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Abstract

Evaluation aspects of alternative traffic signal control
strategies for an arterial network are studied. The traffic
evolution of a signalized road network is modelled as a
Store and Forward (SF) network of queues. The system
state is the vector of all queue lengths at all intersections.
The signal control at any time permits certain simultane-
ous turn movements at each intersection at pre-specified
saturation rates. Two control categories, open loop and
traffic-responsive policies are compared under fixed and
time-varying demand. The behaviour of the underlying
queuing network model manifesting asynchronous nature
over time while involving concurrence is modelled ac-
cording to an event-driven approach virtually reproduced
by discrete event simulations. Exploration of the imple-
mentation outputs results a pertinent mathematical frame-
work for traffic movement, analysis and signal control de-
sign. Subsequently, various metric measurements such
as queue bounds, delays, trajectory travel times quantify
the actual policy. Moreover, aggregate behaviour as in
a macroscopic queuing model is also prompted. Experi-
ments are performed using real data for a section of the
Huntington-Colorado arterial adjacent to the I-210 free-
way in Los Angeles. Lastly, the meso-micro simulation
issues resulting from the employed decision tool, PointQ,
are compared with microsimulation and mesosimulation
forms of other traffic simulation programs.

Keywords: traffic responsive signal, adaptive control,
pre-timed control, max-pressure practical policy, discrete
event simulation

1 Introduction

The management of an arterial traffic network is consid-
ered. Currently open loop plans are frequently employed
often associated with optimised offsets aiming to create
green waves in order to minimise trajectory delays. (Mu-
ralidharan et al., 2015) studies the traffic dynamics in a
network of signalised intersections. It is shown that when
the control can accommodate the demand then the net-
work state converges towards a periodic orbit while any
effects of the network initial state disappears. Adaptive
controls are expected to improve the network performance
since they the current network state is taken into con-
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sideration in real time. (Varaiya, 2013) studies a traffic-
responsive ‘“Max-Pressure” traffic control, (Mirchandani
and Head, 2001) proposes an adaptive control predicting
demand patterns and queues to compute timings to min-
imize average delay. (Aboudolas et al., 2009) suggests
an optimal formulation designing a feedback policy. Re-
search studies (Gomes et al., 2008) characterise the be-
haviour of the cell transmission model of a freeway di-
vided into N cells each with one on-ramp and off-ramp.
It is shown that ramp metering eliminates wastefulness of
freeway resources.

The present work, appraises the performance of ver-
sions of the adaptive Max-Pressure algorithm under un-
predicted demand fluctuation. In particular, feedback sig-
nal control designs and their related effectiveness are pre-
sented and analysed when applied to a network while they
are also compared with open loop schemes. Queueing
models are employed when designing closed loop signal
control plans evaluated by queue based criteria such as
queue delays. Thus, traffic evolution is modelled as a con-
trolled store and forward (SF) queuing system. Identified
vehicles arrive in iid (independent, identically distributed)
streams at entry links, travel along non-saturated (inter-
nal) links, join appropriate queues and leave the network
upon reaching exit links. At each time and at each inter-
section, a set of simultaneously compatible movements or
phases is actuated. Vehicles are discharged at a service
rate determined by the phase saturation flow rate. When
finite internal link capacities are considered, the vertical
point queues become horizontal in the sense that interfere
in the link vehicle storage capacity and the related link
travel times.

A separate queue is considered for each turn movement
at each intersection.

Aiming at evaluating the network performance under
different control policies a decision making tool is neces-
sary in order to virtually reproduce the considered struc-
ture (intersection node and links, vehicle movements and
the related control plans) under multiple traffic conditions
for both closed and open loop actuation plans. Thus,
measurements of various metrics such as delays, travelled
times, vehicle queues etc. will be able to quantified ac-
cording to the employed strategy.

When considering

“driver-behaviour”, differential
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equations are required, emulating “car-following” and
“lane-changing” aspects. Microsimulation models are
necessary for which queue sizes are not state variables and
saturation flow rates are not input data. Instead, they are
derived from the simulation analysis. Consequently, it is
not possible to relate delays to timing schemes and these
models are unsuitable for traffic control conception.

Macroscopic simulators often based on the cell trans-
mission model (CTM) (Lo, 2001) represent traffic flow as
a fluid. Spatial density is required as a state variable which
is hard to measure. Furthermore, modelling turns, shared
lanes, queues or introducing sensor behaviour for actuated
signal control, under such approach is rather a hard work.

