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Abstract
A mean value engine model of a two-stroke marine diesel
engine with EGR that is capable of simulating during low
load operation is developed. In order to be able to per-
form low load simulations, a compressor model capable
of low speed extrapolation is also investigated and param-
eterized for two different compressors. Moreover, a pa-
rameterization procedure to get good parameters for both
stationary and dynamic simulations is described and ap-
plied. The model is validated for two engine layouts of
the same test engine but with different turbocharger units.
The simulation results show a good agreement with the
different measured signals, including the oxygen content
in the scavenging manifold.
Keywords: modeling, parameterization, simulations,
exhaust gas recirculation, combustion engines

1 Introduction
The marine shipping industry is facing increased demands
in the reduction of harmful exhaust gas emissions. Stricter
emission limits of Sulphur Oxides (SOx) and Nitrogen
Oxides (NOx) are imposed in certain Emission Control
Areas (ECAs). The emission values to fulfill in these
ECAs are set by the IMO Tier III limits (International
Maritime Organization, 2013) that came into play in Jan-
uary 2016. One of the available technical solutions to
achieve the targeted reduction in NOx emissions is Ex-
haust Gas Recirculation (EGR). An EGR system recircu-
lates a fraction of the exhaust gas into the scavenging man-
ifold, providing burned gases in the combustion chamber
that directly decreases the production of NOx during the
combustion.

EGR technologies for two-stroke engines are still at the
initial phases of its development. In addition, there are not
many available vessels with an EGR system installed and
thus performing tests is often difficult. Furthermore, test-
ing any new system in marine two-stroke engines is also
very costly mainly due to the fuel cost associated with the
sizes of such engines. Hence, in order to improve the per-
formance of the EGR control systems, a fast and accurate
simulation model is a very valuable tool.

Mean Value Engine Models (MVEMs), are a very com-
mon approach for control oriented modeling of internal
combustion engines. In particular, EGR systems have

been also modeled using this approach. Many interesting
research articles about EGR modeling in automotive ap-
plications can be found in the literature, some examples
are, (Wahlström and Eriksson, 2011; Nieuwstadt et al.,
2000). On the other hand, marine two-stroke engines have
not been widely studied. Nevertheless, some research
papers focused on MVEMs for two-stroke engines are
(Blanke and Anderson, 1985; Theotokatos, 2010; Hansen
et al., 2013). In addition, in (Guan et al., 2014) the model-
ing of the low load operation of a two-stroke engine with-
out EGR is studied.

The work presented here is an extension of the model
proposed in (Alegret et al., 2015), which enables the
model to simulate low engine loads. The low load op-
eration is very relevant for the EGR control since the Tier
III emission limits have to be fulfilled near certain coasts,
e.g. harbors, where the vessel is normally operating at
low loads. The main new component that needs to be in-
troduced for this low load simulation is the auxiliary elec-
trical blower. Its mission is to ensure that there is enough
scavenging pressure at low loads when the turbocharger
is not capable to provide it. Moreover, the turbocharger
model will be required to simulate at low speeds and pres-
sure ratios. This area is normally not measured in the pro-
vided performance maps, so a model that can extrapolate
to this area is also required.

The developed model is, as in (Alegret et al., 2015),
based on the 4T50ME-X test engine from MAN Diesel
& Turbo. It is a two-stroke uniflow diesel engine, tur-
bocharged, with variable valve timing and direct injection.
Its maximum rated power is 7080 kW at 123 rpm. Also, it
is equipped with an EGR system and a Cylinder Bypass
Valve (CBV).

2 Experimental data
The targeted test engine is constantly being rebuilt to test
new components and new control strategies. This implies
that it is difficult to find measurement data from the same
engine configuration. Most of the measurement data avail-
able is from the same layout as the data used in (Ale-
gret et al., 2015). For layout number 1 the oxygen sen-
sors were not properly calibrated and thus cannot be used
for validating the oxygen levels at the manifolds. For the
model parameterization 30 different stationary points are
extracted from the measurement data and another 24 sta-
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Figure 1. Engine model diagram with states (blue) and control
inputs (red).

tionary points are saved for the validation.
Some more data is available from another layout of the

engine and will be used for validation of the oxygen level
in the scavenging manifold. However, in this layout, num-
ber 2, the turbocharger was changed and some sensors
where removed. Moreover, there is much less data avail-
able, and only 18 stationary points could be extracted for
the parameterization and the validation of the model.

