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Abstract
While measuring the compressor behavior at different
load points in for example a gas stand, the inlet and out-
let pressures are not always measured directly before and
after the compressor. The friction inside the pipes and the
physical piping configuration affect the measured com-
pressor efficiency, due to the induced change of fluid en-
thalpy. If the measured pressures at the end of the inlet
and outlet pipes are not the same as the actual pressure
before and after the compressor, the acquired compressor
map does not give the right description of it as an iso-
lated component. The main contribution of this paper is
the analysis of the impact of gas stand energy losses due
to pipe friction on the compressor map. As a result the pa-
per suggests a way to take the pressure losses in the inlet
and outlet pipes into account. The suggested model takes
pipe friction, diffuser, nozzle and pipe bends into account.
The potential measurement error in compressor efficiency
due to energy losses in the pipes in this experiment is 2.7%
(percentage points) at maximum mass flow of air through
the compressor.
Keywords: gas stand, pipe, bend, diffuser

1 Introduction
Gas stand testing of turbochargers is a time consuming
process where one of the goals is to determine the com-
pressor efficiency. Turbochargers are modeled in comput-
ers to perform more cost efficient tests and experiments.
Softwares today are used to solve and compute the dy-
namic behaviors of complex engine systems involving tur-
bochargers. Turbocharger models are often adjusted to fit
measured data, from for example a gas stand test. Most
of the analysis assume that the turbocharger models repre-
sent the turbocharger as a single component. This means
that to have accurate turbocharger models, the measure-
ment data should represent the turbocharger only, and not
include any pipes or other objects connected to the tur-
bocharger housing. The pipes in a gas stand, connecting
the turbocharger to measurement instruments, induces er-
rors into the computer models if the data is used without
correction. Since the pressures and temperatures are mea-
sured some distance away from the actual inlet and out-
let on the compressor, the physical setup of the gas stand
may need to be accounted for to get a more accurate re-
sult of the compressor efficiency. In both the inlet and
outlet pipes there are pressure losses due to friction in-
side the pipes, also if the gas flow path contains bends or

area changes, these could induce pressure losses. There
are different ways to develop a gas stand (see for exam-
ple (Venson et al., 2006) or (Young and Penz, 1990)),
the idea is to simulate engine conditions to find the tur-
bocharger characteristics. When making measurements in
a gas stand, the monitoring of the pressures and tempera-
tures before and after the compressor are important to get
accurate results of the compressor efficiency (Kumar et al.,
2014). The compressor efficiency is determined by us-
ing measured values of temperatures and pressures before
and after the compressor. Studies with focus on the heat
transfer inside the turbocharger (Nick Baines and Karl
D.Wygant and Antonis Dris, 2009) and how the heat trans-
fer affects the compressor efficiency have been performed
(Marelli et al., 2015), while others focusing on the possi-
ble measurement errors due to sensor inaccuracy (Guillou,
2013). No papers are found where the actual placement
of the sensors are examined up or downstream from the
compressor, SAE standard J1826 recommends placing the
static pressure taps 2 to 3 pipe diameters downstream of
the rotor (SAE, 1995). The sensor placement is crucial
to achieve a reliable result during testing. Different test
rigs may give different results due to environmental con-
ditions, if the inlet air is not conditioned, the efficiency un-
certainty will fluctuate (Guillou, 2013). The impact from
inlet air being dry or humid on compressor efficiency has
been studied in (Serrano et al., 2009), the impact is small
and should only be considered if very high accuracy is
wanted. The enthalpy loss between the measurement po-
sitions and the compressor due to the pressure loss indi-
cates that the compressor efficiency is actually better than
measured.

1.1 Contributions
This paper is the first to analyze the gas stand pressure
losses. The effects of the pressure losses on measured
compressor efficiency are analyzed and ways to compen-
sate for them are developed. Influences of the gas stand
pressure losses are displayed on the compressor map.

