
Safe Active Learning of a

High Pressure Fuel Supply System

Mark Schillinger1 Benedikt Ortelt1 Benjamin Hartmann1

Jens Schreiter2 Mona Meister2 Duy Nguyen-Tuong2

Oliver Nelles3

1Bosch Engineering GmbH, Germany, mark.schillinger@de.bosch.com
2Robert Bosch GmbH, Germany

3Automatic Control, Mechatronics, Department of Mechanical Engineering, University of Siegen, Germany

Abstract

When modeling technical systems as black-box models, it

is crucial to obtain as much and as informative measure-

ment data as possible in the shortest time while employ-

ing safety constraints. Methods for an optimized online

generation of measurement data are discussed in the field

of Active Learning. Safe Active Learning combines the

optimization of the query strategy regarding model qual-

ity with an exploration scheme in order to maintain user-

defined safety constraints. In this paper, the authors apply

an approach for Safe Active Learning based on Gaussian

process models (GP models) to the high pressure fuel sup-

ply system of a gasoline engine. For this purpose, several

enhancements of the algorithm are necessary. An online

optimization of the GP models’ hyperparameters is im-

plemented, where special measures are taken to avoid a

safety-relevant overestimation. A proper risk function is

chosen and the trajectory to the sample points is taken into

account regarding the estimation of the samples feasibil-

ity. The algorithm is evaluated in simulation and at a test

vehicle.

Keywords: machine learning, system identification, active

learning, Gaussian process models, automotive applica-

tions

1 Introduction

For calibration purposes, models are used in order to

speed up the calibration process, reduce the risk of dam-

ages of the system and reduce the time the real system

needs to be available. For example, these models can

be used in Hardware-in-the-Loop or Software-in-the-Loop

environments, or even for automatic model based con-

troller tuning. These models can either be constructed ex-

ploiting physical principles (white-box modeling), using

data-based modeling techniques (black-box modeling) or

a combination of the former (gray-box modeling). White-

box models are often hard to generate, as the physical prin-

ciples and parameters are frequently very complex, hard

to model or unknown. Black-box and gray-box modeling

overcomes these disadvantages, but strongly depends on

informative measurement data. One approach for gather-

ing this measurement data while keeping safety constraints

and estimating a black-box model is presented in this pa-

per. We apply the approach to the high pressure fuel supply

system (HPFS system) of a gasoline engine.

Active Learning is a subfield of machine learning. Its

main idea is to employ a learning algorithm, which chooses

queries to be labeled on its own. Labeling data for model

learning is often costly, for example due to necessary man-

power or expensive test bench time. Thus, it is benefi-

cial to optimize the queries to be labeled in order to mini-

mize the amount of necessary data to achieve a sufficient

model quality. In (Settles, 2009) an overview about the

Active Learning topic and the corresponding literature is

provided.

When taking measurements of a technical system, it is

essential to guaranty the integrity of the system. Espe-

cially in the case of open-loop measurements, critical sys-

tem states can occur when choosing improper input sig-

nals. For example, when measuring the HPFS system, the

maximum allowed rail pressure may not be exceeded.

In many cases, an automation system will avoid thresh-

old violations. Nonetheless, even the attempt to measure

unsafe input signals yields side effects: high stress on

the test subject, wasted measurement time, and the risk

of emergency shutdowns during automated measurement

runs. Thus, it is beneficial to avoid critical system inputs

in advance.

One possibility to combine the goals of Active Learn-

ing, i. e. learning the best model possible using the small-

est amount of data, with the goal of avoiding unsafe input

queries is presented in (Schreiter et al., 2015). There, a

SafeActive Learning algorithm (SAL algorithm) based on

GP models is introduced, which finds a set of input sam-

ples maximizing the model’s entropy, provided that an es-

timated safety measure is satisfied.

In this paper, the algorithm proposed in (Schreiter et al.,

2015) is translated to the real-world application of the

HPFS system of a gasoline engine. Compared to the the-

oretical investigations in (Schreiter et al., 2015), the algo-

rithm is modified in order to meet the requirements of our

system. To the best of the authors’ knowledge, this is the

first time the algorithm is evaluated at a real-world system.

