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Abstract
Multifunction Vehicle Bus (MVB) is a critical component
in the Train Communication Network (TCN), which rep-
resents a challenging problem for model checking. Al-
though model checking is widely used in circuit and soft-
ware verification, it is hardly for verification of the MVB
or TCN, in terms of modelling of MVB components and
making appropriate specification. The study described in
this paper aims at evaluating and experimenting the indus-
trial application of verification by model checking, and
provides a complete system modelling and specification
describing technique. The model of MVB consists of de-
vice model, communication model and specification mod-
el translated from LSCs, a scenario description. Experi-
ments results with SPIN checking tool illustrate effective-
ness of our approach.
Keywords: vehicular communication, protocol verifica-
tion, model checking, specification

1 Introduction
Multifunction Vehicle Bus (MVB) in Train Communica-
tion Network (TCN) is widely used in most of the modern 
train control techniques of transportation software system. 
MVBs change roles of master or slaves under mastership 
transfer protocol in IEC standards (Kirrmann and 
Zuber, 2001). How to ensure security of an embedded 
vehicle control software system which implements the 
function and protocol has become an important issue.

The traditional method to verify MVB uses simulation 
technique (Jiménez et al., 2006) or test methods 
(Zhiwu et al., 2008). These approach need semi-
finished MVB devices and programs, error-tolerance 
decode algorithm and samples of transmitted data among 
devices. However, simulation and test cannot provide 
completeness verifica-tion.

Model checking (Queille and Sifakis,1982; Clarke 
et al., 1999) is a method for automatically verifying fi-
nite state systems, using an exhaustive search of the state 
of a system model to determine whether a specification is 
satisfied or violated, which has been applied in circuit and 
software verification. Although model checking is wide-
ly used, it is hardly for verification of the MVB or TCN, 
in terms of modelling of MVB components and making 
appropriate specification. System modelling prefers fewer

states, avoiding states space explosion, and specification
making requires different properties synthesis with light
weight manual work.

This paper presents a modelling approach for MVB
based on finite state model checking and a specification
generated method. The remainder of this paper is orga-
nized as follows. The following section gives background
details of MVB, mastership transfer protocol and prelimi-
naries model checking with temporal logic. Section 3 pro-
pose a modelling method for system component and com-
munication with process and finite state automata. Section
4 show property generated and modelling method com-
pound with previous system model. Experiment results in
Section 5 demonstrate our methods and Section 6 make
conclusion.

2 Background
In this section, we first introduce the MVB and the mas-
ter transfer protocol. Then model checking with temporal
logic is reviewed.

2.1 MVB and Master Transfer
2.1.1 Multifunction Vehicle Bus

The on-board train communication system has been wide-
ly used for modern railways. The MVB is a compo-
nent of the TCN which is used in most of the modern
train control systems. The TCN has been defined by the
IEC(international Electrotechnical Commission); it is the
Vehicle Bus specified to connect standard equipment. It
provides both the interconnection of programmable equip-
ment pieces amongst themselves and the connection of
this equipment with its sensors and actors. It can also be
used as a Train Bus in trains which are not separated dur-
ing normal operation.

The MVB defines two types of devices: Master and
Slave. Each Vehicle Bus and Train Bus has one Master
node and several Slave ones. The Master sends informa-
tion, the Master_Frame, to a number of Slave devices.
The Slave receives information from the Bus and sends
information, the Slave_Frame, in response to the Master.
A Master_Frame and the corresponding Slave_Frame for-
m a telegram. All devices decode the Master_Frame. The
addressed source device then replies with its Slave_Frame,
which may be received by several other devices.
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2.1.2 Mastership Transfer
Since a single Master presents a single point of failure,
mastership may be assumed by several Bus Administra-
tors(BAs), one at a time. To increase availability, master-
ship can be shared by two or more BAs, which both take
charge of mastership for the duration of a turn. Master-
ship is transferred from BusAdmin to BusAdmin within a
few milliseconds in case of failure. To exercise redundan-
cy, mastership is transferred every few seconds by a token
frame. Consequently, all BAs are organized in a logical
ring. A token passing mechanism ensures that only one
BusAdmin become Master.