1.2 Setup for the analysis
The main scope of the paper is to show how the change of
enthalpy in the inlet and outlet pipes affect the compres-
sor efficiency. The inlet and outlet enthalpies (ḣin and ḣout
in Figure 1) are not the enthalpies actually entering and
leaving the turbocharger compressor, the actual values are
ḣ′in and ḣ′out , which are corrected to exclude the friction
in the inlet and outlet pipes (ẇ f ,pipe,inăand ẇ f ,pipe,out). In
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equation (1a) the work used by the compression process
is described as it is used today, where the connecting inlet
and outlet pipes are included, since the measurement po-
sitions are not located directly at the inlet or outlet of the
compressor. Equation (1b) describes the work required
by the compressor as a single component, describing the
compression work made by the turbocharger compressor
only.

ẇc,Old = ẇcompression + ẇ f ,pipe + ẇ f ,pipe (1a)
ẇc,New = ẇcompression (1b)

Figure 1. Energy flow in the compressor. The outer box (red)
represents the system that is measured in a gas stand, the inner
box (green) is the preferred system that is to be described by the
model.

To quantify the impact from the inlet and outlet pipe
frictions (ẇ f ,pipe,in and ẇ f ,pipe,out) on the measured com-
pressor efficiency, three cases are investigated. The three
cases investigates:

1. straight inlet and outlet pipes, see Figure 2. The di-
ameter of the pipes (dinlet and doutlet) are assumed to
be equal to the compressor inlet and outlet diameters
(dc,inlet and dc,outlet).

2. using pipes with diffuser and nozzle. See Figure 3.

3. adding a 90o smooth bend on the inlet pipe. See Fig-
ure 4.

1.3 Experimental data
Data used during the analysis is a measured compressor
map from a commercial turbocharger, the measured mass
flow range [0, 0.21] kg/s and pressure ratio between [1,
2.8] p02

p01
. The sensor errors effect on the achieved results

from a gas stand have been studied in (Guillou, 2013). The
measured data used in this analysis are assumed to be cor-
rect, i.e. all measured values are assumed to be perfect, no
sensor errors are assumed to be present.

1.4 Compressor Map
One of the main ideas behind testing the turbocharger in
a gas stand is to determine the compressor efficiency and
flow characteristics at different work points. The compres-
sor behavior is presented on a compressor map, where the
corrected compressor mass flow and pressure ratio defines

Figure 2. Pressure drops are represented by ∆pn, the total pres-
sures by p01 and p02, the corrected total pressures by p′01 and
p′02 and the measured temperatures by T01 and T02. The mass
flow of air inside the pipes are represented by ṁc. The physical
dimensions on pipe lengths and pipe diameters are described by
ln and dn.

a plane where the compressor efficiency is displayed. In
the evaluation of the results, the effects from the pressure
losses on compressor efficiency are presented on the com-
pressor map. The reference compressor efficiency is cal-
culated using measured data, and later recalculated when
taking the pressure losses in the gas stand into account.

1.5 Compressor Isentropic Efficiency
The compressor isentropic efficiency is defined as the
smallest amount of power needed to compress the air with-
out heat exchange with the environment (isentropic pro-
cess), divided by the actual amount of power consumed
by the process. Using measured total temperatures and
total pressures (calculated from static pressures, see equa-
tion (4)) from a gas stand, the compressor total to total
isentropic efficiency can be calculated using equation (2).
(Eriksson and Nielsen, 2014)

ηc =
Π

γ−1
γ

c −1
T02
T01
−1

, where Πc =
p02

p01
(2)

where p01 and p02 are total pressures, T01 and T02 are total
temperatures and γ is the ratio of specific heats (assumed
to be constant).