3 Modeling
The complete MVEM model consists of thirteen states and
nine control inputs. Figure 1 depicts a model diagram.
The states are compressor outlet pressure, pc,out , scaveng-
ing manifold pressure, pscav, exhaust manifold pressure,
pexh, turbine outlet pressure, pt,out and turbocharger speed,
ωtc. The chemical species mass fractions are states in the
scavenging and the exhaust manifolds, Xscav and Xexh. The
species included in the model are oxygen, carbon dioxide,
water and sulfur dioxide, X = [XO2 ,XCO2 ,XH2O,XSO2 ]. The
dynamic equations are the same for each species so (6)
and (7) correspond to eight single ODEs. The dynamic
behavior of the modeled states is governed by the follow-
ing differential equations

d
dt

ωtc =
Pt −Pc

Jt ωtc
(1)

d
dt

pc,out =
Ra Tc,out

Vc,out
(Wc −Wcool −Wcbv) (2)

d
dt

pscav =
RaTscav

Vscav
(Wcool +Wegr −Wdel) (3)

d
dt

pexh =
Re Texh

Vexh

(
Wcyl −Wegr −Wt +Wcbv

)
(4)

d
dt

pt,out =
Re Tt,out

Vt,out
(Wt −Wt,out) (5)

d
dt

Xscav =
RaTscav

pscavVscav
(Xexh −Xscav)Wegr

+
RaTscav

pscavVscav
(Xamb −Xscav)Wcool (6)

d
dt

Xexh =
ReTexh

pexhVexh

(
Xcyl −Xexh

)
Wcyl (7)

The control inputs are EGR blower speeds, ωblow,1
ωblow,2, blower cut-out valves (COV) position, ucov,1 ucov,2,
fuel mass flow, Wf , fuel injection angle αin j, fuel injection
time, tin j, exhaust valve closing angle, αEVC, CBV po-
sition, ucbv, and auxiliary blower operation uaux. Engine
speed, ωeng, and compressor inlet pressure and tempera-

ture, pc,in Tc,in, are considered known inputs to the model.
It is simple to reduce the model to seven states if we are

only interested in tracking the oxygen level in the mani-
folds. Then in (6) and (7), the mass fraction only refers
to oxygen, e.g. X = XO2 . The model is built using differ-
ent submodels interconnected. The submodels are mainly
control volumes, e.g. scavenging manifold, and flow el-
ements e.g. cylinder bypass valve, compressor, turbine,
etc. Since the model is an extension of the one described
in (Alegret et al., 2015), only the new or modified sub-
models are presented here.

3.1 Compressor
In order to properly simulate low loads, a compressor
model capable of predicting mass flow and efficiency at
low speeds is required. The chosen compressor mass flow
model is the one developed in (Leufvén and Eriksson,
2014), which is capable of this extrapolation. In addition,
the proposed model is capable of predicting mass flows
down to pressure ratios below one and to zero compressor
speed. The area where the compressor normally operates
during low load is below the slowest measured speed line,
which is depicted in Figures 2 and 3.

In the model, each compressor speed line is described
by a super ellipse, which mathematically is written as(

W̄c −W̄ZS

W̄Ch −W̄ZS

)CUR

+

(
Πc −ΠCh

ΠZS −ΠCh

)CUR

= 1 (8)

where W̄ZS, W̄Ch, ΠZS, ΠCh and CUR are functions of com-
pressor speed. More details about these functions and the
model in general can be found in (Leufvén and Eriksson,
2014). Since (8) is invertible, it can be used to predict ei-
ther pressure ratio given compressor speed and mass flow
or mass flow given compressor speed and pressure ratio.
The latter case is used in the proposed engine model.