In the IEC 61375-1 international standard, Mastership
Transfer describes the protocol which selects a Master for-
m one of several BAs and ensures Mastership Transfer at
the end of a turn or upon the occurrence of a failure. A
token passing algorithm is defined in the IEC standard to
ensure a round-robin access of all BAs to the Bus:

1. after the loss of the Master, staggering of the time-
outs ensures that only one of the BAs become Mas-
ter;

2. a Master exercise mastership for the duration of one
turn;

3. after its turn, the Master looks for the next BusAdmin
and reads its Device Status, which indicates if this
device is a configured BusAdmin;

4. a Master may only pass mastership to a configured
and actualized BusAdmin;

5. if the device is not a configured and actualized Bu-
sAdmin, the Master looks for the next BusAdmin af-
ter the next turn;

6. if the device is a configured and actualized BA, the
Master offers mastership to it by sending a Master-
ship Transfer Request;

7. if the device accepts mastership in its Mastership
Transfer Response, or if no answer comes, the Mas-
ter retires to become a standby Master and monitors
the Bus traffic for mastership offer or Bus silence;

8. if the other device rejects mastership, the curren-
t Master retains mastership for one more turn, after
which the Master tries the next device in its BAs list;

9. a standby BusAdmin becomes Master if it accepts a
Mastership Transfer Request or if it detects no Bus
activity during a time greater than a defined timeout;

2.2 Model Checking with temporal logic
For model checking system against some specification,
we need both system model structure and description of
property. Communicating Finite State Machines (CFSM-
s) are natural models for systems of concurrently running

process, especially asynchronous reactive system. The
concurrency of process is captured at the semantics lev-
el of CFSMs by the interleaving of processes execution-
s. Process exchange messages between each other asyn-
chronously over a set of message channels, which are in-
terpreted at the semantic level as unbounded FIFO mes-
sage queues. A sender process continues its local execu-
tion after sending a message to a channel, and a receiver
process is blocked when it tries to receive a message that
is not available in the respective channel.

Definition 1 (Communicating Finite State Machines). A
system of communicating finite state machines (CFSM) is
a tuple S = (P,V,M,C,succ), where

• P is a finite set of process. Each process pi is a pair
(Si,si

0) where Si is a finite set of states of pi and si
0 ∈

Si is the initial state. For any two different process
pi and p j, we put the restriction that Si ∪ S j =, i.e.,
their sets of states are disjoint.

• V is a finite set of variable, may be global or local in
process.

• M is a finite set of message symbols.

• C is finite of messages channels. Each channel is
associated with a subset of message symbols M′ ⊂M
such that only the messages in M′ can be exchanged
in the buffer. Moreover, for each channel c ∈C and
each message symbol m in the subset of M associated
with c, we call (c,m) a message type.

• succ is a finite set of local transitions (s,e,s′) where
s and s′ are states of some same process pi, and e is
(g,u): g is guard condition consist of both boolean
formula with or without a message passing event in
the form b!m or b?m such that (1)c ∈C and (2)m ∈
M can be exchanged in the buffer c; u is updates of
variables as v′ = u(v).

The semantics of CFSMs is defined using the concepts
of configurations and reachability.

Definition 2 (Configuration). Given a CFSM system
S = (P,V,M,C,succ), a configuration(or global state) of
the system is a tuple (s1, ...,s|P|,v,q1, ...,q|C|) such that

• each si is a state of the process pi, and

• each qi is a queue of messages exchangeable in the
channel ci, and

• v is a valuation of all variables.

