
Formal Verification of Multifunction Vehicle Bus

Lianyi Zhang1,2 Duzheng Qing1,2 Lixin Yu2 Mo Xia3 Han Zhang2 Zhiping Li2

1 Science and Technology on Special System Simulation Laboratory, Beijing Simulation Center, China
2 State Key Laboratory of Intelligent Manufacturing System Technology, Beijing Institude of Electronic System

Engineering, China
3 Software School, Tsinghua University, Beijing, China

Abstract
Multifunction Vehicle Bus (MVB) is a critical component
in the Train Communication Network (TCN), which rep-
resents a challenging problem for model checking. Al-
though model checking is widely used in circuit and soft-
ware verification, it is hardly for verification of the MVB
or TCN, in terms of modelling of MVB components and
making appropriate specification. The study described in
this paper aims at evaluating and experimenting the indus-
trial application of verification by model checking, and
provides a complete system modelling and specification
describing technique. The model of MVB consists of de-
vice model, communication model and specification mod-
el translated from LSCs, a scenario description. Experi-
ments results with SPIN checking tool illustrate effective-
ness of our approach.
Keywords: vehicular communication, protocol verifica-
tion, model checking, specification

1 Introduction
Multifunction Vehicle Bus (MVB) in Train Communica-
tion Network (TCN) is widely used in most of the modern
train control techniques of transportation software system.
MVBs change roles of master or slaves under mastership
transfer protocol in IEC standards (Kirrmann and
Zuber, 2001). How to ensure security of an embedded
vehicle control software system which implements the
function and protocol has become an important issue.

The traditional method to verify MVB uses simulation
technique (Jiménez et al., 2006) or test methods
(Zhiwu et al., 2008). These approach need semi-
finished MVB devices and programs, error-tolerance
decode algorithm and samples of transmitted data among
devices. However, simulation and test cannot provide
completeness verifica-tion.

Model checking (Queille and Sifakis,1982; Clarke
et al., 1999) is a method for automatically verifying fi-
nite state systems, using an exhaustive search of the state
of a system model to determine whether a specification is
satisfied or violated, which has been applied in circuit and
software verification. Although model checking is wide-
ly used, it is hardly for verification of the MVB or TCN,
in terms of modelling of MVB components and making
appropriate specification. System modelling prefers fewer

states, avoiding states space explosion, and specification
making requires different properties synthesis with light
weight manual work.

This paper presents a modelling approach for MVB
based on finite state model checking and a specification
generated method. The remainder of this paper is orga-
nized as follows. The following section gives background
details of MVB, mastership transfer protocol and prelimi-
naries model checking with temporal logic. Section 3 pro-
pose a modelling method for system component and com-
munication with process and finite state automata. Section
4 show property generated and modelling method com-
pound with previous system model. Experiment results in
Section 5 demonstrate our methods and Section 6 make
conclusion.

2 Background
In this section, we first introduce the MVB and the mas-
ter transfer protocol. Then model checking with temporal
logic is reviewed.

2.1 MVB and Master Transfer
2.1.1 Multifunction Vehicle Bus

The on-board train communication system has been wide-
ly used for modern railways. The MVB is a compo-
nent of the TCN which is used in most of the modern
train control systems. The TCN has been defined by the
IEC(international Electrotechnical Commission); it is the
Vehicle Bus specified to connect standard equipment. It
provides both the interconnection of programmable equip-
ment pieces amongst themselves and the connection of
this equipment with its sensors and actors. It can also be
used as a Train Bus in trains which are not separated dur-
ing normal operation.

The MVB defines two types of devices: Master and
Slave. Each Vehicle Bus and Train Bus has one Master
node and several Slave ones. The Master sends informa-
tion, the Master_Frame, to a number of Slave devices.
The Slave receives information from the Bus and sends
information, the Slave_Frame, in response to the Master.
A Master_Frame and the corresponding Slave_Frame for-
m a telegram. All devices decode the Master_Frame. The
addressed source device then replies with its Slave_Frame,
which may be received by several other devices.

EUROSIM 2016 & SIMS 2016

273DOI: 10.3384/ecp17142273 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

2.1.2 Mastership Transfer
Since a single Master presents a single point of failure,
mastership may be assumed by several Bus Administra-
tors(BAs), one at a time. To increase availability, master-
ship can be shared by two or more BAs, which both take
charge of mastership for the duration of a turn. Master-
ship is transferred from BusAdmin to BusAdmin within a
few milliseconds in case of failure. To exercise redundan-
cy, mastership is transferred every few seconds by a token
frame. Consequently, all BAs are organized in a logical
ring. A token passing mechanism ensures that only one
BusAdmin become Master.

In the IEC 61375-1 international standard, Mastership
Transfer describes the protocol which selects a Master for-
m one of several BAs and ensures Mastership Transfer at
the end of a turn or upon the occurrence of a failure. A
token passing algorithm is defined in the IEC standard to
ensure a round-robin access of all BAs to the Bus:

1. after the loss of the Master, staggering of the time-
outs ensures that only one of the BAs become Mas-
ter;

2. a Master exercise mastership for the duration of one
turn;

3. after its turn, the Master looks for the next BusAdmin
and reads its Device Status, which indicates if this
device is a configured BusAdmin;

4. a Master may only pass mastership to a configured
and actualized BusAdmin;

5. if the device is not a configured and actualized Bu-
sAdmin, the Master looks for the next BusAdmin af-
ter the next turn;

6. if the device is a configured and actualized BA, the
Master offers mastership to it by sending a Master-
ship Transfer Request;

7. if the device accepts mastership in its Mastership
Transfer Response, or if no answer comes, the Mas-
ter retires to become a standby Master and monitors
the Bus traffic for mastership offer or Bus silence;

8. if the other device rejects mastership, the curren-
t Master retains mastership for one more turn, after
which the Master tries the next device in its BAs list;

9. a standby BusAdmin becomes Master if it accepts a
Mastership Transfer Request or if it detects no Bus
activity during a time greater than a defined timeout;

2.2 Model Checking with temporal logic
For model checking system against some specification,
we need both system model structure and description of
property. Communicating Finite State Machines (CFSM-
s) are natural models for systems of concurrently running

process, especially asynchronous reactive system. The
concurrency of process is captured at the semantics lev-
el of CFSMs by the interleaving of processes execution-
s. Process exchange messages between each other asyn-
chronously over a set of message channels, which are in-
terpreted at the semantic level as unbounded FIFO mes-
sage queues. A sender process continues its local execu-
tion after sending a message to a channel, and a receiver
process is blocked when it tries to receive a message that
is not available in the respective channel.