EUROSIM 2016 & SIMS 2016

286DOI: 10.3384/ecp17142286 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

𝕏0

𝕏−

𝕏+

Figure 1. Partition of the input space 𝕏 into a safe explorable

area 𝕏+ and an unsafe region 𝕏− separated by the unknown de-

cision boundary 𝕏0. The figure is taken from (Schreiter et al.,

2015). There, a discriminative function is learned over the dot-

ted area for recognizing whether the exploration becomes risky.

Table 1. Overview of the models used in SAL

regression model classifier

model output 𝑓 𝑔
training data 𝑦(𝑥𝑖) ℎ(𝑥𝑖) or 𝑐(𝑥𝑖)
SAL’s goal max. model’s

entropy

satisfy safety

constraints

This contribution is organized as follows: First, the fun-

damentals of the SAL algorithm and the HPFS system are

presented. In Section 3, we describe our enhancements of

the algorithm and the necessary design decisions. Subse-

quently, the evaluation in simulation and at a test vehicle

is shown.

2 Fundamentals

In this section, we will commemorate the fundamentals of

SAL as introduced in (Schreiter et al., 2015) and describe

the HPFS system considered in this paper.

2.1 Safe Active Learning

The key goals of SAL according to (Schreiter et al., 2015)

are:

1. approximate the system based on sampled data as in-

formative as possible,

2. use a limited budget of measured points, and

3. ensure that critical regions of the considered system

are avoided during the measurement process.

A compact and connected input space 𝕏 ⊂ ℝ𝑑 is defined

that is divided into two subspaces 𝕏+ and 𝕏− in which the

system is safe or unsafe, respectively (compare Figure 1).

The latter should be avoided with a probability higher than

the user defined threshold 𝛿.
In this input space, two GP models are learned. One

of the models is a regression of the system output 𝑦. For
this model, a usual GP is used, which is trained using

noisy observations 𝑦 = 𝑓 + 𝜀, 𝜀 ∼ 𝒩 (0, 𝜎2). The sec-

ond model is a problem specific classifier, used to esti-

mate the boundary 𝕏0. It learns a discriminative function

𝑔 ∶ 𝕏 → ℝ, mapped to the unit interval to describe the

class likelihood for each point. This model is trained with

class labels 𝑐(𝑥𝑖) ∈ {−1, +1} or discriminative function

values ℎ(𝑥𝑖) ∈ (−1, 1), depending on the location of the

measured point 𝑥𝑖 in 𝕏 (compare Figure 1). Thereby it

is possible either to only use information whether a point

was feasible or not, or to use more detailed data about the

grade of its feasibility. Here, the discriminative function

value is given by ℎ = 𝑔 + 𝜁, where 𝜁 ∼ 𝒩 (0, 𝜏2) speci-
fies the noise. The mixed kind of training data results in a

non-Gaussian model likelihood, hence a Laplace approxi-

mation is required, to calculate the model’s posterior.

Both GP models use zero mean centered Gaussian pri-

ors and squared exponential covariance functions. A ma-

jor prerequisite is that the hyperparameters of both models

need to be known in advance. These are the signal mag-

nitude 𝜎2
•, the length-scales 𝜆• ∈ ℝ𝑑, and the noise vari-

ance 𝜎2 or 𝜏2. They are summarized in 𝜃•. The dot • is

a placeholder for the regression and discriminative model,

specified by index 𝑓 or 𝑔 subsequently. An overview of

the two models is given in Table 1.

In SAL, the next measurement point 𝑥𝑖+1 is selected

based on a differential entropy criterion. Thus, 𝑥𝑖+1 is

chosen such that the entropy of the regression model 𝑓 in-

creases as much as possible. Namely, the variance at 𝑥𝑖+1
is maximized. In order to ensure safety, the optimization

is constrained with a safety criterion depending on the pre-

dicted probability of failure from the discriminativemodel.

For more details, we refer to (Schreiter et al., 2015).

2.2 The high pressure fuel supply system

The main components of a HPFS system are the high pres-

sure rail, the high pressure fuel pump, and the ECU (En-

gine Control Unit; compare Figure 2). The pump is ac-

tuated by the crankshaft of the engine. A demand control

valve in the pump allows to control the delivered volume

per stroke. A pressure-relief valve is also included in the

pump, but should never open if possible. Hence, we want

to limit the maximum pressure during the whole measure-

ment process. The pump transports the fuel to the rail,

which contains the pressure sensor. From there, it is in-

jected into the combustion chambers. See (Robert Bosch

GmbH, 2005) for more details.

