before starting the simulation, one can also 

chose the duration of different traffic light phases, the 

priorities for incoming traffic in a crossroad, as well as 

the rate at which new vehicles are inserted in the 

simulation. In this setup stage, the user can also chose 

the parameters that control the genetic algorithm 

responsible for planning the quickest route for the 

emergency vehicle.  

For simulation purposes, the generated environment 

contains roads with four lanes (two lanes per travel 

direction) and specific traffic lights for turning left or 

going straight in order to increase the complexity of the 

road network model, as would be expected to happen 

in real urban areas: multiple lanes, directional traffic 

lights and so on. After starting the simulation, an 

emergency vehicle can be added to the environment. 

The parameters indicating the start and destination 
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position of the emergency vehicle, as well as its 

priority, can be set from the model's interface. 

The traffic participants are simulated using mobile 

agents and consist of normal and emergency vehicles 

and pedestrians. The simulation environment, 

NetLogo, uses two types of agents: fixed and mobile. 

The fixed agents build the static parts of the simulation 

model, which, for the agent-based model compose their 

relevant environment, while the mobile agents are used 

to simulate dynamic entities. In this case, vehicles are 

mobile agents. Their behaviour is modelled using 

knowledge-based representations in a manner that most 

accurately describes the decision making processes of 

drivers. NetLogo offers the possibility of modelling 

these entities as complex or simplistic as the user 

desires. In this paper, the vehicle (and thus driver) 

behaviour is as close as possible to the behaviour of 

vehicles in real world traffic. 

Emergency vehicles have a higher priority through 

traffic than civilian ones. The pedestrians behave 

similarly to the vehicles, with the exception that they 

can only move on the sidewalks. In figure 2 an 

example of simulated environment is presented, 

highlighting the intersection that the emergency vehicle 

(police) is currently traversing. The police car can be 

seen entering the inner crossroad area from the east and 

traveling west. 

After creating the emergency vehicle, the user can 

chose to highlight and inspect the police car as it 

travels through the urban environment. This is 

implemented by opening a new window (presented in 

figure 2) that shows a zoom of the world model, 

centered on the emergency vehicle, and that follows it 

as it travels. In the zoom window presented here, we 

can see the state of the traffic lights in each 

intersection. The pedestrians obey the traffic lights 

placed in the corners of the intersection, while the 

vehicles follow the signals of the lights placed between 

the lanes. For vehicles, the traffic light closer to the 

center of the crossroad is for turning left and the other 

one for going straight. In figure 2, on the east-to-west 

road, we can see the traffic light for going straight 

showing a green light and the one for turning left 

showing red, thus allowing the police car to traverse 

the intersection and stopping the two civilian cars 

occupying the next lane from turning left. The route for 

the emergency vehicle is computed when the agent that 

models this vehicle is inserted in the simulation 

environment. The user can chose to have the route 

updated each time the vehicle crosses an intersection, 

or just request one calculation, at the beginning of the 

vehicle's journey. 

During the simulation, at each time step, the phases 

of the traffic lights are computed for each crossroad, 

using a distributed traffic control system based on 

vehicle priority. Each traffic light phase (North, East, 

West, South) is computed using the corresponding road 

occupancy data, which is obtained from sensors placed 

on each road section entering the intersection. When a 

civilian vehicle enters a road section, the occupancy is 

increased by 1 and when the vehicle leaves the road 

section, it is decreased by the same amount. In the case 

of an emergency vehicle, the occupancy is modified 

according to the priority of the vehicle. For more 

information regarding these types of control systems 

and their simulation using ABSM, please consult our 

previous work (Patrascu et al 2015). 

 

 

Figure 2. ABSM world overview. 

As the simulation runs, at each time step, new 

vehicles are inserted in the simulation environment. 

The user can set the frequency for inserting vehicles 

from the east and west or north and south side of the 

map. The vehicles can only be inserted on a lane 

connected to the edge of the map if there is available 

room. Depending on a user setting, the civilian 

vehicles can give way to the emergency vehicles by 

temporary switching lanes. 

3.2 A simulation example 

For a more facile visualization, the world model 

presented in this case study has the road sections 

(segment & intersection pairs) displayed in a grid. In 

what follows, we have chosen a 4x4 grid of 

intersections. Each route section is depicted by an 

identifier of the form (x, y) where x is the position on 

each line of the grid, while y is the position on each 

column. For example, (1, 3) is the intersection marked 

A in figure 3. The starting point of the emergency 

vehicle (police car) is marked A in figure 3, while the 

final destination is B, at coordinates (4, 2). 