Definition 1 (Communicating Finite State Machines). A
system of communicating finite state machines (CFSM) is
a tuple S = (P,V,M,C,succ), where

• P is a finite set of process. Each process pi is a pair
(Si,si

0) where Si is a finite set of states of pi and si
0 ∈

Si is the initial state. For any two different process
pi and p j, we put the restriction that Si ∪ S j =, i.e.,
their sets of states are disjoint.

• V is a finite set of variable, may be global or local in
process.

• M is a finite set of message symbols.

• C is finite of messages channels. Each channel is
associated with a subset of message symbols M′ ⊂M
such that only the messages in M′ can be exchanged
in the buffer. Moreover, for each channel c ∈C and
each message symbol m in the subset of M associated
with c, we call (c,m) a message type.

• succ is a finite set of local transitions (s,e,s′) where
s and s′ are states of some same process pi, and e is
(g,u): g is guard condition consist of both boolean
formula with or without a message passing event in
the form b!m or b?m such that (1)c ∈C and (2)m ∈
M can be exchanged in the buffer c; u is updates of
variables as v′ = u(v).

The semantics of CFSMs is defined using the concepts
of configurations and reachability.

Definition 2 (Configuration). Given a CFSM system
S = (P,V,M,C,succ), a configuration(or global state) of
the system is a tuple (s1, ...,s|P|,v,q1, ...,q|C|) such that

• each si is a state of the process pi, and

• each qi is a queue of messages exchangeable in the
channel ci, and

• v is a valuation of all variables.

Consider two configuration s1 and s2, let s1 = (s1
1, ...,s

|P|
1 ,

v1,q1
1, ...,q

|C|
1) and s2 = (s1

2, ...,s
|P|
2 ,v2,q1

2, ...,q
|C|
2). We de-

fine that s2 is a successor of s1, denoted by s1⇒ s2, if the
following is satisfied:

EUROSIM 2016 & SIMS 2016

274DOI: 10.3384/ecp17142273 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

• There exists a process pi ∈P such that (1) for all j 6= i
we have that s j

1 = s j
2; and (2)(si

1,e,s
i
2) ∈ succ.

• (v2,q1
2, ...,q

|C|
2) = poste(v1,q1

1, ...,q
|C|
1), where poste

update the valuation of variables from v1 to v2 and
change message queues contents of respective chan-
nels.

After modelling system, we should describe specifica-
tion under which the model to be verified. Temporal logic,
such as Linear Temporal Logic, which extends proposition
logic with temporal operator, is a good choice of descrip-
tion of system properties.

Definition 3 (Linear Temperoal Logic). Linear Temporal
Logic(LTL) has the following syntax given in Backus Naur
form:

φ ::=⊥ | > | p | (p) | ¬φ | φ ∧ψ | φ ∨ψ | φ → ψ |
Xφ | Fφ | Gφ | φUψ | φWψ | φRψ

(1)

where p is any proposition atom from sone set of atoms.
Temporal operator X means next state, F means some fu-
ture state, and G means all states. The next three, U, W
and R, are called Until, Release, and Weak-until, respec-
tively.

According to the requirement specified in the standard,
suppose that there are n BAs altogether, the Mastership
Transfer must satisfy the following properties:

1. there cannot be more than one Master at one time; it
is written in the LTL as shown in

G¬(BA_Masteri∧BA_Master j), i, j = 1, ...,n, i 6= j

2. there cannot be no Master at one time; it is written in
the LTL as shown in

G¬(
n∧

i=1

BA_Standbyi).

3 System Modelling
MVBs under Mastership Transfer protocol has two main
component to be modelled. In this section, we present our
modelling approach for both BusAdmins and the commu-
nication mechanism amongst BAs.

3.1 Bus Administrator Modelling
3.1.1 basic data structure
First we define the data structure of Bus Administrator and
message frame exchanged amongst different BAs. Bus
Administrator data structure defines local variables used
for BA itself, including different timers, flag, address, etc.
Most important fields of BA structure are send and recv
buffer channel for communicating. These channel con-
tains buffer blocks, each of that consists of both message
frame and channel pointer for convenience.

Listing 1. Bus Admin structure

typedef BA_DEF
{

byte T_standby; /*t_standby Timer*/
byte Turn; /*turn Timer*/
bit T_find_next; /*t_find_next Timer*/
bit T_interim; /*t_interim Timer*/
bit ACT; /*BA actualized state flag*/
byte rank; /*BA sequence number in BA-

list*/
byte adr; /*BA address in memory*/
chan send = [10] of {FRAME, chan};

/*BA sender buffer channel*/
chan recv = [10] of {FRAME, chan};

/*BA receiver buffer channel*/
}

Listing 2. enumeration of BA state

mtype =
{ ba_STANDBY_MASTER,
ba_REGULAR_MASTER,
ba_END_OF_TURN,
ba_FIND_NEXT,
ba_INTERIM_MASTER}

Enumeration of BA state consists of all major distin-
guished states of BA under Mastership Transfer protocol.

Listing 3. message frame structure

typedef FRAME
{

mtype type; /*Frame type*/
bit data; /*Frame data*/
byte from; /*Source BA ID of frame*/
byte to; /*Target BA ID of frame*/

}

Message frame structure defines type, data, and source and
target BA ID of messages frames.

Listing 4. enumeration of message frame type

mtype =
{ MASTERSHIP_OFFERED,
MASTERSHIP_RESPONSE,
STATUS_REQUEST,
STATUS_RESPONSE,
REGULAR}

Enumeration of message type consists of all major distin-
guished states of BA under Mastership Transfer protocol.