The system has three inputs and one output. The engine

speed (nmot) affects the number of strokes per minute of

the pump and the engine’s fuel consumption. The fuel

pump actuation (MSV) gives the fuel volume which is

transported with every stroke of the pump. It is applied

by opening and closing the demand control valve accord-

ingly during one stroke of the pump. The injection time is

a variable calculated by the ECU, which sums up the open-

ing times of the single injectors and is, thus, related to the

discharge of fuel from the rail.

A notable difference to the systems considered in

EUROSIM 2016 & SIMS 2016

287DOI: 10.3384/ecp17142286 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

injection time

rail pressure

engine speed

actuation

Figure 2. Sketch of the HPFS system’s main components, inputs

(continuous lines), and output (dashed line). The figure is taken

from (Tietze et al., 2014).

(Schreiter et al., 2015) is that the input signals cannot be

set directly, but have to be changed continuously. This be-

comes clear using the example of the engine speed, which

cannot change immediately. Another reason for changing

the input signals slowly is the system’s dynamic behavior.

Too fast actions could lead to pressure overshoots which

can damage the engine.

If we move from each measurement point on the short-

est path to the next one, we would have to assume that 𝕏+
is convex. However, experiments show that this assump-

tion does not hold in the case of the HPFS system. Thus,

we always make the detour via a global safe point (GSP),

which weakens the precondition on 𝕏+ to star-convexity.

This is a sufficient approximation of its real shape if the

GSP is chosen correctly. When predicting the feasibility

of an input point, the trajectory from the GSP to that point

needs to be considered as well.

During the measurement procedure, the injection time

is not varied manually but set by the ECU. The permis-

sible times depend on many factors and a wrong choice

could extinguish the combustion or even damage compo-

nents. The engine load would have a major influence on

the HPFS system via the injection time, but is omitted to

prevent the necessity of a vehicle test bench. In principle,

both variables could be additionally considered in the SAL

algorithm without major changes of the method.

3 Design and Implementation

The system considered in this paper is defined as fol-

lows: the 𝑑-dimensional input 𝑥 ∈ 𝕏 results in a one-

dimensional output 𝑦 ∈ ℝ to be modeled. As the input

space is divided in a safe and unsafe subspace (compare

Section 2.1), we are only interested in measuring the sys-

tem output 𝑦 ∶ 𝕏+ → ℝ. The safe and unsafe subspace

must be distinguishable by supervising the 𝑑𝑧-dimensional

additional output 𝑧 ∈ ℝ𝑑𝑧. We assume that all outputs are

only observable within 𝕏+. Outside of this subspace, the

system cannot be operated safely and thus, no steady state

measurements can be taken.

In order to apply the SAL algorithm presented in (Schre-

iter et al., 2015) to the HPFS system of a real car, three

main issues have to be solved:

• learning the hyperparameters 𝜃𝑓 of the regression

model and 𝜃𝑔 of the discriminative model,

• defining the risk function ℎ̃ ∶ 𝑧 → [−1, 1] based
on the supervised system output, which is, in combi-

nation with measured data, used to calculate the dis-

criminative function value ℎ = ℎ̃(𝑧), and

• implementing the assessment of the feasibility of the

trajectory to the next sample.

In the progress of solving these issues, several changes of

the algorithm become necessary. This includes:

• implementing an online estimation of the hyperpa-

rameters, which requires carefully chosen limits,

• finding a heuristic for an initial set of hyperparame-

ters, and

• replacing the problem specific classifier applied in

(Schreiter et al., 2015), which can be trained with la-

bels as well as discriminative function values, by a

usual GP regression model.

In the following, these issues are discussed.

3.1 Training of the hyperparameters

In (Schreiter et al., 2015) it is assumed that the hyperpa-

rameters of the GP models are given in advance. Thus,

when modeling a system from scratch, the hyperparame-

ters need to be determined before the SAL algorithm can

be started. The hyperparameters are usually learned by

maximizing the marginal likelihood, as shown in (Ras-

mussen andWilliams, 2006). Therefore, already observed

data is required. If we assume that we only know one start-

ing point in 𝕏+ in advance, we have almost no idea where

the system is in safe operation, so that it is not possible to

safely generate measurement data to estimate the hyperpa-

rameters.