Consider two configuration s1 and s2, let s1 = (s1
1, ...,s

|P|
1 ,

v1,q1
1, ...,q

|C|
1 ) and s2 = (s1

2, ...,s
|P|
2 ,v2,q1

2, ...,q
|C|
2 ). We de-

fine that s2 is a successor of s1, denoted by s1⇒ s2, if the
following is satisfied:

EUROSIM 2016 & SIMS 2016

274DOI: 10.3384/ecp17142273       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



• There exists a process pi ∈P such that (1) for all j 6= i
we have that s j

1 = s j
2; and (2)(si

1,e,s
i
2) ∈ succ.

• (v2,q1
2, ...,q

|C|
2 ) = poste(v1,q1

1, ...,q
|C|
1 ), where poste

update the valuation of variables from v1 to v2 and
change message queues contents of respective chan-
nels.

After modelling system, we should describe specifica-
tion under which the model to be verified. Temporal logic,
such as Linear Temporal Logic, which extends proposition
logic with temporal operator, is a good choice of descrip-
tion of system properties.

Definition 3 (Linear Temperoal Logic). Linear Temporal
Logic(LTL) has the following syntax given in Backus Naur
form:

φ ::=⊥ | > | p | (p) | ¬φ | φ ∧ψ | φ ∨ψ | φ → ψ |
Xφ | Fφ | Gφ | φUψ | φWψ | φRψ

(1)

where p is any proposition atom from sone set of atoms.
Temporal operator X means next state, F means some fu-
ture state, and G means all states. The next three, U, W
and R, are called Until, Release, and Weak-until, respec-
tively.

According to the requirement specified in the standard,
suppose that there are n BAs altogether, the Mastership
Transfer must satisfy the following properties:

1. there cannot be more than one Master at one time; it
is written in the LTL as shown in

G¬(BA_Masteri∧BA_Master j), i, j = 1, ...,n, i 6= j

2. there cannot be no Master at one time; it is written in
the LTL as shown in

G¬(
n∧

i=1

BA_Standbyi).

3 System Modelling
MVBs under Mastership Transfer protocol has two main
component to be modelled. In this section, we present our
modelling approach for both BusAdmins and the commu-
nication mechanism amongst BAs.

3.1 Bus Administrator Modelling
3.1.1 basic data structure
First we define the data structure of Bus Administrator and
message frame exchanged amongst different BAs. Bus
Administrator data structure defines local variables used
for BA itself, including different timers, flag, address, etc.
Most important fields of BA structure are send and recv
buffer channel for communicating. These channel con-
tains buffer blocks, each of that consists of both message
frame and channel pointer for convenience.

Listing 1. Bus Admin structure

typedef BA_DEF
{

byte T_standby; /*t_standby Timer*/
byte Turn; /*turn Timer*/
bit T_find_next; /*t_find_next Timer*/
bit T_interim; /*t_interim Timer*/
bit ACT; /*BA actualized state flag*/
byte rank; /*BA sequence number in BA-

list*/
byte adr; /*BA address in memory*/
chan send = [10] of {FRAME, chan};

/*BA sender buffer channel*/
chan recv = [10] of {FRAME, chan};

/*BA receiver buffer channel*/
}

Listing 2. enumeration of BA state

mtype =
{ ba_STANDBY_MASTER,
ba_REGULAR_MASTER,
ba_END_OF_TURN,
ba_FIND_NEXT,
ba_INTERIM_MASTER}

Enumeration of BA state consists of all major distin-
guished states of BA under Mastership Transfer protocol.

Listing 3. message frame structure

typedef FRAME
{

mtype type; /*Frame type*/
bit data; /*Frame data*/
byte from; /*Source BA ID of frame*/
byte to; /*Target BA ID of frame*/

}

Message frame structure defines type, data, and source and
target BA ID of messages frames.

Listing 4. enumeration of message frame type

mtype =
{ MASTERSHIP_OFFERED,
MASTERSHIP_RESPONSE,
STATUS_REQUEST,
STATUS_RESPONSE,
REGULAR}

Enumeration of message type consists of all major distin-
guished states of BA under Mastership Transfer protocol.