3.1.2 finite state machine of Bus Administrator
As defined by CFSM in previous section, our model con-
sists of several concurrency running processes, each of
that is an instance of process type BA_FSM, which is i-
dentified by argument ID. Each process represent an ex-
ecuting Bus Administrator with a member index by same
ID in a BA_DEF structure array.

BA_FSM constructs a finite state machine of Bus Ad-
ministrator. In each state, BA exercise respective opera-
tions, receive or sends message frames and transit to other
state on conditions.

EUROSIM 2016 & SIMS 2016

275DOI: 10.3384/ecp17142273 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Listing 5. BA_FSM process structure

proctype BA_FSM(byte ID)
{

STANDBY_MASTER: /*standby state*/
...
/*acts no master operation: if it

accepts a Mastership Transfer
Request or if it detect no Bus
activity during a time greater than
t_standby, goto REGULAR_MASTER*/

REGULAR_MASTER: /*master exercise state

*/
...
/*acts master operation: if it detects

master conflict, goto STANDBY_MASTER
; or if it ends its current turn,
goto END_OF_TURN*/

END_OF_TURN: /*end of master turn*/
...
/*looks for next BA in BA-list and send

Status Request; if BA-list exhausts,
goto REGULAR_MASTER*/

FIND_NEXT: /*find next BA to be master

*/
...
/*gets the Status Response: if the BA is

configured and actualized, then
offers mastership to it by sending
Mastership Transfer Request and goto
INTERIM_MASTER; else if the BA is
not actualized or time-out without
response, goto END_OF_TURN*/

INTERIM_MASTER: /*interim master state*/
...
/*gets the Mastership Transfer Response

and goto STANDBY_MASTER. Meanwhile,
if the response is non-acceptance or
time-out without response, report
error*/

}

3.2 Communication and Timing Modelling
3.2.1 communication mechanism of BusAdmin
Instead of modelling real Bus component, which may in-
troduce more complex concurrency process, we realize
communication between BusAdmins by channels. In ini-
tial model setting, each BA has sender and receiver chan-
nels both with buffer capacity of 10.

asynchronous communication with buffers By posi-
tive capacity buffered channel, BAs communicates with
each other asynchronously. These messages receiving and
sending actions are similar to pulling and posting mails
through intermediary.

• when BA receives(pull) message from recv channel,
it execute

BA[ID].recv ? (temp_frame, BA[ID].
send)

to get message frame into temporal frame to be
parsed; meanwhile, get sender’s receive channel

pointer as send channel of itself, prepared to be used
in following sending actions.

• when BA send(post) message to send channel, it ex-
ecute

BA[ID].send ! (temp_frame, BA[ID].
recv)

to put temporal frame into previous channel point-
er(another BA’s recv channel); meanwhile, send it’s
recv channel as channel pointer to be received by the
target receiver.

In above communication realization, we make channel as
part of communication content, reduce amount of chan-
nels used in whole model and alleviate state explorations
of states caused by channel numbers.

non-blocking communication When channel is empty
or full, respectively, receiving or sending processes block
at previous execution statement. Obviously, it is inflexible
for modelling more complex system execution situation.
So we realized non-blocking communication use full, nfull
and atomic primitives.

When sender tries to send, it first confirm whether send
channel is full or not, and exclusively satisfies either f ull
or n f ull guard condition. If send channel is full, sender
process skips sending and execute next statement. If not,
sender sends message successfully.

do
::full(BA[ID].send)->skip;
::nfull(BA[ID].send)->

BA[ID].send!(temp_frame,BA[ID].recv);
od;

Situation is slightly different for receiver process. We
encapsulate receiving execution as atomic segment and
provides else clause besides. When receiver cannot re-
ceive message frame from recv channel as the channel is
empty, it will chose else bypath and will not be blocked.

do
::atomic

{BA[ID].recv?(temp_frame,BA[ID].send)->
...

}
::else->...
od;

3.2.2 timing mechanism

In Mastership Transfer protocol, there are many local
timer in each process, such as T _standby, Turn, etc. As
CFSMs semantics is asynchronous models, different timer
in process need to be synchronised.

Many modelling language has synchronous channels,
which is different from asynchronous channels, the for-
mer can be treated as zero-capacity channel that requires
sender and receiver must communicated at the same in-
stant.

EUROSIM 2016 & SIMS 2016

276DOI: 10.3384/ecp17142273 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Based on the synchronous channel structure, we can
make timer in different process has same steps. We mod-
el another timing manager process to coordinate different
timers. Timer is not updated in each process, but be sent
to timing manager by each process before updates through
synchronous communication. Then timing manage up-
dates all timer counts in atomic segment and synchronous-
ly sends timer back to each process. By timing manager,
we realize timers in different process to step by same rate.

4 Property Modelling
After we get system model, we need make specification to
be verified. In this section, we first introduce properties
classification about our model, then for handling troubles
of complex property description and gaining benefits of
synthesis, we introduce live sequence chart and combine
it with previous system model.

4.1 Property Classification

4.1.1 safety property

A safety property states that some bad thing never happen-
s, representing requirements that should be continuously
maintained by the system. To our models, we have fol-
lowing safety property to be verified:

• BusAdmin 0 (BA[0]) and BusAdmin 1 (BA[1]) can-
not be masters at same time:

G mutex (2)

where

#define mutex
(!(ba0_cur==ba_REGULAR_MASTER &&

ba1_cur==ba_REGULAR_MASTER))

• Once BA[0] becomes master, then system must has a
master forever:

G(ba0_master→ G !nonemaster)) (3)

where

#define ba0_master
(ba0_cur==ba_REGULAR_MASTER)
#define nonemaster
(ba0_cur==ba_STANDBY_MASTER &&
ba1_cur==ba_STANDBY_MASTER &&
ba2_cur==ba_STANDBY_MASTER)

4.1.2 liveness property

A liveness property states that some good thing eventually
happens, representing requirements whose eventual real-
ization must be ensured. To our models, we have follow-
ing liveness property to be verified:

Figure 1. An example of LSC specification: BA_0 transfer
mas-tership to BA_1.