If we have expert knowledge, which gives us a suffi-

ciently large subspace of 𝕏+, we could generate and mea-

sure a space-filling design of experiment (DoE) in this sub-

space. With the generated data, we could estimate the hy-

perparameters and subsequently start the SAL algorithm.

In Section 4.1, we benchmark this approach against the

online hyperparameter training we will develop in the fol-

lowing. A representative subspace of 𝕏+ and a suitably

chosen number of predefined measurement points are nec-

essary to obtain a goodmodel with littlemeasurement data.

This contrasts the goals of SAL to model the system with

little initial knowledge about 𝕏+ and to be content with

little measurement data. In industrial practice, a system of

similar complexity as the HPFS system would be modeled

using about 25 measurement points. Thus, the necessity of

previous hyperparameter estimation is a major drawback

of the original SAL algorithm.

EUROSIM 2016 & SIMS 2016

288DOI: 10.3384/ecp17142286 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

To overcome this drawback, we estimate the hyperpa-

rameters during the SAL. We have to be very careful do-

ing so, as falsely estimated hyperparameters can lead to an

overestimation of 𝕏+ and hence to samples in 𝕏−. The es-

timation is especially error-prone if only a small number

of samples is available yet. To reduce this risk, we limit

the classifiers length-scales 𝜆𝑔 during the first optimiza-

tion steps.

According to (Rasmussen and Williams, 2006), the

characteristic length-scales 𝜆 of a Gaussian process with

squared exponential kernel can be interpreted as the dis-

tances one has to move in the input space, before the func-

tion can change significantly. Thus, large length-scales 𝜆𝑔
of the classifier will result in a fast exploration, because the

SAL algorithm assumes little changes in the discriminative

function. We do not want the length-scales of the classi-

fier to become too large, as this gives raise to overestimate

𝕏+. To prevent this, 𝜆𝑔 is limited to
Δ𝑥
4

until 10 points

have been measured and to
Δ𝑥
2
until 20 measurement sam-

ples have been acquired, whereΔ𝑥 ∈ ℝ𝑑 is the extent of 𝕏
in each input dimension. During the first 5 steps, 𝜆𝑔 is kept

constant at
Δ𝑥
4
, to ensure a good conditioning of the hyper-

parameter optimization problem. With increasing number

of available samples, the estimation of the hyperparame-

ters improves and the limits can be relaxed.

This setup was chosen heuristically and shows good re-

sults in the practical application. A motivation for this

choice, though no formal derivation, can be given using the

expected number of level-zero upcrossings of 𝑔 in the one-
dimensional case. According to (Rasmussen andWilliams,

2006), the mean number of level-zero upcrossings in the

unit interval for a GP with squared exponential kernel is

𝔼(𝑁0) = 1
2𝜋𝜆

. (1)

As we assume 𝕏+ to be compact and connected and, if 𝕏−
is not empty, we expect the discriminative function ℎ to

have
2
3
level-zero upcrossings in 𝕏 on average (compare

Figure 3). If we scale 𝕏 to the unit interval, this results in

a length-scale of

𝜆 = Δ𝑥
2𝜋𝔼(𝑁0)

= Δ𝑥
2𝜋 2

3

≈ Δ𝑥
4

. (2)

The other initial hyperparameters of the classifier were

set to 𝜎2
𝑔 = 1 and 𝜏2 = 0.01, based on the amplitude and the

expected (low) noise level of the discriminative function.

Poorly estimated hyperparameters of the regression model

𝑓 have less severe consequences as those of the classifier

𝑔, as they do not result in samples outside 𝕏+. They will

lead to a wrong density of the measurement samples’ dis-

tribution, but this can be corrected by inserting additional

samples, once the hyperparameters are well known. Fur-

thermore, the limitations on the length-scales of the clas-

sifier will restrict the exploration speed and subsequently

enforce a minimum sample density. Thus, no limits on

𝑎 𝑏
−1

0

1

unsafe

safe

𝑥

ℎ

Figure 3. Three representative examples for a discriminative

function ℎ(𝑥) without noise in 1D. In this case, 𝕏 = [𝑎, 𝑏] and
𝕏+ = {𝑥 ∈ 𝕏 ∶ ℎ(𝑥) > 0}. As one can see, two of the three

examples have one zero-level upcrossing, marked with circles,

the last one has none.

regression hyperparameters were enforced. The initial hy-

perparameters until 5 points have been sampled, were cho-

sen as 𝜆𝑓 = Δ𝑥
4
, 𝜎2

𝑓 = (
Δ𝑦
2)

2
, and 𝜎2 = (

Δ𝑦
200)

2
, based on

similar considerations as in the classifier case. Here, Δ𝑦
denotes the expected range of the output signal 𝑦.

