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Abstract
In this paper is presented a methodology that uses

simulation together with optimization techniques for a

conflict detection and resolution at airports. This

approach provides more robust solutions to operative

problems, since, optimization allows to come up with

optimal or suboptimal solutions, on the other hand,

simulation allows to take into account other aspects as

stochasticity and interactions inside the system. Both the

airport airspace (terminal manoeuvring area), and

airside (runway taxiways and terminals), were

modelled. In this framework, different restrictions such

as speed, separation minima between aircraft, and

capacity of airside components were taken into account.

The airspace was modeled as a network of links and

nodes representing the different routes, while the airside

was modeled in a low detail, where runway, taxiways

and terminals were modeled as servers with a specific

capacity. The objective of this work is to detect and

resolve conflicts both in the airspace and in the airside

and have a balanced traffic load on the ground.

Keywords: optimization, modeling, simulation, airport

1 Introduction

Capacity at airports has become a very delicate problem

due to the increase of traffic demand and the scarcity of

facilities at airports. In Europe it has been seen a growth

of traffic of 1.5\% from 2014 to 2015, and the forecasts

say that this growth will continue also for the coming

years (Eurocontrol, 2016). Airports are getting busier

and busier, especially at the major hubs in Europe, with

visible effects as delays occurrences. Looking at the

delay from all causes, it can be seen that in the first three

months of the year there were between 34\% and 38\%

flights delayed on departures, where only delays greater

or equal than five minutes are considered (Eurocontrol,

2016). So far, many studies have been conducted in

order to alleviate airports from congestion and improve

the capacity, some of them focused on the airspace and

some other only on the airside. Concerning problems

related to the airspace, we can find many works about

the sequencing and merging or scheduling of arrivals in

the TMA (Beasley et al., 2000; Beasley et al., 2001; Hu

and Chen, 2005; Michelin et al., 2009; Balakrishnan and 

Chandran, 2010; Zuniga et al. 2011). On the other hand 

we can also find studies related to ground issues such as 

gate assignment problem (Bolat, 2000; Dorndorf et al., 

2007; Kim and Feron, 2012; Narciso and Piera, 2015), 

scheduling of departures (Pujet et al., 1999; Rathinam et 

al. 2009; Sandberg et al., 2014; Simaiakis and 

Balakrishnan, 2015) or airport surface management 

(Montoya et al., 2010; Simaiakis et al., 2014; Khadilkar 

and Balakrishnan, 2014). In order to conduct a more 

precise analysis and obtaining an integrated view of the 

system, it is better to consider airspace and airside 

together, so that we can also consider the interactions 

between the two environments.  

The contribution of this paper is that it considers the 

airport from a holistic perspective, including most of the 

factors that link airspace and airside and affect the 

overall airport capacity. Furthermore, another 

contributions of this work is the employment of an 

approach that uses optimization together simulation, 

with the objective of obtaining more robust solutions. 

On one hand, optimization allows to come up with 

optimal or suboptimal solutions and, on the other hand, 

simulation allows to take into account other aspects as 

stochasticity and interactions inside the system. In 

literature we can find similar works that employ 

optimization together with simulation techniques, like in 

(Mujica, 2015) where an evolutionary algorithm 

together with discrete event simulation was proposed for 

the improvement of the check-in allocation, or (Arias et 

al., 2013), where was presented a model for solving the 

stochastic aircraft recovery problem employing 

constraint programming together with simulation. 

In this paper a methodology for detecting and 

resolving conflict at airports is presented, it considers 

the airport from a holistic view, taking into account both 

airspace and airside components together. In the 

methodology presented in this paper an optimal or sub-

optimal solution is found applying a sliding window 

approach (Hu and Chen, 2005; Zhan et al., 2010; Furini 

et al., 2015) together with a meta-heuristic (simulated 

annealing) (Kirpatrick et al., 1983), after that, the 

solution provided from the optimization model is tested 

and validated with the use of a discrete event simulation 
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model. Using simulation, it is possible to take into 

account the stochasticity of the system and the 

interactions between the entities in the system.  

The paper is organized with the following structure, 

in Section 2 the methodology is explained, in Section 3 

a scenario is tested, providing preliminary results and in 

Section 4 some conclusions are drawn and next steps for 

this research are delineated. 