• It is required that BA[0], BA[1] and BA[2] all can
infinitely often be the master.

GF ba0_master && GF ba1_master
&& GF ba2_master

(4)

where ba1_master and ba2_master is defined similar
as ba0_master.

• After BA[0] becomes the master, it can eventually
relieve mastership.

G (ba0_master→ F ba0_standby) (5)

where ba0_standby is defined similar as
ba0_master.

4.2 Live sequence charts
Live Sequence Chart (LSC) (Kugler and Segall, 2009;
Li et al., 2010) use instance lines, expressions,
messages, conditions and updates to describe scenario of
interactions among sequence processes. We can iteratively
refine spec-ification described by LSCs, that is
introduced in initial system design stage and reused for
the whole software de-veloping procedures.

Example 1 In Figure.1, an Live Sequence Chart
describes a fragment procedure of mastership transfer
from BA_0 to BA_1, which starts from BA_0 send
inquire status mes-sage and ends with BA_1 sends
mastership accept mes-sage. Red hexagon represents
hot condition, which can-not be violated. Blue hexagon
represents cool condition, which once be violated, then
go back to top and make a new execution.

Given formal syntax and sematic of LSCs, we can com-
bine normal specification described by LSC with existing
formal logics and model checking to verify the properties
provided by developer and stakeholder.

Main process of LSC described scenario-based system
properties formal description and model checking is that,

EUROSIM 2016 & SIMS 2016

277DOI: 10.3384/ecp17142273 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

1. Use normal LSC to describe process instance interac-
tion scenario in system model, identify the Pre-chart
and Main-chart.

2. Translate LSC to Observer Automata ObsA. ObsA
monitors these messages communication, condition-
s satisfaction and updates consistency proposed by
LSC.

3. Combine ObsA with original system model S , with-
out introducing side effects in original system opera-
tion.

4. Formally, check property

G (ObsA.lmin→ F ObsA.lmax)

where ObsA.lmin identifies top of Main-chart,
ObsA.lmax identities bottom of Main-chart. This
property represents that each time the system enter-
s the main chart of LSC, it will eventually reach the
bottom of the main chart. Then LSC scenario proper-
ty is reduced to a classical real-time model checking
problem.

4.3 Observer Automata modelling
To translate LSC to observer automata, we need partition
LSC into locations, simregions, and cuts firstly. Then a
run of observer automata is a successive transitions among
states space consisting of cuts and variables valuations.

One requirement for observer automata is that it can
monitor concerned information of interactions and config-
urations in LSC, such as messages. In addition, observ-
er automata need also capture other information such as
timers. Meanwhile, observer cannot bring side effects that
disturb normal executions of original system model.

We use copy acceptance communication, which pulls a
copy message from channel and has no effect on channel
information and structure, like

BA[ID].recv ? <temp_frame, temp_chan>

where syntactic sugar <> means copy message from recv
to temp_ f ram and temp_chan. As mentioned before,
timers implement is similar to messages communication,
so it is also monitored by observer automata as reference
copy.

We define boolean (bit) variables obsAlmin and
obsAlmax as flag denotation for ObsA.lmin and ObsA.lmax
respectively, with initial value of f alse(0). Based on the
above, a monitor process which realizes observer automa-
ta ObsA and a LSC specification can be both added to our
model checking of MVB protocol.

5 Experiments
We implement our approach by explicit states model
checking tool SPIN (Holzmann,1997). Its modelling lan-
guage Promela has all the model elements we proposed

previously. To check LSC specification, we implemen-
t a tools translate graphic LSC to modelling codes. We
run our model checking on 32-bit Window7 platform with
2GB RAM memory limitation. To exhibit the use of our
modelling and property setting works

We show the experiments results of MVB protocol
model checking against 5 property presented previously
in this paper in Table.1.

• First two lines indicates results of first two safety
property checking. As safety property is violated by
finite prefix of execution, the search depth is equiva-
lent to counterexample depth.

• Lines 3, 4 indicate results of two liveness property
checking. Different from above safety property, a
counterexample trace that violates liveness property
is a infinite suffix of executions, which consists of a
lasso structure. Model checking algorithm for search
of such lasso is a double-DFS algorithm using stack
and has tables. Consequently, these counterexamples
depth are less than checking depth reached.

• Last line is result of checking translated LSC prop-
erty. Obviously, checking a property described by
LSC and translated into observer automata is much
harder than simple safety and liveness property. It
is resulted both from LSC’s rich expression and ob-
server automata complex monitoring functions. In
this experiment, we can not find counterexample be-
fore memory exhausts. Conservatively speaking, the
specification described by LSC is satisfied by MVB
protocol.

6 Conclusions
Model checking of Multiple Vehicle Bus under master-
ship transfer protocol shows an industrial verification case
study, which combines both device model, communica-
tion model and specification model in a unified modelling
framework. One benefit of our approach is that, we model
Bus administrator as modules, and use channels efficient-
ly. It is an immense improvement on modelling technique
compared to (Xia et al., 2013). Another benefit is that
we introduce LSCs to make specification of more com-
plex process interaction scenarios. Moreover, with help of
translating LSC into observer automata and verifying au-
tomata location based liveness property, we can confirm
whether LSCs specification is satisfied or not.

We think we have two aspects for future work. One is
further improvement of our modelling works and transla-
tion from specification to automata. Because the size of
models directly affect checking efficiency, we expect s-
maller models and make possible abstraction. The other
extending maybe introduce synthesis technique, which s-
tarts from specifications, and seek possible system models
that satisfies all the inferred properties.

EUROSIM 2016 & SIMS 2016

278DOI: 10.3384/ecp17142273 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Table 1. Experiments results of MVB protocol.

Property ID Transitions Atomic steps Memory usage (MB) Depth reached Counterexample depth
1 399 127 2.391 966 966
2 347 112 2.391 846 846
3 574767 183018 15.379 1999 1903
4 2964 112 2.586 978 940
5 12201602 3032340 2024.453 1999 —

Acknowledgement. This paper is supported in part
by the National Key R&D Program of Chian No.
2017YFC0820100.