A made-to-measure micro-meso simulation decision
making tool called PointQ maintaining the identity of each
single vehicle while ignores the vehicle interaction is in-
troduced. It has minimal data requirements and receives
saturation flow rates as explicit input values. The PointQ
decision tool is developed according to discrete event ap-
proach (Baccelli et al., 1992) in order to accurately repro-
duce the evolution of the asynchronous system while it
is appropriate for modelling open and closed loop timing
control schemes.

The rest of the paper is organised as follows. Section 2
presents the problem formulation and briefly recalls the
utilised control schemes. Section 5 introduces PointQ and
reasons the employed model approach. Section 5 and Sec-
tion 6 discuss the performed experiences. Finally, Sec-
tion 7 compares PointQ with other micro and mesosimu-
lation modes.

2 Traffic Regulation: Stage selection

The simultaneously compatible movements of an intersec-
tion are represented by a binary matrix U, the intersection
stage of which the (i, j) entry equals one if the correspond-
ing phase is actuated, zero otherwise. Let % be the set of
admissible stages of a given intersection and y(/,m) the
turning ratio of phase (/,m), expressed as the probability
of a vehicle to choose as destination link m when joining
link /. The optimisation horizon is divided into intervals or
cycles of fixed width, each one comprising of T periods.
Within each cycle, there exist 7 — L available planning pe-
riods where L < T represents the idle time corresponding
to pedestrian movements, amber lights, etc. Let g be the
array of which the (i, ) entry is the length of queue related
to phase (i, j). The system state at time 7,X(¢) is defined
by X (1) =¢q(t). A control stabilises the network, if the
time-average of every mean queue length is bounded. At
a given time stage u(t) = U,U € % and A, cycle pro-
portion have to be decided such that:

o u(t) stabilises X (1)

e if ¢(I,m) denotes the service rate of phase (/,m) and
fi represents the vehicle flow in link /, then the fol-
lowing stability condition has to be verified,

&(l,m) > fiy(l,m),
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3 Signal Control Schemes

A brief description of the utilised traffic control algorithms
is now presented. The related theory is explicitly devel-
oped and analysed in (Varaiya, 2013).

3.1 Pre-timed network control

A fixed-time control (FT) is a periodic sequence,
{Ay, U €%}, actuating each stage u(t) =U', U' € %
for a fixed duration Ay T within every cycle of T periods.

3.2 Max-Pressure Practical (MPract)

Max-Pressure is a distributed policy selecting a stage to
actuate as a function of the upstream and downstream
queue lengths. The pressure w(q(t),U) exerted by stage
U € % ,is defined by

w(g(t),U) =Y ¢(l,m)(t)SoU(l,m)(t) (2)
(L,m)
where
Q(l,m)(t)_ Z Y(m,p)CI(m,p)(t)v
pEO(m)
Sm)(r) = i o (1) > 0,
0, otherwise.
(3

At time t, Max-Pressure control, selects to actuate the
stage exerting the higher pressure to the network,

U*(q)(t) = argmax{w(q(t),U),U € % },MP stage (4)
The MPract algorithm applies the new selected MP
stage if significantly larger pressure w,

maxw(U,q(1)) = (1+n)w(U",q(1)). (5)

Parameter 7 is related to the desired degree of stage
switches.

4 Modelling and Simulation Overview

4.1 An event-driven approach

Traffic control constitutes an asynchronous, complex
structure where uncertainty and concurrence are naturally
inherent. Many theoretical questions related to which
models and methods are best to utilise for evaluating the
network performance exist. However, one observes that
there are queue-based models and car-following models.
To our knowledge, all signal control algorithms use queue-
based models. Since, we are concerned by signal con-
trol designs, a queue-based approach is appropriate to the
needs of the study. Queueing theory is intended to be de-
scriptive, given a model and control policies, after anal-
ysis, verification issues examine whether the desired ob-
jectives are attained and (potentially) performance is ob-
tained.
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A Discrete Event System (DES) is a dynamical system
the behaviour of which is ruled by occurrences of differ-
ent types of events over time rather than fixed time steps.
Although time evolves within two consecutive events, the
sole responsible for state transitions is the event realisa-
tion. Differential equations (developed for the analysis of
time-driven systems) form no longer an adequate setting.
Simulation means consist a reliable way to describe the
DES dynamics.

For the study of the arterial management a mesoscopic-
microscopic discrete event decision tool, ‘“PointQ”, is
developed. Vehicle identities are preserved but driver-
interaction is intentionally ignored. Vehicle routes are ob-
served and travel times are measured. Moreover, PointQ
requires similar model parameters as macroscopic ap-
proaches (network geometry, demand and signal control).
Since elementary calibration is required based on com-
monly available field data, PointQ can efficiently evaluate
the influence of traffic control algorithms to the network.
However, PointQ is inadequate for studies related to driver
behaviour effects or specific network geometry.