3.2 The discriminative model

Reference (Schreiter et al., 2015) assumes that there is

only limited information about the discriminative function

when measuring deep within 𝕏+. In contrast, the super-

vised output 𝑧 of the HPFS system can be observed within

the whole space 𝕏+. Thus, it is reasonable always to use

the discriminative function value instead of class labels for

learning the discriminative model. Another reason for do-

ing so is hyperparameter training. Using the original al-

gorithm and starting deep inside 𝕏+, it is likely that for

the first samples only positive labels are drawn. It is not

possible to learn correct hyperparameters from these la-

bels using the standard training method, as shown in (Xiao

et al., 2015). Therefore, the hyperparameters of the dis-

criminative function would be estimated wrongly, which

may again result in an overestimation of 𝕏+.

Using labels in 𝕏− has some drawbacks, too. As a label

only determines the discriminative function to be positive

or negative in a certain point, not to have a specific value,

the training algorithm can gain more information from dis-

criminative values than from labels only. Furthermore, the

regression model is not updated at all when no output 𝑦 can
bemeasured. Thus, the optima of the unconstrained part of

the optimization problem described in Section 2.1 will not

change if a labeled sample from 𝕏− is added. In combina-

tion with the not too strong influence on the discriminative

model, this may result in the next sample being generated

very close to the preceding sample, as simulations showed.

For these reasons, we use a standard GP regression for

the discriminative function instead of the problem specific

classifier from (Schreiter et al., 2015). This has the addi-

tional advantage that no Laplace approximation for calcu-

lating the posterior is necessary. If a sample inside 𝕏− is

drawn, the measurement automation tries to measures at

a point near the border, but inside of 𝕏+ instead. At this

position, 𝑦 as well as 𝑧 can be measured. Since the orig-

inal sample is usually near the boundary, the replacement

sample is not far away.

EUROSIM 2016 & SIMS 2016

289DOI: 10.3384/ecp17142286 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

3.3 The risk function

The risk function is used to encode the supervision of the

systems’s outputs 𝑧 into a scalar discriminative function

value ℎ̃. This function value should be in the interval

(−1, 1), where -1 describes the least permissibility, 1 the

highest, and 0 represents the boundary between the al-

lowed and disallowed region.

The shape of the discriminative function ℎ has an in-

fluence on the exploring behavior of the SAL algorithm.

Comparing the continuous and the dashed line in Figure 3,

one can see that the continuous line has a rather well de-

fined zero-crossing, whereas the dashed line has only a

small gradient near zero. While the former will result in a

faster exploration, but with an increased risk of false pos-

itive samples in case of wrongly estimated hyperparame-

ters, the latter will yield a slower exploration, as the dis-

criminative model has to become very certain before sam-

ples near the boundary are queried.

By defining the risk function ℎ̃(𝑧) accordingly, we can
alter the discriminative function ℎ(𝑥) to be learned. A

proper choice could further improve the learning and ex-

ploring behavior of the algorithm. Unfortunately, ℎ̃ has to

be defined before starting the SAL, when the dependency

of 𝑧 regarding 𝑥 is still unknown. Perhaps, an online op-

timization of ℎ̃ would be possible, but this is beyond the

scope of this contribution. Instead, we define ℎ̃ as a linear

function of 𝑧. In case of the HPFS system with 𝑧 = 𝑝 this

yields

ℎ̃ = 1 −
𝑝(𝑥)
𝑝max

(3)

where 𝑝 is the current and 𝑝max the highest allowed rail

pressure.