For the first experiment (Exp.1), the GA presented 

in the previous sections will be run as the vehicle 

departs from point A. In the second experiment 

(Exp.2), the GA will be run at the entry of each route 

section, re-generating the vehicle's route dynamically 
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as it travels through the urban area. The results of both 

experiments are presented in table 1 (where D is a 

matrix containing the degrees of occupancy for each 

route section, and φ is the route returned by the GA). 

For Exp.1, the GA is run only at point A. For Exp.2, 

the table shows the first 2 runs of the GA, first in point 

A and then in the next intersection, showing how the 

occupancy of the road segments has changed while the 

vehicle has travelled through the first route section, 

from (1, 3) to (2, 3). 

 

 

Figure 3. Starting point and destination of the emergency 

vehicle. 

Table 1. Simulation run results 

 Exp.1 Exp. 2 

GA run 

at point 

A (1, 3) 

D 



















3691618

52101438

46121040

377834

 



















52141719

63151753

57281952

44141134

 

φ 
 

[(1,3), (2,3), (3,3),  

(4,3), (4,2)] 
Total Cars: 46 

 
[(1,3), (2,3), (2,2),  

(3,2), (4,2)] 
Total Cars: 76 

GA run 

at point 
(2, 3)  

D 



















44103129

61281850

42292051

58141844

 



















43181125

67112051

66182255

4581642

 

φ 
 

[(2,3), (3,3), (4,3), (4,2)] 

Total Cars: 89 

 
New route: 

[(2,3), (3,3), (4,3), (4,2)] 
Total Cars: 53 

 
Old route: 
[(2,3), (2,2), (3,2), (4,2)] 

Total Cars: 69 

In the first experiment, the vehicle's route is 

computed only once, at the beginning of its journey. As 

the vehicle travels through the area, the degree of 

occupancy might change on the previously selected 

routes. For instance, there is an alternate route starting 

at (2, 3) that has less vehicles traveling through it. To 

account for the changes in the environment, in the 

second experiment, the GA has been run at the 

beginning of each route section in order to determine if 

the route should be kept or dynamically changed. In 

table 1 a new and old route comparison is shown to 

illustrate this phenomenon. 

The system we proposed in section 2 achieves its 

objectives of selecting the routes with the lowest 

degree of occupancy in a given urban area. Moreover, 

the system is capable of dynamically re-generating the 

emergency vehicle's route based on new traffic data 

and changes in the urban road network. 

The preliminary testing conducted in this study 

shows great potential for the further development of 

evolutionary algorithms as controllers in closed loop 

systems. The next step in a thorough validation 

procedure is to develop simulation models that use real 

world maps, followed by real world testing. These are 

some of the main steps in the cycle of control systems 

development, which are designed to take a formal idea 

and make sure the final product works smoothly and 

within required performances. 

4 Conclusions 

In this study, a system for generating emergency 

vehicles routes has been presented. The system is able 

to account for changes in the environment or in urban 

traffic and dynamically supply new, better routes to the 

emergency vehicle drivers.  

For this, a genetic algorithm has been designed that 

can recalculate the paths of the emergency responders 

while they are already on their journey to an event site. 

The entire route adjustment procedure is encapsulated 

in a control system scheme, in which the controlled 

variable is the route of the vehicle, while the other 

traffic participants are disturbances. The proposed 

system has been tested in a simulated environment 

specifically designed to emulate the complexity of the 

urban traffic.  

Among the advantages of this type of system are: 

the possibility to run locally, on each emergency 

vehicle, thus eliminating the need for a central server 

type entity and overloaded communication networks; 

the possibility of implementation on devices that are 

already available (smartphones or tablets); not relying 

on traffic control systems, that can sometimes be 

overwhelmed, that can only manage an intersection at a 

time, or that can, at times, be offline (for maintenance 

or other reasons).  
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Moreover, for this type of system, context 

awareness is implicitly achieved. The intrinsic nature 

of control systems allows them to both collect 

information from the environment (either by direct 

sensing or by accessing real time traffic databases), and 

to interact with the it via the driver. Complete 

automation, although attractive from a point of view of 

vehicle autonomy, removes the driver from the 

decision making process. Thus, the middle ground we 

proposed seems the most reasonable. 

Some of the limitations of this sort of system are 

related to the inherent heuristic nature of genetic 

algorithms, the proposed method requiring perhaps a 

sort of hybridization with formal methods, 

metaheuristics, memetic algorithms. 

Further research endeavours in what concerns the 

proposed dynamic route generation using genetic 

algorithms include the design of specialized selection 

methods and chromosome encoding for routes and the 

test of the presented system, first in simulated 

environments with higher complexity, and then in real 

world scenarios. 
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