2 Methodology 

The methodology presented in this work is constituted 

by three main steps (Figure 1). The first step aims at 

modeling the airport taking into account both airspace 

and airside. In this case the airside was modeled in a 

“macro” level, where runway, taxiway and terminals 

were modeled as servers with a specific capacity. The 

second step consisted in the implementation of an 

optimization model to obtain a solution for the conflict 

detection and resolution problem. Finally, in the third 

step, the solution provided by the optimization model is 

evaluated by the means of a simulation model in order 

to test the effectiveness and feasibility of the solution. 

 

Figure 1. Methodology steps. 

2.1 Airport Modeling 

One of the main contribution of this work is that it 

considers both airspace and airside of the airport. 

Concerning the airspace, landing routes in the TMA 

were modeled, and separation minima between aircraft 

as well as speed restrictions were included. Regarding 

the airside, since the objective did not require a detailed 

evaluation, runway, taxiway and terminals components, 

were modeled as servers with a specific capacity. First, 

it is fair to explain the concept behind airspace and 

airside conflicts. In this framework, it was assumed that 

any violation of separation minima between aircraft 

along the airspace routes and at the merging point was 

considered as a conflict. Values about separation 

minima are in accordance with the ICAO standards for 

separation minima due wake vortex turbulence, they are 

based on the aircraft type which could be light, medium 

or heavy (see Table 1). Concerning the airside, conflicts 

were detected when the capacity of runway, taxiway and 

terminal was exceeded. It is clear that, the objective of 
detecting and resolving conflict in the airspace and in 

the airside lead to have a smooth flow of aircraft in the 

airspace and a balanced load on the airside, which is the 

main scope of this work. In this work, the case of Paris 

Charles de Gaulle Airport was considered. Regarding 

the airspace, standard approach routes (STAR) and final 

approach segment were modeled. In total there are four 

different routes coming from different entry points, all 

of them merge at the merging point before the final 

approach segment. In Figure 2 the airspace routes taken 

into account in the model are shown.  

 

Table 1. ICAO wake vortex turbulence separation 

minima. 

 
Leading Aircraft 

Heavy Medium Light 

Trailing 

Aircraft 

Heavy 4 3 3 

Medium 5 4 3 

Light 6 4 3 

 

As a preliminary test, in the model there were 

considered only one of the three terminal and only two 

runway (one landing and one departing) of the four 

runways (two landings and two departing) that 

constitute the airport airside. Concerning the values 

chosen for the capacity of the airside components, it is 

intuitive that runways have the value of capacity equal 

to one since only one aircraft is allowed to cross the 

runway at a time. Of the three terminal, terminal 2 was 

chosen for being tested, due to the availability of data 

concerning inbound and outbound flight to and from this 

terminal. Terminal 2 is the biggest of the three terminals 

in Paris CdG airport, it accommodates all the flights of 

Air France and SkyTeam members. In Table 2 all the 

characteristics concerning airside components are listed 

with their respective values. 

 

Table 2. Characteristics of airside components. 

Airside Component Capacity 

Runway 26 R/L 1 

Taxiway Network 20 

Terminal 2 176 (152 considered) 

 

 

Figure 2. STAR and final approach segment for Rwy 

26L. 
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2.2 Optimization Model 

The optimization model proposed to solve the conflict 

detection and resolution problem is based on (Ma et al., 

2015), where a sliding window approach (Hu and Chen, 

2005; Zhan et al., 2010; Furini et al., 2015) is used 

together with a meta-heuristic (simulated annealing) 

(Kirkpatrick et al., 1983) to solve conflicts in the 

airspace. The sliding window approach allows to 

consider an extended time horizon in smaller time 

frames, dividing the overall problem in sub-problems of 

smaller size, therefore, decreasing the computational 

time. Moreover, it allows to treat the problem in a 

dynamical way, where decisions that are made in each 

window will affect the decisions to be made in the 

successive window. The main parameters of the sliding 

window approach are the size of the window and the size 

of the shift. 

The meta-heuristic used is the simulated annealing 

(Kirkpatrick et al., 1983), this heuristic is a local search 

algorithm which is able to escape from local optimum by 

allowing hill-climb moves in order to find a global 

optimum. 