The compressor efficiency is modeled using the ideas
from (Martin et al., 2009) for the isentropic efficiency def-
inition. The key for the model is to use the Euler’s equa-
tion (Dixon and Hall, 2013) applied to the compressor ve-
locity triangles. Using the simplifications from (Martin
et al., 2009), the conclusion is that the actual enthalpy rise
for a fixed compressor speed can be modeled as a linear
function of the mass flow. This simplifies the number of
parameters required and since it is based in the physical
equations, makes the extrapolation to the low load area
more reliable. The proposed compressor model requires
15 parameters for the mass flow submodel and 4 parame-
ters for the efficiency submodel.

The mass flow model together with the efficiency model
fitted to the two compressors used in this study is depicted
in Figures 2 and 3. The absolute value of the relative errors
for both compressors are shown in Table 1.

3.2 Turbine
The Turbine mass flow model is very similar to the one
used in (Alegret et al., 2015). However, a modification in
the model is required to describe the turbine speed depen-
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Figure 2. Compressor 1 model, in black, plotted together with
the measured map points, in blue dots. The first speed line in
the lower left corner represents the stand still characteristics of
the compressor. The thinner level lines represent the modeled
efficiency extrapolation down to unity pressure ratio.
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Figure 3. Compressor 2 model, in black, plotted together with
the measured map points, in blue dots. The first speed line in
the lower left corner represents the stand still characteristics of
the compressor. The thinner level lines represent the modeled
efficiency extrapolation down to unity pressure ratio.

dence observed for Turbine 2. The mass flow is described
by the following function from (Eriksson and Nielsen,
2014)

W̄t =Ct

√
1− (Πt +Π0)kt (9)

where kt , Π0 and Ct are constant parameters to be esti-
mated for Turbine 1. For Turbine 2, kt and Ct are also
constants but Π0 is modeled using a quadratic polynomial
of corrected turbine speed to capture the different speed
lines observed in Figure 5. The quadratic polynomial is
defined as

Π0 = cΠ0,1N̄2
t + cΠ0,2N̄t + cΠ0,3 (10)

where cΠ0,1, cΠ0,2 and cΠ0,3 are model parameters. The
two models fitted to the two turbines are shown on the left
side of Figures 4 and 5.

Table 1. Absolute value of the relative errors (%) for both com-
pressors and turbines. Mean indicates the mean value of all er-
rors while Max. is the maximum error computed.

Compressor 1 Compressor 2 Turbine 1 Turbine 2
Mean Max. Mean Max. Mean Max. Mean Max.

W̄ 0.86 2.21 0.59 1.87 0.14 0.51 0.56 5.61

η 1.47 4.51 0.74 2.87 0.60 3.32 0.69 6.11

W̄
t

Πt

η
t

BSR

Figure 4. Left: turbine 1 mass flow model, in red, plotted to-
gether with the measured map points, in blue dots. Right: tur-
bine 1 efficiency model, in red, plotted with the measured effi-
ciency points, in blue dots.

W̄
t

Πt

η
t

BSR

Figure 5. Left: turbine 2 mass flow model, in red, plotted to-
gether with the measured map points, in blue dots. Right: tur-
bine 2 efficiency model, in red, plotted with the measured effi-
ciency points, in blue dots.

The turbine efficiency is modeled using the Blade
Speed Ratio (BSR), as in (Wahlström and Eriksson, 2011;
Alegret et al., 2015). The relation between turbine effi-
ciency and BSR is defined as

ηt = c1BSR2 + c2BSR+ c3 (11)

where c1, c2 and c3 are also quadratic functions of turbine
corrected speed, and each polynomial is defined as follows

cX = cX ,1N̄2
t + cX ,2N̄t + cX ,3 (12)

In total the turbine efficiency consists of nine parameters.
The modeled and the measured efficiencies for both tur-
bines are depicted in Figures 4 and 5. Furthermore, for
both turbines, the absolute value of the relative errors are
presented in Table 1.

3.3 EGR Blowers

The EGR blowers are modeled as in (Alegret et al., 2015).
The only difference is that there are two equal blowers
in parallel. The EGR flow is controlled with the blower
speed control inputs, ωblow,1 and ωblow,2, and the cut-out
valves are used to open or close the EGR flow. Depending
on the engine running mode, there can be only one blower
operating or both of them if more EGR flow is required.
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3.4 Auxiliary Blower
The pressure increase of an electric blower is often mod-
eled as a quadratic function of the volumetric flow (Guan
et al., 2014). Since the blower’s pressure increase is avail-
able from the system states, the quadratic function is in-
verted to obtain the volumetric flow. Using the pressure
and temperature at the inlet the mass flow provided by the
blower is obtained

WAux =
pc,out(cAux,1 + cAux,2

√
cAux,2 − (pscav − pc,out))

RaTc,out
(13)

where cAux,1, cAux,2 and cAux,3 are tuning parameters es-
timated with the blower technical specifications.