References
Edmund M Clarke, Orna Grumberg, and Doron A Peled. Model

checking. MIT press, 1999.

Gerard J Holzmann. The model checker spin. Software Engi-
neering, IEEE Transactions on, 23(5):279–295, 1997.

Jaime Jiménez, Iker Hoyos, Carlos Cuadrado, Jon Andreu, and
Aitzol Zuloaga. Simulation of message data in a testbench for
the multifunction vehicle bus. In IEEE Industrial Electronics,
IECON 2006-32nd Annual Conference on, pages 4666–4671.
IEEE, 2006.

Hubert Kirrmann and Pierre A Zuber. The iec/ieee train com-
munication network. Micro, IEEE, 21(2):81–92, 2001.

Hillel Kugler and Itai Segall. Compositional synthesis of reac-
tive systems from live sequence chart specifications. In Tools
and Algorithms for the Construction and Analysis of Systems,
pages 77–91. Springer, 2009.

Shuhao Li, Sandie Balaguer, Alexandre David, Kim G Larsen,
Brian Nielsen, and Saulius Pusinskas. Scenario-based verifi-
cation of real-time systems using Uppaal. Formal Methods
in System Design, 37(2-3):200–264, 2010.

Jean-Pierre Queille and Joseph Sifakis. Specification and verifi-
cation of concurrent systems in cesar. In International Sym-
posium on Programming, pages 337–351. Springer, 1982.

Mo Xia, Kueiming Lo, Shuangjia Shao, and Mian Sun. For-
mal modeling and verification for MVB. Journal of Ap-
plied Mathematics, 2013, 2013.

Huang Zhiwu, Zhou Sheng, Gui Weihua, and Liu Jianfeng. Re-
search and design of protocol analyzer for multifunction vehi-
cle bus. In Intelligent Control and Automation, 2008. WCICA
2008. 7th World Congress on, pages 8358–8361. IEEE, 2008.

EUROSIM 2016 & SIMS 2016

279DOI: 10.3384/ecp17142273 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	Introduction
	Calculation formulas
	Calculation of Intra-Ocular Lens for Non-Normal Eyes

	Back ground of studies
	Artificial Neural Network
	Real data
	Collected Data
	Specification of Patients Data Selected for Collection
	Specification of Preprocessing Parameters

	Results
	Objective
	ANN training
	ANN settings
	Results

	Conclusion
	Future work
	Introduction
	Homeostasis, Disturbance Rejection and Set Point Tracking
	Controller Motifs

	Results
	Dynamic Properties of Controller Motifs
	Tuning of Individual Controllers

	Conclusions
	Introduction
	Modelling the pharmacokinetics of propofol
	The 3-compartmental model
	Effect-site concentration model
	Model parameters

	Model verification
	Simulation results
	Propofol inflow
	Plasmatic concentration
	Effect-site concentration
	Evaluation of the predictive quality of the model

	Conclusion
	Introduction
	Modular Model Predictive Control Concept
	Building Setup
	Modular Predictive Control Concept

	Energy Supply Level - ESS - Models
	Linear Models
	Hybrid Models

	Model Predictive Controllers
	Objective Function
	LMPC
	MI-MPC

	Simulation Results
	Simulation Setup
	Demonstration of MPCC Performance
	Comparison between MPCC and RBC

	Conclusion
	Introduction
	Data Properties
	Macro Money Systems in QEs
	Behavior in QE1=(2008m11,2010m06)
	Behavior in QE2+=(2010m11,2012m08)
	Behavior in QE3=(2012m09,2014m10)

	Transmission Path of Housing Price from Reserve to Economic Activity
	Decomposition of M2 into Transaction and Precautionary Money Demands in (1975m10, 2016m03)
	Estimation of Precautionary Money Demand
	The Role of Business Condition u(t)=napm-50 in Transmission Mechanism of QEMP during QE1, QE2+ and QE3

	Conclusion
	Introduction
	Mathematical Model
	Model Parameters and Geometry
	Results and Discussions
	Conclusions
	Introduction
	Field Excitation Control
	Capability Curve
	Classical Control

	Concept and Formulation of MPC
	MPC as Excitation Control
	Modeling and Control Workflow

	Tuning the MPC Controller
	Time Response
	Open Circuit Conditions

	First-swing Angle Stability Enhancement
	Long-term Voltage Stability Enhancement
	Steady-state Voltage Stability
	Power System Simulator
	LTVS Simulations

	Discussion
	Conclusion
	Introduction
	Grid impedance model
	Impedance-based instability studies
	Practical implementation
	Conclusion
	Aknowledgements
	Introduction
	Literature Review
	Circulating Fluidized Bed Boilers
	Characteristics of RDF
	Agglomeration

	Methodology
	Description of Model
	Mass and Energy Balances
	Hydrodynamics

	Results and Discussion
	Validation
	Agglomerate Prediction

	Conclusion
	Introduction
	Theory
	Stability of Grid-Connected System
	Maximum-Length Binary Sequence

	Implementation in dSPACE
	System Setup
	Experiment

	Conclusions
	Introduction
	Governing Equation for Flow Modeling
	KP Numerical Scheme
	Simulation of the River Flow
	Results and Discussion
	Simulation Results
	Simulation Results for Numerical Stability Analysis

	Conclusion
	Introduction
	Air preparation process
	Fuzzy identification
	Takagi-Sugeno fuzzy model
	Fuzzy clustering

	Data collection
	Structure selection
	Input and output variables
	Representation of the systems' dynamics
	Fuzzy models granularity

	Fuzzy clustering and model validation
	Comments on resulting model performance

	Control experiments
	PID control
	Supervisory logic

	Conclusions
	Introduction
	First step - DES model
	Second Step - Portfolio optimization

	Stochastic DES model through markovian properties
	Product-Form Networks - Convolution algorithm
	Marginal probability
	Mean response time

	Load-haulage cycle
	DES model: Load-haulage system
	Project portfolio formulation
	Conclusion
	Introduction
	Overview of the Method
	Computing the Encounter Probabilities
	Example