The main aspect that differentiates this work from the 

other aforementioned works is that, beside the airspace, 

airside operations were also included. The new 

objective becomes the detection and resolution of 

conflicts both in the airspace and in the airside. The 

objective of this optimization model is twofold, first it 

aims at detecting and resolving conflicts in the airspace 

and also capacity conflicts in the airside, and second is 

to ensure a smooth flow of aircraft in the airspace and a 

balanced load on the ground. The decision variables for 

the problem are: entry time change, entry speed change 

and pushback time change. The first is the time when 

aircraft enter the airspace route, the second is the speed 

that aircraft have when they enter the airspace route and 

the third is the delay allowed to the aircraft, that are 

parked at the gate, before they leave the gate and reach 

the runway for taking off. In Table 3 are shown the 

values that the decision variables can assume. 

 

Table 3. Value range of the decision variables. 

Decision Variable Value 

Entry Time Between -5 and + 30 min 

Entry Speed Between -10 and + 10 

Pushback Time Between 0 and 5 min 

 

In this context, conflicts in the airspace are detected 

in the following way: node and link detection. Routes are 

modeled as a network made by nodes and links, in every 

node and in every link aircraft are tracked by their "time 

in" and "time out". If the time interval between "time in" 

and "time out" overlaps for two or more aircraft then a 

conflict is detected, the same principle is applied for 

nodes and links. In Table 4 are described the four routes 

of the airspace plus the final approach route.  

 

Table 4. Characteristics of the routes modeled in the 

optimization model. 

STAR (Entry point) 
Number of 

nodes (links) 

STAR1 (MOPAR) 4 (4) 

STAR2 (LORNI) 2 (2) 

STAR3 (OXIPA) 2 (2) 

STAR4 (BANOX) 4 (4) 

Final Approach segment (Merging 

point) 
3 (3) 

 

Concerning airside components as runways, taxiway 

network and terminal, there were made some assumption 

about runway occupancy time (for landings and take 

offs), taxiway occupancy time and turnaround time, they 

were based on fixed values, in Table 5 these values are 

listed. 

 

Table 5. Times for airside components in the 

optimization model. 

Airside 

component 
Time 

Runway 
60 sec landing – 25(H)-30(M)-35(L) sec take 

off 

Taxiway 10 min 

Terminal OffBlockTime-InBlockTime 

 

2.3 Simulation Model 

The simulation model is built using a discrete event 

simulation approach. The employment of this approach 

allows to take into account the stochasticity of the system 

and also the interactions inside the system (Banks et al., 

2010). For example, values related to runway occupancy 

time, taxiway occupancy time and turnaround time were 

modeled following probability distributions, whereas, in 

the optimization model these values were assumed as 

deterministic. Another factor that differentiate the 

simulation approach from the optimization one is the 

speed profile. In the optimization model the acceleration 

used is fixed and the time in and time out for each node 

and link is calculated in a static way based on the length 

of the link, whereas in the simulation model, speed is 

regulated using a fixed acceleration that is updated each 

second. In this way, the speed profile will be more 

realistic. Moreover, during the descending approach the 

simulation model does not allow aircraft to fly below a 

certain speed threshold, indicated as lower bound speed. 

In the simulation model, although were modeled the 

same routes, these routes were modeled using more 

nodes and links. The theory behind this approach is to 

construct a network of equidistant nodes in order to 

detect conflict more accurately along the route. In the 

model nodes are distanced by 5 NM from each other, 

which is assumed as an acceptable distance to make sure 

to do not miss any conflict along the route. Based on that, 
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it is likely to find, under the same conditions, more 

conflicts in the simulation model than in the optimization 

model. Due to this network structure, in the simulation 

model conflicts are detected only on the nodes and not 

on links. Concerning the detection of conflicts, it is 

applied the same principle as in the optimization model. 

In Table 6 the main characteristics of the airspace 

network are listed. 

 

Table 6. Route network in the simulation model. 

STAR (Entry point) 
Number of 

nodes (links) 

STAR1 (MOPAR) 11 (11) 

STAR2 (LORNI) 7 (7) 

STAR3 (OXIPA) 7 (7) 

STAR4 (BANOX) 15 (15) 

Final Approach segment (Merging 

point) 
3 (3) 

 

The main objective of the simulation model is to test 

if the solution that comes from the optimization model is 

feasible also in a more accurate scenario. 

Regarding the detection of conflicts on the airside, in 

the simulation are used the same principles as in the 

optimization model, with the only difference that times 

are based on probability distributions and therefore also 

variability is included, instead, in the optimization model 

times were based on fixed values, making it more 

predictable and static. 