In a DES approach the system evolution is repre-
sented as a chronological sequence of events of the form
{...,Si,€i,8i+1,€i+1,--. }, where s; is the system state at
time #; and e; is an event occurring at time # marking
changes to the system bringing it to state s;;; and so
forth. It is assumed that the system is deterministic in
the sense the state resulting from an event realisation is
unique. PointQ model involves events on vehicle arrivals,
departures and signal actuation.

4.2 PointQ design

The entire structure is split into two independent but also
closely interacting parts according to the task nature. The
mechanical part virtually represents the system entity in-
teractions. It receives tow types of entries:

e input data such as network geometry (link capacity,
speed limit or mean travel time, turn pocket capacity,
phase saturation flow rates which can either be mea-
sured or estimated during implementations), initial
traffic state, sensors etc.

e controls ruling the system.

On the other hand, the real time management comprised
of all the decision algorithms required by the mechani-

cal part involving signal controls, vehicle arrival/departure «
decisions, demand patterns, routing algorithms, queue es- 3

timation models etc.

5 Case Study-Data description

A section of the Huntington-Colorado arterial near the 1-
210 freeway in Los-Angeles, comprised of 16 signalised
intersections, 76 links and 179 turn movements, is consid-
ered. Figures 2 and 3 illustrate the network map and its ab-
straction as a directed graph. Stochastic (Poisson) external
arrivals are employed, generating approximatively 14,500

Performance evaluation
(service quality,
statistical logging
and post-analysis...)

stochastic inputs:

demand, traffic conditions... Virtual system

(network, vehicules,..)

decisions:
choice of stages,...

Observations
in real-time

Real Time
Management
(control algorithms,..)

Optimisation of
real-time management
algorithms

Figure 1. The simulator in two parts.

vehicles per hour. Utilisation of an identical demand con-
tributes to the accuracy of measurements related to the in-
fluence of each control scheme on the network. Vehicle
routing is based on turning probabilities. The Fixed-Time
plan and the turn ratio values are provided by the local
traffic agency. The cycle T is of 120 seconds (with some
exceptions at two nodes where the cycle is of 90 and 145
secs). The idle duration corresponding to each cycle is be-
tween 0 and 2 seconds. Internal links are of finite vehicle
storage capacity. Stochastic travel times based on the free
flow speed and the current link state are considered. Time
granularity is taken equal to 0.1 seconds while the network
evolution is reproduced over a period of 3 hours.

Figure 3. Directed Network graph.
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6 From theory to applications

In what follows, we focus on the network performance
evaluation for both timing plans, FT Offset and MPract.
Metrics on queue lengths, travel times and delays are in-
vestigated for two demand patterns, the baseline demand
provided by the data and a time-varying one.

6.1 System Stability

Figure 4 plots the network state evolution for both the
Pre-timed and MPract signal controls. The theoretically
expected demand accommodation is also experimentally
verified. Moreover, one observes that the feedback plan
(blue curve) maintains lower queue values.

{Sum Queues}
T T T

Queuve Length

L L L L L
o 2000 4000 6000 BOOO 10000

Time {sacs)

Figure 4. Sum network queues: MPract 8-blue curve, FT Offs-
purple curve.

6.2 Trajectory Delay Measurement

For each realised trajectory (sequence of entry, internal
and exit links) delays faced by all vehicles followed the
related path are measured. The corresponding distribution
is computed and the CDF function is represented in Figure
5. MPract (purple curve) reduces delays almost four times
in comparison with the fixed time plan (green plot).

{Traj. Delay, Green: FT Offs, Pink: MPract 8}

CDF
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Figure 5. CDF Trajectory Delays: MPract (purple), FT-Offs
(green).

6.3 Queue Delay Measurement

Delays on distinct queues on link 114 (incoming link at
node 106, Huntington region) are now measured.

policies. Observe that for phase (114, 145) the pre-timed
scheme implies lower delays. Mainly, this is due to the
fact that g(114,145) and ¢(114,145) head vehicles to-
wards exit links. More precisely, phases (114,145) and
(217,214) are simultaneously actuated by stage 1. Sim-
ilarly phases (114,117) and (217,214) are actuated by a
concurrent stage 2. At any decision time the MPract stage
is the one exerting the higher pressure. According to equa-
tion 2 and since no output queues are associated with the
exit links 145, 162, the pressure exerted by stage 2 is de-
termined by the queue lengths of the related phases. Tak-
ing into consideration the flows and queue demand on link
114, stage 2 often exerts higher pressure regarding stage 1.
Thus, it receives increased green time duration. Figures 6,
7 plot the evolution of queues g(114,145) and ¢(114,117)
for both policies. Lower queues result under MPract for
phases of stage 2. The evolution of cumulative delay val-
ues for each phase of link 114 is represented in Figures 8,
9 and 10 (saturation flow rates remain unchanged for both
policies).