3.1.2 finite state machine of Bus Administrator
As defined by CFSM in previous section, our model con-
sists of several concurrency running processes, each of
that is an instance of process type BA_FSM, which is i-
dentified by argument ID. Each process represent an ex-
ecuting Bus Administrator with a member index by same
ID in a BA_DEF structure array.

BA_FSM constructs a finite state machine of Bus Ad-
ministrator. In each state, BA exercise respective opera-
tions, receive or sends message frames and transit to other
state on conditions.
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Listing 5. BA_FSM process structure

proctype BA_FSM(byte ID)
{

STANDBY_MASTER: /*standby state*/
...
/*acts no master operation: if it

accepts a Mastership Transfer
Request or if it detect no Bus
activity during a time greater than
t_standby, goto REGULAR_MASTER*/

REGULAR_MASTER: /*master exercise state

*/
...
/*acts master operation: if it detects

master conflict, goto STANDBY_MASTER
; or if it ends its current turn,
goto END_OF_TURN*/

END_OF_TURN: /*end of master turn*/
...
/*looks for next BA in BA-list and send

Status Request; if BA-list exhausts,
goto REGULAR_MASTER*/

FIND_NEXT: /*find next BA to be master

*/
...
/*gets the Status Response: if the BA is

configured and actualized, then
offers mastership to it by sending
Mastership Transfer Request and goto
INTERIM_MASTER; else if the BA is
not actualized or time-out without
response, goto END_OF_TURN*/

INTERIM_MASTER: /*interim master state*/
...
/*gets the Mastership Transfer Response

and goto STANDBY_MASTER. Meanwhile,
if the response is non-acceptance or
time-out without response, report
error*/

}

3.2 Communication and Timing Modelling
3.2.1 communication mechanism of BusAdmin
Instead of modelling real Bus component, which may in-
troduce more complex concurrency process, we realize
communication between BusAdmins by channels. In ini-
tial model setting, each BA has sender and receiver chan-
nels both with buffer capacity of 10.

asynchronous communication with buffers By posi-
tive capacity buffered channel, BAs communicates with
each other asynchronously. These messages receiving and
sending actions are similar to pulling and posting mails
through intermediary.

• when BA receives(pull) message from recv channel,
it execute

BA[ID].recv ? (temp_frame, BA[ID].
send)

to get message frame into temporal frame to be
parsed; meanwhile, get sender’s receive channel

pointer as send channel of itself, prepared to be used
in following sending actions.

• when BA send(post) message to send channel, it ex-
ecute

BA[ID].send ! (temp_frame, BA[ID].
recv)

to put temporal frame into previous channel point-
er(another BA’s recv channel); meanwhile, send it’s
recv channel as channel pointer to be received by the
target receiver.

In above communication realization, we make channel as
part of communication content, reduce amount of chan-
nels used in whole model and alleviate state explorations
of states caused by channel numbers.

non-blocking communication When channel is empty
or full, respectively, receiving or sending processes block
at previous execution statement. Obviously, it is inflexible
for modelling more complex system execution situation.
So we realized non-blocking communication use full, nfull
and atomic primitives.

When sender tries to send, it first confirm whether send
channel is full or not, and exclusively satisfies either f ull
or n f ull guard condition. If send channel is full, sender
process skips sending and execute next statement. If not,
sender sends message successfully.

do
::full(BA[ID].send)->skip;
::nfull(BA[ID].send)->

BA[ID].send!(temp_frame,BA[ID].recv);
od;

Situation is slightly different for receiver process. We
encapsulate receiving execution as atomic segment and
provides else clause besides. When receiver cannot re-
ceive message frame from recv channel as the channel is
empty, it will chose else bypath and will not be blocked.

do
::atomic

{BA[ID].recv?(temp_frame,BA[ID].send)->
...

}
::else->...
od;

3.2.2 timing mechanism

In Mastership Transfer protocol, there are many local
timer in each process, such as T _standby, Turn, etc. As
CFSMs semantics is asynchronous models, different timer
in process need to be synchronised.