For the studied test engine, the auxiliary blower is in-
stalled in parallel with the air cooler after the compressor.
This means that when operating it will pull air mass flow
from the compressor outlet control volume to the scav-
enging manifold. When active, the pressure difference be-
tween these two control volumes will reverse. When the
auxiliary blower is operated (since there is no restriction
valve for reverse flow in the cooler), there is flow recircu-
lation in the air cooler. This issue needs to be modeled in
order to capture the measured system behavior. Thus, the
flow from the compressor outlet to the scavenging man-
ifold is then modeled using (13) and two incompressible
flow restrictions from (Eriksson and Nielsen, 2014)

Wcool =


WAux −Acool,r

√
pscav(pscav−pc,out)

Tscav
if uaux = 1

Acool

√
pc,out(pc,out−pscav)

Tc,out
if uaux = 0

(14)

where Acool represents the flow restriction when the
blower is inactive and Acool,r models the magnitude of the
recirculation when the blower is running. Both are param-
eters to be estimated.

3.5 Exhaust Back Pressure
An incompressible flow restriction together with a control
volume is used to model the back pressure for the turbine,
pt,out . The pressure dynamics are described by (5). And
the exhaust flow Wt,out is modeled using the standard in-
compressible flow restriction from (Eriksson and Nielsen,
2014) where the restriction area is a tuning parameter.

3.6 Combustion Species and Thermodynamic
Parameters

The species mass fraction out of the cylinders, Xcyl , is cal-
culated using the stoichiometric combustion equation and
the air and fuel flows entering the cylinders. Without in-
cluding the nitrogen explicitly, the combustion equation
can be written

CHySz +(1+ y/4+ z)O2 =CO2 +(y/2)H2O+ zSO2 (15)

where y is the hydrogen to carbon ratio and z the amount of
sulfur in the fuel, which are known parameters. In the case
of the reduced model with only oxygen mass fraction, Xcyl

can be computed as in (Alegret et al., 2015; Wahlström
and Eriksson, 2011).

Furthermore, the species vector is used to compute the
thermodynamic parameters, R, cp and γ of the working
gas. This is done for each different gas composition and
computed together with the gas temperature using the
Nasa polynomials that can be found in (Goodwin et al.,
2014).

4 Parameterization Procedure
The parameterization is done in similar steps as it is de-
scribed in (Alegret et al., 2015). First the following
submodels are parameterized alone: compressor, turbine,
ERG blowers and Aux blower. These submodel parame-
ters are kept fixed in the following parameterization steps.

4.1 Complete stationary parameterization
The path to follow would be to estimate the different flow
restrictions of the model independently and then do a com-
plete parameterization of the whole model together. How-
ever, this is not possible since there is no mass flow mea-
surement available. Hence, the next step in the parameter-
ization is to use the complete model to get the best set of
parameters that predict the measured states.

The method followed here differs from the one used
previously in (Alegret et al., 2015) where the derivatives
of the states are used in the parameterization. Here instead
the whole model is simulated at each stationary point and
the simulated stationary states are used to compute the rel-
ative errors, erel . Finally, a least-squares problem is for-
mulated with the following objective function

Vstat(θ) =
1

NS

S

∑
i=1

N

∑
n=1

(ei
rel [n])

2 (16)

where S is the number of different measured signals used
to compute the relative errors, in the general case those
signals are: [pscav, pexh, pc,out , pt,out ,ωtc,Texh,Peng,Wegr].
N is the number of stationary points used. The vector θ

represents the parameters to be estimated, which in this
case are all the static parameters, except of the fixed pa-
rameters of the submodels stated in the beginning of Sec-
tion 4. The stationary simulations are done using a Mat-
lab/Simulink implementation of the model. To reduce the
computational time required, the Matlab parallel comput-
ing toolbox is used to run simultaneous simulations. Fur-
thermore, a check on the state derivatives is done in or-
der to stop the simulation once the stationary levels are
reached.