1.6 Corrected Mass Flow
Corrected mass flow is used to display the mass flow in the
compressor map. The corrected mass flow is used instead
of the measured mass flow, to take surrounding conditions
during measurements into account. The surrounding con-
ditions are the reference temperature, Tre f and the refer-
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Figure 3. Pressure drops are represented by ∆pn, the total pres-
sures by p01 and p02, the corrected total pressures by p′01 and
p′02 and the measured temperatures by T01 and T02. The mass
flow of air inside the pipes are represented by ṁc. The physical
dimensions on pipe lengths and pipe diameters are described by
ln and dn.

ence pressure, pre f . The corrected mass flow is calculated
according to equation (3). (Eriksson and Nielsen, 2014)

ṁc,corr =
ṁc

√
T01
Tre f

p01
pre f

(3)

1.7 Data Treatment
The pressures and temperatures used when calculating the
compressor efficiency should be the total pressures and to-
tal temperatures. The relation between the measured static
pressure pi and the total pressure p0i is displayed in equa-
tion (4), where Ci =

ṁc
ρiA

is the fluid velocity inside pipe
i.

p0i = pi +
ρiC2

i
2

(4)

To convert the measured total temperature T0i to static
temperature Ti equation (5) from (Eriksson and Nielsen,
2014) can be used.

Ti =
A2 p2

i cp

R2ṁ2
c

(√
1+2

R2ṁ2
cT0i

A2 p2
i cp
−1

)
(5)

where ṁc is the mass flow of air through the pipe, ρi is
the air density and A is the cross section area of the pipe
at the measurement position. The air inside the system
is treated as an ideal gas, following this assumption, the
density is calculated using equation (6). (Eriksson and
Nielsen, 2014)

ρi =
pi

RTi
(6)

Figure 4. Pressure drops are represented by ∆pn, the total pres-
sures by p01 and p02, the corrected total pressures by p′01 and
p′02 and the measured temperatures by T01 and T02. The mass
flow of air inside the pipes are represented by ṁc. The physical
dimensions on pipe lengths and pipe diameters are described by
ln and dn.

2 Pressure Losses in Gas Stand
Pressure losses in different piping systems and pipe con-
figurations have been examined for many years. The for-
mulas and expressions are empirical or semi-empirical
correlations that are created from experiments to describe
specific objects or system configurations. The different
pressure losses in different parts in the gas stand are cal-
culated according to empiric formulas, these formulas are
valid for fully developed turbulent flow, the turbulent flow
in the parts taken into account is therefor assumed to be
fully developed. Both the total temperature and the den-
sity of the fluid are assumed to be constant along the inlet
and outlet pipe sections.

2.1 Pressure Loss in Straight Pipe
Straight pipes in for example a gas stand causes pressure
losses due to friction inside the pipes. The selection of
pipe material and manufacturing method of the pipes are
important to get a low friction pipe. The surface rough-
ness inside the pipe induces pressure loss when the flow
is turbulent, when the flow is laminar, the friction factor
fpipe,i is independent of the surface roughness. The pres-
sure loss in a straight pipe is calculated with equation (7)
(Cengel et al., 2008).

∆ppipe = fpipe,i
li
di

ρiv2
i

2
(7)

Where fpipe,i is a friction factor, ρi is the density of the
fluid inside the specific pipe section i, li is the pipe sec-
tion length, vi is the mean velocity of the fluid inside the
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specific pipe section i. The friction factor fpipe,i is de-
pendent on the flow characteristics inside the pipe. The
flow characteristics could be either laminar or turbulent.
The flow characteristics inside the pipes are determined
by Reynolds number, Re. Reynolds number is calculated
according to equation (8). (Cengel et al., 2008)

Re =
vidiρi

µi
(8)

Where vi is the mean velocity of the fluid inside the pipe,
ρi is the fluid density, di is the hydraulic diameter (hy-
draulic diameter equals pipe diameter for circular pipes)
and µi is the dynamic viscosity of the fluid. The dynamic
viscosity of air is described as a function of air tempera-
ture:

µi = µ(Ti) (9)

According to (White, 1999), the change in µ is around
10% for air when the pressure is increased from 1 to 50
atm, and that it is customary in most engineering work to
neglect the pressure variations. The viscosity of a gas is
by (Massey and Ward-Smith, 1998) said to be independent
of its pressure (except at very high or very low pressures).
In this study, the change in pressure ranges from around
1 bar to 2.85 bar, therefore the fluid dynamic viscosity is
assumed to be independent of the pressure variations. The
function in equation (9) describes the fluid dynamic vis-
cosity µ(Ti), as a polynomial function of fluid temperature
Ti, the function parameters are adapted to fit data from ta-
ble A-22 in (Cengel et al., 2008) (Properties of air at 1 atm
pressure), the function is displayed in equation (10).