	State Transition Matrix
	Projectile with a Single Sensor Fuzed Submunition
	Example
	Projectile with Two Sensor Fuzed Submunitions

	Failure Probability of the System
	Conclusion
	Hydro-pneumatic Accumulator
	Recent Research
	Purpose of This Study

	Logical Structure of Simulation Model
	Physics of Piston Type Hydro-Pneumatic Accumulator
	Nitrogen gas
	Mechanical Structure
	Hydraulic Fluid

	Conceptual Model

	Mathematical Model
	Equations for Nitrogen Gas
	Equations for Piston
	Equations for Friction
	Equations for Hydraulic Fluid
	Equations for Orifice

	Modelling in MATLAB/Simulink
	Calibration and Validation of the Simulation Model
	Testing Setup
	Laboratory Tests
	Validation

	Conclusion
	Introduction
	Contributions
	Setup for the analysis
	Experimental data
	Compressor Map
	Compressor Isentropic Efficiency
	Corrected Mass Flow
	Data Treatment

	 Pressure Losses in Gas Stand
	Pressure Loss in Straight Pipe
	Friction Factor - Laminar Flow
	Friction Factor - Turbulent Flow
	Pressure Loss In Bend
	Pressure Loss in Inlet Nozzle and Outlet Diffuser
	Adjust Measured Data
	Calculate New Compressor Efficiency

	Effect of pressure losses on measured compressor efficiency
	Compressor and Pipes Dimensions
	Case 1: Straight Pipes
	Case 2: Pipes with Diffuser and Nozzle
	Case 3: Pipes with Diffuser, Nozzle and Bend

	Summary and Discussion
	Future Work
	Conclusion
	Introduction
	Traffic Regulation: Stage selection
	Signal Control Schemes
	Pre-timed network control
	Max-Pressure Practical (MPract)

	Modelling and Simulation Overview
	An event-driven approach
	PointQ design

	Case Study-Data description
	From theory to applications
	System Stability
	Trajectory Delay Measurement
	Queue Delay Measurement
	Varying Traffic Conditions

	 PointQ versus AIMSUN Network Performance
	Evolution of phase (137,154)
	Evolution of phase (254,237)

	Conclusion
	Introduction
	Background
	MVB and Master Transfer
	Multifunction Vehicle Bus
	Mastership Transfer

	Model Checking with temporal logic

	System Modelling
	Bus Administrator Modelling
	basic data structure
	finite state machine of Bus Administrator

	Communication and Timing Modelling
	communication mechanism of BusAdmin
	timing mechanism

	Property Modelling
	Property Classification
	safety property
	liveness property

	Live sequence charts
	Observer Automata modelling

	Experiments
	Conclusion
	Introduction
	Experimental data
	Modeling
	Compressor
	Turbine
	EGR Blowers
	Auxiliary Blower
	Exhaust Back Pressure
	Combustion Species and Thermodynamic Parameters

	Parameterization Procedure
	Complete stationary parameterization
	Dynamic estimation

	Model Validation
	Conclusions
	Nomenclature
	Introduction
	Fundamentals
	Safe Active Learning
	The high pressure fuel supply system

	Design and Implementation
	Training of the hyperparameters
	The discriminative model
	The risk function
	The path to the next sample
	The algorithm

	Evaluation
	Evaluation in simulation
	Evaluation at a test vehicle

	Conclusion
	Introduction
	Modelling
	Centre of Gravity
	Aerodynamic Forces
	Definition of Angles
	Lever Arms
	Catenary
	Equations of Motion
	Velocities
	Self Stabilisation
	Complete Model

	Model Parameters
	Simulation Results
	Gliding Flight
	Towing Process

	Conclusions
	Introduction
	Context
	Compton scattering tomography (CST)

	Modelling of the new CST modality
	Proposed setup by back-scattering
	Direct problem : Image formation
	The half-space Radon transform (HRT)
	Image formation

	Inverse problem : Object Reconstruction
	Inversion of the HRT
	Filtered back-projection

	Simulation of the new CST modality
	Energy resolution of the detector
	Spatial discretization
	Window functions

	Conclusion and perspectives
	Introduction
	Powertrain model
	Problem formulation
	Tip-in problem constraints
	Boundary conditions for the tip-in problem
	Path constraints during tip-in

	Optimal control problem formulation
	Numerical solution of optimal control problems

	Optimal control results
	Extreme transients
	Compromise between time, Jerk and energy
	Jerk-Energy trade-off
	Efficient state and control transients

	Conclusions
	An Improved Kriging Model Based on Differential Evolution
	1 Introduction
	2 Theory of kriging model
	3 Kriging model based on DE algorithm
	3.1 Theory of DE algorithm
	3.2 Kriging interpolation based on DE algorithm
	3.3 Process of kriging Model based on DE algorithm

	4 An engineering example
	4.1 Setting DE algorithm parameters
	4.2 Data preprocessing
	4.3 Model computation and optimization

	5 Conclusion
	Introduction
	Model for slug flow
	Simulation for slug flow
	State estimation
	Control strategies
	Model predictive control
	PI control

	Simulation results and discussion
	Control structure I
	Control structure II
	Control structure III

	Computational time for MPC
	Maximum valve opening
	Conclusion
	Introduction
	Description of the loading bridge
	Modelling with Modelica
	Package of mechanical components Mechanics
	Package of causal components Blocks
	Structure and components of the overall model
	Model of the loading bridge
	World
	Cart
	Pendulum
	Drive

	Controller in Matlab Simulink environment
	Experiments
	Open loop experiments
	Closed loop experiments

	Conclusion
	Introduction
	MMT - Mathematics, Modelling and Tools
	Structure of MMT
	Usage of MMT

	Maple T.A. - Maple Testing and Assessment
	Structure MTA
	Usage MTA
	Mathapps
	MTA - Moodle Connector

	Case Study
	Conclusion
	Outlook
	Introduction
	Signal processing
	DFT and derivatives
	lp-norms and MIT-indices
	Nadaraya-Watson nonparametric regression