2.3.1 Validation of the Simulation Model 

In order to validate the model, we have conducted a 

cross validation (Geisser, 1975). This type of validation 

consists in dividing the set of data in two parts, called 

set training set and testing respectively, and then using 

the training set for calibrating the simulation parameter 

in order to get an outcome that resembles the trailing set 

data sample. After that, the testing set and the simulation 

outcome are compared in order to see if the simulation 

is a good predictive of the data. In this case it was used 

the first half of the input flight schedule as training set 

and the second half of the input flight schedule as testing 

set. Figures 3 and 4 show the daily trend of traffic of the 

testing set and the simulation outcome after the 

calibration of the data. In Table 7 are shown the 

parameters that were used in the simulation model. 

Figures 5 and 6 show the outcome from the simulation 

and the testing set. In both sets, Figures 3 and 4 and 

Figures 5 and 6, it can be seen that the hourly traffic 

from the simulation and the hourly traffic obtained from 

the real flight schedule follow the same trend. The mean 

square error estimator was used to estimate the accuracy 

of the result obtained from the simulation compared to 

the real data set. 

 

Figure 3. Trend of the daily traffic from the training set. 

 

Figure 4. Outcome from the simulation model using the 

training set as data sample. 

In Tables 8 and 9 the values of mean square errors for 

each hour of traffic are listed, for the training set and 

testing set, respectively. By observing these values it 

can be noticed that the ones related to the testing set are 

not that high which means that the simulation is 

relatively reliable in predicting the system. 

 

Table 7. Parameters of the airside components in the 

simulation model. 

Airside component Time 

Runway Triangular(0.5,0.75,1) min 

Taxiway network Triangular(8,10,12) min 

Terminal Triangular(25,35,45) min 

 

 

Figure 5. Outcome from the simulation model for the 

second half of the data sample (testing set). 

 

Figure 6. Trend of the daily traffic from the testing set. 
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Table 8. Mean square error values for training set. 

Hour mean square error 

2:00-3:00 0 

3:00-4:00 1 

4:00-5:00 15.76 

5:00-6:00 0.2 

6:00-7:00 47.16 

7:00-8:00 8.73 

8:00-9:00 93.76 

9:00-10:00 43 

10:00-11:00 29.2 

11:00-12:00 10.53 

12:00-13:00 9 

 

Table 9. Mean square error values for testing set. 

Hour mean square error 

13:00-14:00 16 

14:00-15:00 38.6 

15:00-16:00 0.66 

16:00-17:00 7.6 

17:00-18:00 23.8 

18:00-19:00 20.2 

19:00-20:00 16.5 

20:00-21:00 0.7 

21:00-22:00 9.3 

22:00-23:00 4 

 

3 Scenario and Results 

In order to test the goodness of the methodology there 

have been conducted a series of preliminary tests 

primarily to tune the parameters of the optimization 

model in the specific the parameters of the sliding 

window approach and of the simulated annealing meta-

heuristic. Values related to the sliding window 

parameters are listed in Table 10. 

 

Table 10. Sliding window parameters. 

Parameter Value 

Window duration 2Hrs 

Shift 30 min 

 

Concerning the experiments, one scenario was tested 

based on a flight schedule related to a specific day. Once 

the optimized solution is ready it will be tested with the 

use of the simulation model developed and discussed in 

Section 2.3. 

 

3.1 Scenario 

In the flight schedule that was used, three different 

typology of flights were identified: arrivals, departures 

and arrivals and departures. The first type means that 

aircraft will arrive and stay at the gate for the whole day 

without departing again to another destination, in the 

flight schedule you can find most of them during the 

middle of the day and in the evening. The second type, 

is departure flight which means that those aircraft are 

already parked in one of the gate and they will depart to 

a destination, usually you can find those type of flights 

during the morning. Finally, the third type, arrivals and 

departures, are those flights that arrive from an origin, 

they park at the gate and then they depart to another 

destination, these flights represent the majority of the 

flights in the schedule. In Table 11 the structure of the 

flight schedule, according to the flight type, is showed. 

 

Table 11. Flight schedule structure for the scenario. 

Scenario 

Arrivals 149 

Departures 48 

Arrivals and departures 91 

 

As it can be seen from the figures above, in the first 

schedule there are 3 peaks: 7.00-8.00, 10.00-11.00 and 

20.00-21.00, with 31, 24 and 25 air traffic movements, 

respectively. 