µ(Ti)=−3.0777×10−11T 2
i +4.8218×10−8Ti+1.7299×10−5

(10)
For low Re, the flow is considered to be laminar, for higher
Re, the flow is considered to be turbulent. In-between the
laminar and turbulent region there is a region where the
flow is called transitional flow. When the flow is tran-
sitional, the flow is frequently shifting between laminar
and turbulent. The limits on Re is shown in equation (11).
(Cengel et al., 2008)

Re≤ 2300 Laminar flow
2300 < Re < 10000 Transitional flow
Re≥ 10000 Turbulent flow

(11)

Laminar and turbulent flow are the two flow characteris-
tics that will be taken into account. The flow is mostly
turbulent during the gas stand test performed, but the lam-
inar region will be described to make the model complete.

2.2 Friction Factor - Laminar Flow
To calculate fpipe,i when the flow is laminar, equation (12)
is used. (Cengel et al., 2008)

fpipe,i =
64
Re

(12)

2.3 Friction Factor - Turbulent Flow
During turbulent flow inside the pipe, the surface rough-
ness of the pipe ε affects the pressure loss inside the pipe
(assuming pipe material to be stainless steel with surface
roughness ε = 0.002mm from table 14-1 in (Cengel et al.,
2008) during calculations). To calculate fpipe,i when the
flow is turbulent, either equation (13), known as Cole-
brook equation, is used and iterated until fpipe,i is accu-
rate enough, or equation (14) could be used. The result
of equation (14) is within 2 % of the result from equation
(13). (Cengel et al., 2008)

1√
fpipe,i

=−2.0log

(
ε/di

3.7
+

2.51
Re
√

fpipe,i

)
(13)

1√
fpipe,i

∼=−1.8log

(
6.9
Re

+

(
ε/di

3.7

)1.11
)

(14)

2.4 Pressure Loss In Bend
Pipe bends are treated as one-time losses, a smooth 90o

bend has a loss coefficient of KL = 0.3. The value of KL
is strongly dependable on the type of pipe, size of bend
etc., the coefficient value is found in table 14-3 in (Cengel
et al., 2008), it is used to give a hint about how the losses
affect the measured compressor efficiency. The pressure
drop due to a pipe bend is calculated according to equation
(15).

∆pbend =
KLv2

i ρi

2
(15)

2.5 Pressure Loss in Inlet Nozzle and Outlet
Diffuser

Inlet nozzle and outlet diffuser can be used to connect the
inlet and outlet pipes to the turbocharger. The inlet nozzle
is treated as a convergent pipe, a convergent pipe is not in-
ducing any pressure loss over the area change, other than
the friction in the pipe. This is due to the contraction of the
pipe, a gradually contracting pipe is normally not inducing
any extra turbulence, other pressure losses than the pipe
friction is normally neglected (Nakayama and Boucher,
1999), the pressure loss in the nozzle is neglected in this
study (see equation (16b)). The friction loss in the inlet
nozzle is assumed to be included in the pressure loss in-
side the inlet pipe. The outlet diffuser induces a pressure
loss, due to the extra turbulence induced in the divergent
region. The pressure drop in the outlet diffuser is calcu-
lated according to equation (16a), the pressure drop due to
pipe friction is assumed to be included in the expression.

∆pdi f f user =
KL,expv2

i ρi

2
(16a)

∆pnozzle = 0 (16b)
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The value of KL,exp is found using tables, the used value
is found in table 14-3 in (Cengel et al., 2008) (assump-
tion of the diffuser angle 20o results in KL,exp = 0.1, when
dc,outlet/doutlet = 0.8). The fluid velocity inside the pipe vi
is the fluid velocity at the diffuser inlet.