Many modelling language has synchronous channels,
which is different from asynchronous channels, the for-
mer can be treated as zero-capacity channel that requires
sender and receiver must communicated at the same in-
stant.
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Based on the synchronous channel structure, we can
make timer in different process has same steps. We mod-
el another timing manager process to coordinate different
timers. Timer is not updated in each process, but be sent
to timing manager by each process before updates through
synchronous communication. Then timing manage up-
dates all timer counts in atomic segment and synchronous-
ly sends timer back to each process. By timing manager,
we realize timers in different process to step by same rate.

4 Property Modelling
After we get system model, we need make specification to
be verified. In this section, we first introduce properties
classification about our model, then for handling troubles
of complex property description and gaining benefits of
synthesis, we introduce live sequence chart and combine
it with previous system model.

4.1 Property Classification

4.1.1 safety property

A safety property states that some bad thing never happen-
s, representing requirements that should be continuously
maintained by the system. To our models, we have fol-
lowing safety property to be verified:

• BusAdmin 0 (BA[0]) and BusAdmin 1 (BA[1]) can-
not be masters at same time:

G mutex (2)

where

#define mutex
(!(ba0_cur==ba_REGULAR_MASTER &&

ba1_cur==ba_REGULAR_MASTER))

• Once BA[0] becomes master, then system must has a
master forever:

G( ba0_master→ G !nonemaster)) (3)

where

#define ba0_master
(ba0_cur==ba_REGULAR_MASTER)
#define nonemaster
(ba0_cur==ba_STANDBY_MASTER &&
ba1_cur==ba_STANDBY_MASTER &&
ba2_cur==ba_STANDBY_MASTER)

4.1.2 liveness property

A liveness property states that some good thing eventually
happens, representing requirements whose eventual real-
ization must be ensured. To our models, we have follow-
ing liveness property to be verified:

Figure 1. An example of LSC specification: BA_0 transfer 
mas-tership to BA_1.

• It is required that BA[0], BA[1] and BA[2] all can
infinitely often be the master.

GF ba0_master && GF ba1_master
&& GF ba2_master

(4)

where ba1_master and ba2_master is defined similar
as ba0_master.

• After BA[0] becomes the master, it can eventually
relieve mastership.

G (ba0_master→ F ba0_standby) (5)

where ba0_standby is defined similar as
ba0_master.

4.2 Live sequence charts
Live Sequence Chart (LSC) (Kugler and Segall, 2009; 
Li et al., 2010) use instance lines, expressions, 
messages, conditions and updates to describe scenario of 
interactions among sequence processes. We can iteratively 
refine spec-ification described by LSCs, that is 
introduced in initial system design stage and reused for 
the whole software de-veloping procedures.

Example 1 In Figure.1, an Live Sequence Chart 
describes a fragment procedure of mastership transfer 
from BA_0 to BA_1, which starts from BA_0 send 
inquire status mes-sage and ends with BA_1 sends 
mastership accept mes-sage. Red hexagon represents 
hot condition, which can-not be violated. Blue hexagon 
represents cool condition, which once be violated, then 
go back to top and make a new execution.

Given formal syntax and sematic of LSCs, we can com-
bine normal specification described by LSC with existing
formal logics and model checking to verify the properties
provided by developer and stakeholder.

Main process of LSC described scenario-based system
properties formal description and model checking is that,
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1. Use normal LSC to describe process instance interac-
tion scenario in system model, identify the Pre-chart
and Main-chart.

2. Translate LSC to Observer Automata ObsA. ObsA
monitors these messages communication, condition-
s satisfaction and updates consistency proposed by
LSC.

3. Combine ObsA with original system model S , with-
out introducing side effects in original system opera-
tion.

4. Formally, check property

G (ObsA.lmin→ F ObsA.lmax)

where ObsA.lmin identifies top of Main-chart,
ObsA.lmax identities bottom of Main-chart. This
property represents that each time the system enter-
s the main chart of LSC, it will eventually reach the
bottom of the main chart. Then LSC scenario proper-
ty is reduced to a classical real-time model checking
problem.