Tables 1, 2 resume the mean time spent by vehicles
in four queues and the average vehicle sojourn time in
all queues respectively. Obviously, MPract appears more
refined although for phase(170,173) FT-Offset implies
smaller delays. Table 3 presents the total travel time be-
tween three entry-exit links.

{{QUE, (100014,, 100017)}, FTOffs-MPract 8}
6 : . : . :

Vehicle Queue Length

—_ FT
—— MPract 8
8000 10000

Figure 6. Evolution q(114,117), FT Offs-MPract 8.
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Figure 7. Evolution q(114,145), FT Offs-MPract 8.

6.4 Varying Traffic Conditions

Three phases are associated with link 114. Figures 8,
9 and 10 depict the evolution of cumulative delay val-
ues for each phase according to the Pre-timed and MPract

The network stability is now examined under time-varying
traffic intensity. During a given period, demand gradu-
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Figure 8. Cumulative Delay q(114,117), FT Offs-MPract 8.
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Figure 9. Cumulative Delay q(114,145), FT Offs-MPract 8.

{{QUE, (100014,, 100062)}}

FT Offs

Cummulative Delay (secs)
T
1
1
1
1
-l
1
1
1
1
===
1
1
1
1
1
\-
1
1
-)\=!
U
r
1
1
1
1

MPract 8

Time (secs)

Figure 10. Cumulative Delay q(114,162), FT Offs-MPract 8.

Table 1. Mean Time spent by vehicles in queue.

Mean Mean
Veh. Sojourn | Veh. Sojourn
Que ID Time Time
(secs) (secs)
MPract FT Offs
164 1020 | 49.96 79.72
167 228 12.16 51.32
117 120 | 10.72 33.35
170 173 | 78.46 49.61

Table 2. Average Mean Time spent by vehicles in all queues.

Table 3. Travel Time Entry-Exit Link.

Entry | Exit | Travel Travel

link link | ttime (secs) | time (secs)
MP FT Offs

127 145 | 204.4 230.8

164 173 | 364.7 462.2

138 1069 | 395.2 519.6

ally increases and potentially temporary congested condi-
tions may result (representing peak hours or unpredicted
demand variation). Thus, within period [0,36,000] exter-
nal demand increases every two hours by a factor ¢; equal
to 1.05,1.15,1.3,1.5. For the following two hours, that
is from ¢ = 36000.1 to r = 43,200 seconds, demand de-
creases every half an hour by a factor ¢, taking progres-
sively values 1.3,1.15,1.05, 1.

Figure 11 illustrates the evolution of all the network
queues when the pre-timed actuation durations are em-
ployed. While demand remains inferior to 1.15d (d is the
initial demand level), that is while time ¢ < 14,000 secs
the system remains stable. Congestion spreads during pe-
riod [14,400,36,800] when the current demand intensity
values 1.15d, 1.3d, 1.5d. During this time a significant
portion of the network links become congested, strongly
increasing the number of vehicles in the network. Obvi-
ously, this Fixed-Time plan cannot accommodate the new
demand intensity. The resulting FT behaviour is theoreti-
cally expected from the stability condition presented in §2.
When the demand level decreases link saturation progres-
sively diminishes (from ¢t = 36,000 to 43,200 seconds).

{Sum queues, FT Offs, d<->1.05d<->1.15d<~->13d<->1.5d}
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Figure 11. Evolution sum queues, varying demand level, FT
Offset.

In contrast, the network behaviour differs when a
MPract policy defines signal plans. Figure 12 depicts the

AVERAGE sum of the network queues for the c;d, i = 1,2 demand
MEAN VEH MPract | FT Offs intensities. Clearly, the feedback policy prohibits link sat-
SOJOURN TIME uration. The sum of all the network queues rises during
(secs) (secs) period [21,600,36,000] when a 30% and 50% increase of
IN QUEUES the initial demand takes place but still the network remains
1205 | 2232 stable.
Figures 13 and 14 plot the aggregate entry (blue
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Aiming at a comparison of the two simulation tools,
the section of Huntington-Colorado arterial is modelled
in AIMSUN. Both approaches employ stochastic demand
of intensity d (baseline demand), Pre-timed signal plan as
governing control and consider the turn ratio values and
link free flow speeds as provided by the data. Microscopic
and Mesoscopic AIMSUN simulations are performed for
a three hours duration. The state of intersection 101 (first
node at the Huntington area) is investigated according to
PointQ and AIMSUN implementations.