Different estimation steps are done to ensure that the
solver does not get lost with too many parameters. The
parameterization is started without EGR, CBV or low load
stationary points which are progressively included in the
successive steps. Also, the results from each parameteri-
zation step are used as initial guess for the following one.
Finally, a complete parameterization with all stationary
points available is done.
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Table 2. Absolute value of the model relative errors (%) for both
engine layouts. Low load is with Aux. blower active, Mid load
is below 70 % and High load is above 70 %

Engine Layout 1

pscav pexh pc,out pt,out ωtc Texh Peng,i Wegr

Low Load 2.39 2.62 5.13 2.07 2.80 0.80 0.44 11.44

Mid Load 3.51 3.36 6.86 3.37 1.90 0.78 0.36 9.84

High Load 4.74 6.92 2.05 5.29 2.58 1.28 2.52 5.55

Engine Layout 2

pscav pexh pc,out pt,out ωtc Texh XO2 -

Low Load 4.75 7.73 4.38 0.17 6.32 1.74 1.93 -

Mid Load 3.75 3.08 4.78 0.18 2.26 1.59 1.03 -

High Load 7.69 10.48 4.42 0.48 2.35 3.48 0.89 -

4.2 Dynamic estimation
Fixing the estimated parameters at the previous steps, the
dynamic parameters, Jt , Vscav, Vexh, Vc,out , Vt,out and τcov,
are tuned using the same procedure as in (Alegret et al.,
2015). In this case, 17 different step responses are used,
including tree load steps with the auxiliary blowers active.

5 Model Validation
Table 2 presents the absolute value of the relative errors
separated for different load ranges. For Layout 1, the 24
validation stationary points are used. For Layout 2, since
there is few data available, the errors are computed with
the same stationary points used in the estimation. For both
Layouts, the higher pressure errors are mostly in the high
load case, where also the exhaust temperature and indi-
cated engine power errors are higher. This indicates that
the model and in particular the Seiliger cycle could be im-
proved in this area. One reason for this could be that at
high load is where the engine protection controls limit the
maximum pressure in the cylinders, and this might not be
totally captured in the model. On the other hand, for the
mid and low load ranges the errors are in general of similar
magnitude. Note that for the Layout 2, the engine power
and the EGR mass flow measurements are not available.

Figure 6 shows the simulation results of Layout 1 com-
pared to the measurements of a dataset not used in the es-
timation. This simulation has a low load phase where the
auxiliary blower is enabled, where it can be seen that the
system behavior is captured by the model. In particular
the measured pressure and turbocharger speed values are
matched by the model. More discrepancy is observed in
the modeled exhaust temperature during the transients.

For Layout 2, the simulation results are presented in
Figure 7. There is also a low load operation that the model
is capable to capture. In this case the turbocharger speed
prediction is worse than for the Layout 1 which in turn
affects the stationary levels of the pressures. Nevertheless,
it is important to mention that it has been parameterized
with few data. Oxygen mass fraction validation could not
be done due to unreliable measurements for Layout 1 and
in the previous investigations from (Alegret et al., 2015).
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Figure 6. Model simulation vs measurements for Engine Layout
1.

Therefore, the most relevant result from Layout 2 is that
the scavenging oxygen level is captured as it can be seen
in Table 2 and in Figure 7.

6 Conclusions
An MVEM for a marine two-stroke diesel engine capable
of simulating low loads is proposed and validated. A pa-
rameterization method to overcome the lack of mass flow
measurements is also proposed. The main characteristic
is that it uses a Simulink model to integrate the modeled
states with stationary inputs and is used to compute the
residuals. Two different layouts of the same engine but
with different turbochargers are investigated, the results
show a good agreement between simulation results and
measurements with some room for improvement at high
loads. The oxygen prediction capabilities are also vali-
dated for the second engine layout since the oxygen mea-
surements are reliable.
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η Efficiency [−]

Π Pressure ratio [−]

N̄ Corrected rotational speed [rpm]

ω Rotational speed [rad/s]
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