2.6 Adjust Measured Data
The measured data is adjusted by summarizing and with-
drawing the pressure losses in the gas stand, from the mea-
sured values. The adjustments made are shown in equa-
tion (17a) and (17b). The inlet and outlet total pressures
are adjusted by adding or subtracting the pressure losses,
depending on if the losses occur up or downstream from
the measurement positions.

p′01 = p01−∆ppipe,inlet −∆pbend−∆pnozzle (17a)
p′02 = p02 +∆ppipe,outlet +∆pdi f f user (17b)

2.7 Calculate New Compressor Efficiency
The new corrected compressor efficiency is calculated us-
ing the total pressures that are adjusted to measurement
data (see equation (17a) and (17b)) and the measured to-
tal temperatures. The equation to calculate the corrected
efficiency is the same as equation (2), but with the new
corrected pressures p′01ăand p′02 (see equation (18)).

η
′
c =

(
p′02
p′01

)
γ−1

γ −1
T02
T01
−1

(18)

3 Effect of pressure losses on mea-
sured compressor efficiency

Different simulation cases are performed to quantify the
pressure losses main impacts on the measured compressor
efficiency. The first case investigates the usage of straight
inlet and outlet pipes, with the same diameter as the com-
pressor inlet and outlet. The second case studies the usage
of nozzle and diffuser on the inlet and outlet pipe, to con-
nect a larger inlet and outlet pipe to the compressor. The
third case is the same as the second, but a 90o bend is
added on the inlet pipe.

3.1 Compressor and Pipes Dimensions
A measured compressor map from a gas stand test is used
to quantify the error in compressor efficiency due to the
pressure drop between measurement positions and the tur-
bocharger compressor. Compressor inlet outlet diameters
and diameters at measurement locations are displayed in
Table 1, these dimensions are needed to calculate the pres-
sure drops in the different pipe sections. The results in Ta-
ble 2 shows the maximum pressure loss over the different
components. The inlet pipe is assumed to be 100 mm long
and the outlet pipe is 3 or 10 times the outlet pipe diame-
ter, both inlet and outlet pipe diameters are assumed to be
the same as compressor inlet and outlet diameter when an-
alyzing Case 1. According to SAE standard J1826 (SAE,

1995), the distance from the rotor down to the measure-
ment location (if measuring static pressure) should be 2 to
3 pipe diameters downstream. In many pipe flows of prac-
tical engineering interest, the effects due to the entrance
region become insignificant when the pipe length is longer
than 10 pipe diameters (Cengel et al., 2008). Two differ-
ent selections of outlet pipes lengths (10 and 3 times the
outlet pipe diameter) are studied and compared in terms of
measurement error due to the simulated pressure losses.

Table 1. Diameter of compressor inlet and outlet on the tur-
bocharger, diameter on the inlet and outlet pipe at the measure-
ment positions. Pipe lengths are assumed.

Measurement Value

dc,inlet (inlet compressor) 56.5 mm
dinlet (measurement position p01) 58 mm
dc,outlet (outlet compressor) 40 mm
doutlet (measurement position p02) 50 mm
linlet 100 mm
loutlet
3 dc,outlet or 10 dc,outlet (case 1)
3 doutlet or 10 doutlet (case 2, 3)

Table 2. Maximum pressure loss in the different components,
for all 3 cases. The pressure losses are presented in Pascal.

Case ∆pinlet ∆poutlet ∆pdi f f . ∆pbend ∆pnozzle

1 72 305 0 0 0
1 72 1016 0 0 0
2 71 315 1637 0 0
2 71 1050 1637 0 0
3 71 315 1637 803 0
3 71 1050 1637 803 0

3.2 Case 1: Straight Pipes
The first case investigates the use of straight inlet outlet
pipes. Figure 5, Case 1, show the change in compressor
efficiency for both short and long outlet pipe. In figure, it
is visual that the pressure losses does not affect the com-
pressor efficiency more than 0.8% (percentage points) at
maximum mass flow of air when analyzing the long outlet
pipe.