Five controlled movements exist at node 101 corre-

Time (secs) sponding to queues g(137,154), q(153,154), ¢(153,237),
q(254,237) and ¢(254,253). We focus on the behavior
of two representative movements. Phase (137,154) brings
vehicles into the network from the entry link 137 and head
them towards the internal link 154 while phase (254,237)
moves vehicles from the internal link 254 towards the exit

link 237.

7.1 Evolution of phase (137,154)

Figure 15 represents the evolution of queue g(137,154)
under a PointQ simulation. Figures 16 and 17 illustrate
the queue behaviour when micro and meso AIMSUN sim-
ulations are performed.

Figure 12.
MPract 8.

Evolution sum queues, varying demand intensity,

curve) end exit flows (red, purple curves) during period
[29,000,31,000] for FT and MPract policies respectively.
Since, the pre-timed control cannot accommodate c;d,
demand for ¢; = 1.3,1.5 the number of vehicles exiting
the network drops below the external arrivals. This phe-
nomenon disappears under MPract.
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Figure 14. Aggregate entries-exits, varying demand, MPract 8.

7 PointQ versus AIMSUN Network

Performance

As previously discussed, PointQ is a micro-meso decision
tool, approaching a SF network queue model by a discrete
event technique.

AIMSUN is a vehicle traffic software offering meso-
scopic, microscopic and hybrid simulation approaches.

Figure 16. Evolution of q(137,154), AIMSUN Micro.
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269: 137-154-1 (137-154-1)
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Figure 17. Evolution of q(137,154), AIMSUN Meso.

Although stochastic external demand and link travel
times are considered, one observes that the three ap-
proaches, PointQ model and AIMSUN micro and meso
versions provide close results. Queues resulting from the
three simulation modes verify the theoretically resulting
stability. Furthermore, queue lengths vary within similar
bound values over time.

7.2 Evolution of phase (254,237)

Figure 18 plots the behaviour of queue ¢(254,237) when
PointQ while Figures 19 and 20 describe the resulting
queue state under micro and meso AIMSUN approaches.

{{QUE, (200054,, 200037)]

0 1000 Z000 3000 4000 S000 WM 7MW S 9000 10000
20 T T T T T T T T T T
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¥ehicle Quene Length

'JI

| |
1}
0 1000 -IJL'IIJ 3000 4000 5000 G0 o) S0 S000 10000

time (unit: 0.1 secs)

Figure 18. Evolution of q(254,237), PointQ.

As in the case of phase (137,154), queue ¢(254,237)
shows the same behaviour for both PointQ and AIMSUN
models and all modes (micro-meso, micro and meso).

An extended analysis of all the network queues implies
that the resulting network state is similar under the two
models.

8 Conclusions

Aiming at a further improvement of traffic, new signal
schemes are designed, evaluated and potentially optimised
before a real time application. The key contribution of this
paper is to present the extended options of a microscopic-
mesoscopic decision tool, called PointQ destined for an
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Figure 19. Evolution of q(254,237), AIMSUN Micro.
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Figure 20. Evolution of q(254,237), AIMSUN Meso.

an ameliorated study of arterial traffic. PointQ relies on
the principle of discrete events and models arterials as a
Store and Forward queuing network. Thus, queues form
state variables of the system. Minimal explicit input infor-
mation is needed amongst which the saturation flow rates.
These values are necessary to signal control development
since most feedback algorithms follow queue-based ap-
proaches. Experiments are performed under real data
for a section of Huntington-Colorado near Los Angeles.
Two control policies are employed, Pre-timed and Max-
Pressure Practical plans under fixed and time-varying de-
mand intensity. The expected theoretical results concern-
ing the network stability are verified and the network per-
formance is quantified in terms of queue bounds, delay
metrics and travel times. Finally, PointQ accuracy is ob-
served in comparison with a simulation program provid-
ing both micro and meso simulation modes. Useful di-
rections of future work worthing to be pursuing is the
development of queue estimation algorithms, employed
in feedback controllers (e.g. versions of MP algorithm)
and actuated controls as well. Moreover, introducing ad-
ditional modes of sensor behaviour the combination of
which would improve precision in the computational re-
sults (actuated controls).
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