3.2 Results from the Optimization Model 

Table 12 summarize the results obtained running the 

optimization model before and after the implementation 

of the simulated annealing meta-heuristic. Looking at 

the table above, it can be noticed that the optimization 

model is able to reach a conflict free situation in 120 

sec., when the initial solution without optimization 

registered in total 307 conflicts, 121 on nodes, 144 on 

links and 42 on the runway. Moreover, it can be noticed 

that taxiway and terminals are not affected by conflicts 

both before and after the optimization process, proving 

that under the given traffic, the capacity of the two 

components is able to handle this traffic without 

incurring in congestion problems. 

 

Table 12. Results before and after optimization process. 

 before opt after opt 

Computational 

time 
101.883 sec 120.18 sec 

Total objective 307 0 

Node conflicts 121 0 

Link conflicts 144 0 

Runway conflicts 42 0 

Taxiway conflicts 0 0 

Terminal conflicts 0 0 

 

3.3 Results from the Simulation Model 

After running the optimization model and obtaining an 

optimal solution, this solution has been tested by means 
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of a discrete event simulation model. It was simulated 

the whole day and there were run 30 replication. Tables 

13 and 14 show the results obtained by the simulation 

model. For simplicity, we have named as the conflict 

detected on the nodes in the airspace routes were named 

“airspace conflicts”. Moreover, in order to have a better 

idea of how many aircraft are involved in the conflicts, 

the number of aircraft affected by at least one conflict in 

the airspace were collected. 

 

Table 13. Results from simulation model before the 

optimization process. 

 Min Avg Max St. dev 

Aircraft conflicts 57 57 57 0 

Airspace conflicts 256 256 256 0 

Runway In conflicts 86 92 98 1.139 

Runway Out conflicts 1 1.55 3 0.4255 

Taxiway conflict 0 0 0 0 

Terminal conflicts 0 0 0 0 

 

Table 14. Results from simulation model after the 

optimization process. 

 Min Avg Max St. dev 

Aircraft conflicts 38 38 38 0 

Airspace conflicts 180 180 180 0 

Runway In conflicts 49 51.3 55 0.7385 

Runway Out conflicts 1 1.41 2 0.3272 

Taxiway conflict 0 0 0 0 

Terminal conflicts 0 0 0 0 

 

In the simulation model it is likely to find more 

conflicts in the airspace than in the optimization model, 

due to its different route structure that provides more 

nodes and links than the route structure of the 

optimization model. Another distinction was made 

between “runway in” and “runway out”, which refers to 

runway used for landings and runway used for 

departures, respectively. Looking at the results, we can 

see that there are still conflicts, they are mainly 

concentrated in the airspace were we have 180 conflicts 

on nodes occurred to 38 aircraft. No source of variability 

affect these results because there is not any source of 

stochasticity in the values related to the airspace. We 

have in average 51.53 conflicts for runway in and 1.41 

conflicts for runway out, while no conflicts are detected 

for taxiway and terminal. It is noticeable that, even 

though after the optimization process in the simulation 

model there are still conflicts, they have decreased 

sensibly, compared with the scenario without 

optimization process. It proves that the solution 

provided by the optimization process is able to reduce 

the number of conflicts, but it is not enough to achieve 

a conflict free solution. 

4 Conclusions and Future Work

In this paper, a methodology for detecting and resolving

conflicts at airports is presented. The methodology

consists in the implementation of optimization together

with discrete event simulation techniques in order to

come up with more robust solutions. The optimization

model was solved using a sliding window approach and

the simulated annealing meta-heuristic. With the use of

a discrete event simulation model, the methodology

aimed at evaluating the solution given from the

optimization model, in a real and more accurate

environment. In this work, Paris Charles de Gaulle

Airport was taken as a case study and one scenario was

tested based on the flight schedule of a specific day.

From the results, we found that the optimization was

able to find an optimal (conflict free) solution. When the

solution was tested using the simulation model it was

found that, although conflicts were sensibly decreased

compared to the non optimized scenario, there were still

a lot of conflicts both in the airspace and on the runway.

From this results it is possible to conclude that the

solution from the optimization model was not feasible,

and therefore, the optimization model needs further

refinements in order to produce a more robust ad

feasible solution.

Next steps for this research are in accordance with the

results, therefore, the optimization model needs to be

refined in order to be more accurate. Furthermore, the

airside can be modeled in a more detail, including

taxiway routes and gate assignment.
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