3.4 The path to the next sample

As described in Section 2.2, we need to include the path

from the GSP to the next sample in the estimation of its

feasibility. Therefore, we require the constraint of the op-

timization problem described in Section 2.1 to be fulfilled

not only at the sample point 𝑥𝑖+1, but also at a number of

waypoints between the GSP and 𝑥𝑖+1. Even though this

is only an approximation for the path’s feasibility, exper-

iments showed good results, given a sufficiently smooth

discriminative function. Furthermore, it can be calculated

quite fast and simple. The major drawback of this ap-

proach is that the derivative of the probability cannot be

calculated analytically anymore, and thus is not available

for the optimization algorithm. This results in a slightly re-

duced rate of convergence of the constrained optimization

problem.

3.5 The algorithm

The SAL algorithm is implemented inMATLAB. Listing 1

describes the program flow in pseudocode.

Listing 1. Pseudocode for the SAL algorithm.

require initial measurement data 𝒟𝑚0

containing 𝑚0 ≥ 1 samples, initial

hyperparameters 𝜃𝑓 and 𝜃𝑔, desired

sample size 𝑛, desired safety 𝛿
train models 𝑓 and 𝑔 using 𝒟𝑚0

for 𝑖 = 𝑚0 + 1, … , 𝑛 do

get 𝑥𝑖 from optimization (compare

Section 2.1)

measure 𝑦𝑖 and 𝑧𝑖 and add them to

𝒟𝑖−1 to get 𝒟𝑖
calculate ℎ(𝑥𝑖) = ℎ̃(𝑧𝑖) and add it to

𝒟𝑖
if 𝑖 is large enough (compare

Section 3.1) then

optimize hyperparameters of

𝑓 and 𝑔 using 𝒟𝑖 while

keeping maximal

length-scales, where

applicable

end if

train models 𝑓 and 𝑔 using 𝒟𝑖
end for

4 Evaluation

4.1 Evaluation in simulation

In the first step, the SAL algorithm is evaluated using a

simulated HPFS systemwith additive zero-mean Gaussian

noise. For this purpose, a data-based GP model of the sys-

tem was generated using measurement data acquired with

a space-filling DoE and the ODCM algorithm presented in

(Hartmann et al., 2016). ODCM allows to skip some sam-

ples based on their estimated feasibility, after a number of

points in 𝕏− has been sampled.

To assess the quality of the classifier, several criteria can

be used. In the simulation case, we assess the classifier

on a set of 10 000 test points with space-filling distribu-

tion. For the interpretation of the results, it is beneficial to

consider the relative measures sensitivity and specificity.

They describe the fraction of correctly classified test points

in 𝕏+ and 𝕏−, respectively.

In order to benchmark the quality of the regression

model, we use the root mean square error (RMSE) on 𝑚
test data samples 𝑦t,𝑘 and the corresponding model outputs

𝑓t,𝑘, 𝑘 ∈ {1, … , 𝑚}.
In Table 2, a comparison of the SAL algorithm with

pre- and online estimated hyperparameters is shown. In

the first case, 5 to 20 initial points are sampled in a space

covering about 20 % of 𝕏+. This region has to be defined

by an expert in advance. In our case it spans about 50 % of

the engine speed range and 30 % of the fuel pump actuation

range. These points are used for learning the hyperparame-

ters, which are not altered during the following SAL phase.

In total, 25 points are sampled and used for modeling. At

the end, the hyperparameters are optimized again using all

available training data. In case of SAL without predeter-

mined hyperparameters, these are learned online using the

EUROSIM 2016 & SIMS 2016

290DOI: 10.3384/ecp17142286 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Table 2. Comparison of SAL with pre- and online-learned hy-

perparameters in simulation after 25 samples

pre-learned online-

learned

Initial points 5 12 20 0
RMSE 0.5900 0.0383 0.1340 0.0386

Sensitivity 0.7845 0.9928 0.9785 0.9941
Specificity 0.9647 1 1 1
Samples in

𝕏−

14.7 1.2 0.1 0.8

approach described in Section 3.1. All values are averaged

over ten runs of the algorithm.