3.3 Case 2: Pipes with Diffuser and Nozzle
The diffuser and nozzle are used to either increase or de-
crease fluid pressure or velocity. The simulated inlet and
outlet pipes with the pressure sensors mounted are as-
sumed to have the same diameter as the pipe at the static
pressure sensor location. The size of the diffuser is chosen
to connect the pipe diameter where the pressure measure-
ment is made, and the diameter of the compressor out-
let. The results for both short and long outlet pipes are
displayed in Figure 5, Case 2. Since the pressure loss
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caused by the nozzle is assumed to be zero, the pressure
loss caused by the diffuser and the pipe friction causes the
efficiency calculation error to be 1.4% (percentage points)
when analyzing the short outlet pipe and up to 1.9% when
analyzing the long outlet pipe.

3.4 Case 3: Pipes with Diffuser, Nozzle and
Bend

A 90o smooth bend is added to the simulated inlet pipe,
between the pressure sensor and the pipe connecting to the
compressor, to find its impact on the measured compressor
efficiency, see Figure 5, Case 3. The pipe bend clearly
affects the results, this is visual if comparing Case 2 with
Case 3. The maximum error in the calculated compressor
efficiency is 2.7% (percentage points), when analyzing the
long outlet pipe.
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Figure 5. Displays the change in compressor efficiency ∆ηc =
η ′c − ηc (color scale) compared against Πc and ṁc,corr. Short
pipes corresponds to outlet pipe length equal to 3 times the pipe
diameter, long pipes corresponds to 10 times the pipe diameter.
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Figure 6. Case 1, the pipe length is 10 times the outlet pipe di-
ameter. Top figure shows the normalized compressor efficiency
with and without correction for the pressure losses in the gas
stand, the bottom figure shows ∆ηc = η ′c−ηc.

4 Summary and Discussion
Three different cases have been investigated to find and
quantify the error in compressor efficiency due to enthalpy
change in the inlet and outlet pipes. The enthalpy change
present between the pressure sensors and the compressor
affects the compressor map the most in the high flow low
pressure region, for each speed line. This is visible in both
Figure 5 and Figure 6. For all the displayed cases, the error
in compressor efficiency increases with increasing mass
flow. Case 1 shows that a longer pipe between the com-
pressor outlet and the measurement location induces larger
error in measured compressor efficiency. Case 2 studies
the use of pipes with nozzle and diffuser, the nozzle is as-
sumed to not induce any pressure loss, which shows that
the diffuser induces a large pressure loss, which affects
the compressor efficiency. Comparing Case 2 with Case 3,
where the difference is the introduced pipe bend, clearly
shows that a pipe bend induces errors in the calculated
compressor efficiency. If a pipe bend is present between
the pressure sensor and the compressor, it should be taken
into account to correct measurements. The magnitude of
the pressure losses in Table 2 are small, but they still affect
the compressor efficiency noticeably.

5 Future Work
If this study is to be extended, one interesting aspect would
be to investigate the impact on engine performance, if the
compressor efficiency is corrected according to the study.
The study could also be extended to take the heat transfer
inside the inlet and outlet pipes into account.

6 Conclusions
For the selected set of gas stand physical dimensions,
the change in compressor efficiency due to the calculated
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pressure losses is compared to original compressor effi-
ciency calcuations. The results show:

• Due to the friction work, the enthalpy of the fluid be-
tween the pressure sensors and the compressor inlet
and outlet changes.

• The measured compressor efficiency is lower than
the actual efficiency, due to pressure losses between
compressor and the pressure sensors.

• The induced error ∆ηc shows that the error is getting
larger with increased mass flow for each speed line.

• If a 90o bend is present between the measurement
position and the inlet to the compressor, and the dif-
fuser is connected on the outlet, the error in calcu-
lated compressor efficiency is up to 2.7% for com-
pressor maximum mass flow with used parameters.

• The pressure losses in the inlet and outlet pipes are
affecting the compressor efficiency most at the high
flow low pressure region for each speed line, where
the compressor efficiency is generally low.
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