4.3 Observer Automata modelling
To translate LSC to observer automata, we need partition
LSC into locations, simregions, and cuts firstly. Then a
run of observer automata is a successive transitions among
states space consisting of cuts and variables valuations.

One requirement for observer automata is that it can
monitor concerned information of interactions and config-
urations in LSC, such as messages. In addition, observ-
er automata need also capture other information such as
timers. Meanwhile, observer cannot bring side effects that
disturb normal executions of original system model.

We use copy acceptance communication, which pulls a
copy message from channel and has no effect on channel
information and structure, like

BA[ID].recv ? <temp_frame, temp_chan>

where syntactic sugar <> means copy message from recv
to temp_ f ram and temp_chan. As mentioned before,
timers implement is similar to messages communication,
so it is also monitored by observer automata as reference
copy.

We define boolean (bit) variables obsAlmin and
obsAlmax as flag denotation for ObsA.lmin and ObsA.lmax
respectively, with initial value of f alse(0). Based on the
above, a monitor process which realizes observer automa-
ta ObsA and a LSC specification can be both added to our
model checking of MVB protocol.

5 Experiments
We implement our approach by explicit states model 
checking tool SPIN (Holzmann,1997). Its modelling lan-
guage Promela has all the model elements we proposed

previously. To check LSC specification, we implemen-
t a tools translate graphic LSC to modelling codes. We
run our model checking on 32-bit Window7 platform with
2GB RAM memory limitation. To exhibit the use of our
modelling and property setting works

We show the experiments results of MVB protocol
model checking against 5 property presented previously
in this paper in Table.1.

• First two lines indicates results of first two safety
property checking. As safety property is violated by
finite prefix of execution, the search depth is equiva-
lent to counterexample depth.

• Lines 3, 4 indicate results of two liveness property
checking. Different from above safety property, a
counterexample trace that violates liveness property
is a infinite suffix of executions, which consists of a
lasso structure. Model checking algorithm for search
of such lasso is a double-DFS algorithm using stack
and has tables. Consequently, these counterexamples
depth are less than checking depth reached.

• Last line is result of checking translated LSC prop-
erty. Obviously, checking a property described by
LSC and translated into observer automata is much
harder than simple safety and liveness property. It
is resulted both from LSC’s rich expression and ob-
server automata complex monitoring functions. In
this experiment, we can not find counterexample be-
fore memory exhausts. Conservatively speaking, the
specification described by LSC is satisfied by MVB
protocol.

6 Conclusions
Model checking of Multiple Vehicle Bus under master-
ship transfer protocol shows an industrial verification case
study, which combines both device model, communica-
tion model and specification model in a unified modelling
framework. One benefit of our approach is that, we model
Bus administrator as modules, and use channels efficient-
ly. It is an immense improvement on modelling technique
compared to (Xia et al., 2013). Another benefit is that
we introduce LSCs to make specification of more com-
plex process interaction scenarios. Moreover, with help of
translating LSC into observer automata and verifying au-
tomata location based liveness property, we can confirm
whether LSCs specification is satisfied or not.

We think we have two aspects for future work. One is
further improvement of our modelling works and transla-
tion from specification to automata. Because the size of
models directly affect checking efficiency, we expect s-
maller models and make possible abstraction. The other
extending maybe introduce synthesis technique, which s-
tarts from specifications, and seek possible system models
that satisfies all the inferred properties.
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Table 1. Experiments results of MVB protocol.

Property ID Transitions Atomic steps Memory usage (MB) Depth reached Counterexample depth
1 399 127 2.391 966 966
2 347 112 2.391 846 846
3 574767 183018 15.379 1999 1903
4 2964 112 2.586 978 940
5 12201602 3032340 2024.453 1999 —
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