	Measurements and gearbox properties
	Load haul dumper front axle
	Water power station gearboxes

	Calculations from the LHD measurements
	Calculations from the WPS measurements
	Conclusion
	Introduction
	Preliminaries
	Problem Statement
	Vector Smoothing Splines

	Trajectory Planning
	Trajectory between Two Lines
	Centerline and Intermediate Time Instants
	Smoothing Spline Trajectory

	Numerical Examples
	Path with Piecewise Linear Boundaries
	Path in Obstacle Avoidance Problem

	Concluding Remarks
	Introduction
	Literature Review
	Dynamic multi-workstation model based on electrical components

	Simulation Model with a PI Controller
	Test and Results
	Final Remarks
	Introduction
	Related Work
	Methodology
	DataSet

	Semantic Identification Through Multiple Classifiers
	Global Feature Extraction through Wavelet Decomposition
	Deep Learning of Neural Network

	Image Retrieval
	Performance Analysis
	Conclusion
	Motivation
	Related work
	Data set and pre-processing
	Defining the curvature of a steel plate
	Experiment
	Discussion
	Conclusion
	Introduction
	New Evolutionary Computation
	Island model parallel distributed in NN-DEGA
	Self-adaptive using Neural Network
	Reconstruction of differential vector
	Elite strategy

	Numerical Experiments
	Benchmark Functions
	Experiment Results
	Comparison for Robustness

	Conclusion
	Introduction
	Classical RF Prediction
	Fuzzy Clustering Prediction
	Analysis
	Conclusion
	Introduction
	Dynamic Artificial Neural Network
	Back Propagation Through Time (BPTT)
	Real Time Recurrent Learning (RTRL)
	Extended Kalman Filter Learning (EKF)

	Experimental Set-up
	Results
	Simulation Study
	Experimental Study

	Conclusion
	Introduction
	Overview of Toolbox
	DANN Main
	Uploading data set
	Division of data set
	Validation check
	Bias
	Learning algorithm
	Learning parameters
	Past inputs and outputs
	Additional parameters

	Parameter Tuning
	Plot Menu
	Performance plot
	Regression plot
	Prediction plot
	Parameter plot
	Error plot

	Additional information
	Installing the MATLAB DANN toolbox

	Case Studies
	Case I: BPTT learning algorithm for flow measurement
	Case II: EKF learning algorithm for temperature measurement
	Case III: RTRL learning algorithm for mortality prediction

	Conclusion
	Modeling and Simulation of Train Networks Using Max-Plus Algebra
	1. Introduction
	2. Max-plus algebra
	3. Scheduled max-plus linear systems
	4. Timetable stability
	4.1 Delay sensitivity analysis
	4.2 Dynamic Delay Propagation
	4.3 Recovery Matrix

	5. Conclusion
	Introduction
	Construction of DBN metamodels
	Utilization of DBN metamodels
	Example analysis - simulated operation of air base
	Conclusion
	Introduction
	Metastable liquids

	Model for two phase flow and phase transition
	The van der Waals equation of state

	Solver
	Stiff pressure relaxation
	Stiff thermodynamic relaxation

	Experiments
	Simulation set-up
	Results and discussion
	Conclusion
	Introduction
	ParModelica
	Previous Research on PDEs in Modelica
	Partial Differential Equations (PDE)
	Explicit Form

	Numerics
	Discretisation
	Runge-Kutta with Variable Step Length

	General-Purpose Computing on Graphics Processing Units (GPGPU)
	PDEs in Modelica
	Algorithmic Modelica and ParModelica
	Solver Framework
	User Defined State Derivative and Settings
	Types Used by the Solver
	Solvers

	Use Case — Heat in Plane
	Poor Insulation and Constant Temperature
	Constant Temperature Depending on Location

	Performance Measurement
	Pros & Cons of Solver Written in Modelica
	Conclusions
	Blood Flow in the Abdominal Aorta Post 'Chimney' Endovascular Aneurysm Repair
	1 Introduction
	2 Methodology
	2.1 Governing Equations
	2.2 Anatomical Model
	2.3 Numerical Model
	2.4 Numerical Discretization

	3 Results
	3.1 Validation
	3.2 Flow Patterns
	3.3 Flow Regime

	4 Discussion and Conclusions
	Introduction
	Spin-Image Algorithm
	The Proposed Parallel Spin-Images Algorithm
	Results and Analysis
	Platform Specification
	Experimental Data
	Results

	Conclusions and future work
	Introduction
	Overview of Python API
	Goal
	Installing the OMPython Extension
	Status
	Description of the API
	Python Class and Constructor
	Utility Routines, Converting Modelica FMU
	Getting and Setting Information
	Operating on Python Object: Simulation, Optimization
	Operating on Python Object: Linearization

	Use of API for Model Analysis
	Case Study: Simple Tank Filled with Liquid
	Model Summary
	Modelica Encoding of Model
	Use of Python API
	Basic Simulation of Model
	Parameter Sensitivity/Monte Carlo Simulation

	Discussion and Conclusions
	Introduction
	Related Work
	Virtual Testing of Open embedded Systems
	Simulator Coupling for Network Simulation
	Network Fault Injection Testing
	Case Study
	Conclusions and future work
	Validation Method for Hardware-in-the-Loop Simulation Models
	1 Introduction
	2 Validation Methods
	2.1 Open-Loop Operation
	2.2 Independent Closed-Loop Operation
	2.3 Compensated Closed-Loop Operation

	3 Related Work
	3.1 Example Circuit
	3.2 Simulation Models

	4 Simulation Results
	4.1 Models with Different Switching Delays
	4.2 Discrete-Time Models
	4.3 Fixed-Point Models

	5 Conclusion
	Introduction
	Control Engineering: The Teacher's Challenge
	New Curriculum For Teaching Automatic Control
	Luma Activity
	Conclusion
	Introduction
	The Activated Sludge Process
	Mass balances and expression for the sludge age
	The settler

	ASP with ideal settler model
	Steady-state solutions
	Substrate input-output relationship for constant sludge age