As one can see, 5 initial points are not enough for proper
hyperparameter optimization. This leads to a disadvan-

tageous placement of the samples, many samples in 𝕏−,

and, subsequently, to a bad model with high RMSE. For

the initial hyperparameter estimation, 12 points are a bet-

ter choice, since this leads to the lowest RMSE of the final

model and a small number of samples in 𝕏−. Nonethe-

less, we can outperform this variant regarding the num-

ber of unwanted samples with our online hyperparameter

learning approach. The number of unwanted samples can

be further reduced using 20 initial points. The remaining

5 points after the initialization are not enough to explore

the whole 𝕏+ though, which results in a worse RMSE and

reduced sensitivity compared to 12 initial points and the

online learning approach.

Despite that, the variants using initial points show an-

other unwanted property, which is not obvious from the

data in Table 2: The first points during the SAL phase are

often sampled far away from the initial space. In case the

initial space is representative for the whole input space,

this might indicate a well trained discriminative model

which is able to extrapolate. This holds true in case of the

HPFS system. Nonetheless, this step induces a high risk of

samples in 𝕏− if the initial space is not exactly represen-

tative and the discriminative function increases faster than

estimated on the outside. In the online learning case, we do

not observe such behavior, but a more steady exploration.

The sensitivity can be seen as a measure for the cov-

erage of 𝕏+. One can see the same pattern as with the

other quality parameters: The online learning approach

performs best, closely followed by the 12 initial points-

case.

With the right number of initial points, using pre-

estimated hyperparameters performs almost equally well

as the online hyperparameter learning variant. Neverthe-

less, it shows several drawbacks: The need to define a

safe subspace in advance using expert knowledge, the right

number of initial points that is hard to choose, and the large

steps outside the initial space once the SAL algorithm is

started. All of these drawbacks can be overcome using the

online hyperparameter learning approach.

0 10 20
0

5

10

Number of samples

R
M
S
E

(a)

0 10 20
0

0.5

1

Number of samples

(b)

Figure 4. (a) shows the RMSE using SAL (continuous line) and

space-filling plans (dashed line) at a test vehicle. The RMSEwas

calculated using a set of 60 space-fillingly distributed test points

in 𝕏+. After 25 measured samples, the SAL approach obtains

a RMSE of 0.7045, while a space-filling DoE results in 0.6225.
(b) displays sensitivity (continuous line) and specificity (dashed

line) using SAL at the test vehicle. Themeasures were calculated

using a set of 129 space-filling test points in𝕏. After 25 samples,

the sensitivity reaches 0.9294 and does not change considerably

with a further increasing number of samples.

4.2 Evaluation at a test vehicle

After successful test runs in simulation, we apply the SAL

algorithm with online hyperparameter estimation to the

HPFS system of a real test vehicle. For this purpose, we

use a car with 1.4 L four-cylinder gasoline engine. We im-

plemented an automation in MATLAB, which is able to

read and write labels from and to the ECU via ETAS INCA

MIP, ETAS INCA, and an ETK (an ECU interface).

In Figure 4a, a comparison of the RMSEs achieved by

SAL and space-filling designs over the number of training

points is given. Our approach performs comparably to the

space-filling DoEs. This seems acceptable, as the space-

filling DoEs do not consider any limits in the input space

and cannot be conducted easily this way. More measure-

ment points do not result in a major improvement of the

RMSE. The measured points in input space are shown in

Figure 5.

Figure 4b shows sensitivity and specificity for each step

of the SAL algorithm averaged over two runs. As one can

see, the sensitivity rises rather continuously until most of

𝕏+ is explored. The specificity stays at its maximum value

of 1 for the whole time. Note that the number of test points

is much smaller compared to the simulation case, which

leads to a decreased resolution of sensitivity and speci-

ficity. In average over two runs of the SAL algorithm, 0.5
points in 𝕏− are sampled. As all unwanted points are sam-

pled near the boundary, only little risk for the engine arises

from them.

5 Conclusions

The test runs show that the introduced variant of the SAL

approach manages to obtain a good model of the HPFS

system while correctly estimating the limits of the driv-

able region 𝕏+. Only very few points are sampled in 𝕏−
and those which are, lie near the boundary. The resulting

EUROSIM 2016 & SIMS 2016

291DOI: 10.3384/ecp17142286 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

0
20
40
60
80

M
S
V

[m
m

3]

1,500 3,000
0

20
40
60
80

nmot [min−1]

M
S
V

[m
m

3]

1,500 3,000

nmot [min−1]

1,500 3,000

nmot [min−1]

Figure 5. Measured points (crosses) in case of SAL (upper plots)

and space-filling DoEs (lower plots). The algorithmic steps and

plans are shown for 5, 12, and 25 points, respectively. The GSP

is indicated by a circle. In the SAL case, the current estimated

boundary 𝕏0 is plotted as dashed line.

model is almost as good as a model learned from space-

filling distributed data. It must be pointed out that the lat-

ter does not comply with safety constraints or implement

an exploration scheme, in contrast to the SAL approach.