	ASP with DZC settler model
	Steady-state solutions
	Substrate input-output relation for constant sludge age

	An approximation for S* given 0
	Numerical example
	Theorem 1
	Theorem 2

	Conclusions
	Introduction
	Materials and Methods
	Gaussian Mixture Models
	GMM based fault detection criteria

	Case Study: Monitoring a Secondary Settler
	Results
	Discussions
	Conclusions
	Introduction
	Industrial Process Description
	SIAAP Waste water and sewage Sludge Treatment Process
	Incineration Process
	The Furnace
	The Heat Exchanger

	Identification Process Overview
	Sludge Incineration sub-models: Input-output interaction.
	Identification Strategy

	Validation Methods
	Absolute Criteria
	Relative reference-model criteria

	Results and Discussions
	Relative Reference-Model Criteria Results

	Conclusion
	1 Introduction
	2 Modelling
	2.1 Basic Process Components
	2.2 Boiler Evaporator Loop
	2.3 Test Model

	3 Simulation Tests
	3.1 Comparison of Numerical Solvers
	3.2 Effects of Initial State and Parameters

	4 Conclusions
	Introduction
	TCP-100 solar field description
	Mathematical modeling of TCP-100 solar field
	 Optical and geometric efficiencies
	Characteristics of the heat transfer fluid
	Thermal losses

	Simulations
	Conclusion
	Introduction
	Description of a Basic Gas Turbine Model
	Compressor
	Combustion Chamber
	Turbine Module

	Computational Causality And Conditions for Numerical Convergence
	First Principles Compression and Expansion Maps
	Compression Case
	Expansion Case

	Simulation Results
	Conclusion
	Appendix
	Introduction
	Modelling methodology, libraries and tools
	Plant Description
	Innovative aspects
	OTSG topology

	Device modelling
	Re-used components
	Custom component models
	Separator
	Feedwater heater
	Deaerator
	MS fluid model

	Plant modelling
	OTSG model
	Turbine model
	Feedwater preheaters train
	Plant control system
	Complete plant model

	Simulation objectives - methodology
	Simulation performance
	Conclusion
	Introduction
	Formal Problem Statement and SVM
	SVM by Set-Valued Training Data
	A Modification of the AdaBoost
	Imprecise Updating Weights of Robots
	Conclusion
	Introduction
	Methodology
	Power grid connection
	Electrolyser
	Interim gas storages
	Methanation
	MEA CO2 capture
	CH4 compression

	Control sequences
	CH4 compression
	Start-up
	Power grid connection
	Methanation reactor
	Electrolysers
	Interim gas storages
	CH4 compression

	Shutdown
	Methanation reactor
	CH4 compression
	Interim gas storages
	Electrolysers

	Results
	Conclusion and future work
	Acknowledgment
	Introduction
	Mathematical Model
	Assumptions
	Development of Model
	Material Balance
	Energy Balance
	Heat Exchanger

	Simulation Results and Discussion
	Simulation Results
	Comparison with Previous Work

	Conclusions
	1 Introduction
	2 Herding behavior of rhinos
	2.1 A synoptic model of space use
	2.2 Population size updating model

	3 Rhino herd (RH) algorithm
	3.1 Synoptic model
	3.2 Population size updating model
	3.3 RH algorithm

	4 Simulation results
	5 Discussions and conclusions
	Acknowledgements
	References

	Introduction
	Structure and Kinematics of the Double-Spiral Mobile Robot
	Structure
	Forward kinematics
	Gripper positions
	COG

	NESM
	Numerical Case Study
	Conditions and methods
	Results

	Discussion
	Conclusion
	Introduction
	Data analysis
	Nonlinear scaling
	Interactions
	Uncertainty
	Natural language

	Recursive analysis
	Scaling
	Interactions
	Fuzzy logic
	Smart adaptive systems

	Temporal analysis
	Trend indices
	Fluctuations
	Changes of operating conditions

	Conclusion
	Introduction
	MOEA/D
	Algorithm
	Focused Issue

	Proposed Method: Chain-Reaction Initial Solution Arrangement
	Aim and Concept
	Method

	Experimental Settings
	Results and Discussion
	Search Performance at Final Generation
	Search Performance over Generations

	Conclusions
	Introduction
	Modeling demand-side management
	Markets
	Actors
	Other elements

	Controlling consumption
	Optimizing scheduling
	Controlling (via) frequency

	Discussion and conclusions
	Introduction
	Components and Parameters of Musical Expression
	Learning Support System of Musical Representation
	Generation of Example of Musical Expression
	Construction of Kansei Space
	Image Estimation
	Parameter Values Estimation using Fuzzy Inference
	Interactive Modification of Musical Expression

	Comparison of Parameter of Musical Expression
	Advice for Parameter of Musical Expression

	Range of Learner's Musical Expression on Kansei Space
	Estimation of Range of Musical Expression
	Advice about Impression

	Experiment
	Results and Discussions

	Conclusion
	Introduction
	Formulating the GA Optimization
	The Problem Encoding
	The Objective Function (Fitness)
	Selecting The GA Operators
	Tuning the GA Parameters

	FPGA Implementation
	GA's HDL Entities
	Fitness
	Selection
	Crossover
	Mutation
	Generating Pseudo Random Sequences
	Replacement

	Performance Evaluation
	Functional Verification
	Fitness
	Selection
	Replacement
	Crossover
	Mutation
	LFSRs
	Comparator

	Integrating GA into the SoC
	Interfacing GA with the HPS
	Controlling GA from the Linux host

	Conclusion and Future Work
	Introduction
	Related Work
	Earthmoving Simulator
	Workspace Subdivision with Scoop Area
	High Point and Zero Contour Methods
	Simulation Results and Discussion
	Conclusion and Future Work
	Introduction
	SDNized Wireless LAN Testbed
	 Central Manager
	 Aggregator and Transport Network
	 Network Edge
	 Android Measurement Application
	Experiment Automation

	Mobility Management - A Use-Case Scenario Implementation
	Mobility Handling in Developed Testbed
	Logging
	Running the Experiment
	Parsing and aggregating results

	Conclusion