References

B. Hartmann, E. Kloppenburg, P. Heuser, and R. Diener. Online-

methods for engine test bed measurements considering en-

gine limits. In 16th Stuttgart International Symposium, Wies-

baden, 2016. Springer Fachmedien. doi:10.1007/978-3-658-

13255-2_92.

C. E. Rasmussen and C. K. I. Williams. Gaussian processes for

machine learning. The MIT Press, 2006. ISBN 026218253X.

Robert Bosch GmbH, editor. Ottomotor-Management. Systeme

und Komponenten. Friedrich Vieweg & Sohn Verlag, 3rd edi-

tion, 2005. ISBN 3-8348-0037-6.

J. Schreiter, D. Nguyen-Tuong, M. Eberts, B. Bischoff, H. Mark-

ert, and M. Toussaint. Safe exploration for active learning

with gaussian processes. In Machine Learning and Knowl-

edgeDiscovery in Databases, pages 133–149. Springer, 2015.

B. Settles. Active learning literature survey. Computer Sciences

Technical Report 1648, University of Wisconsin–Madison,

2009.

N. Tietze, U. Konigorski, C. Fleck, and D. Nguyen-Tuong.

Model-based calibration of engine controller using automated

transient design of experiment. In 14th Stuttgart Interna-

tional Symposium, Wiesbaden, 2014. Springer Fachmedien.

doi:10.1007/978-3-658-05130-3_111.

Y. Xiao, H. Wang, and W. Xu. Hyperparameter selection

for gaussian process one-class classification. Neu-

ral Networks and Learning Systems, IEEE Transac-

tions on, 26(9):2182–2187, 2015. ISSN 2162-237X.

doi:10.1109/TNNLS.2014.2363457.

EUROSIM 2016 & SIMS 2016

292DOI: 10.3384/ecp17142286 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

http://dx.doi.org/10.1007/978-3-658-13255-2_92
http://dx.doi.org/10.1007/978-3-658-13255-2_92
http://dx.doi.org/10.1007/978-3-658-05130-3_111
http://dx.doi.org/10.1109/TNNLS.2014.2363457

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	Introduction
	Calculation formulas
	Calculation of Intra-Ocular Lens for Non-Normal Eyes

	Back ground of studies
	Artificial Neural Network
	Real data
	Collected Data
	Specification of Patients Data Selected for Collection
	Specification of Preprocessing Parameters

	Results
	Objective
	ANN training
	ANN settings
	Results

	Conclusion
	Future work
	Introduction
	Homeostasis, Disturbance Rejection and Set Point Tracking
	Controller Motifs

	Results
	Dynamic Properties of Controller Motifs
	Tuning of Individual Controllers

	Conclusions
	Introduction
	Modelling the pharmacokinetics of propofol
	The 3-compartmental model
	Effect-site concentration model
	Model parameters

	Model verification
	Simulation results
	Propofol inflow
	Plasmatic concentration
	Effect-site concentration
	Evaluation of the predictive quality of the model

	Conclusion
	Introduction
	Modular Model Predictive Control Concept
	Building Setup
	Modular Predictive Control Concept

	Energy Supply Level - ESS - Models
	Linear Models
	Hybrid Models

	Model Predictive Controllers
	Objective Function
	LMPC
	MI-MPC

	Simulation Results
	Simulation Setup
	Demonstration of MPCC Performance
	Comparison between MPCC and RBC

	Conclusion
	Introduction
	Data Properties
	Macro Money Systems in QEs
	Behavior in QE1=(2008m11,2010m06)
	Behavior in QE2+=(2010m11,2012m08)
	Behavior in QE3=(2012m09,2014m10)

	Transmission Path of Housing Price from Reserve to Economic Activity
	Decomposition of M2 into Transaction and Precautionary Money Demands in (1975m10, 2016m03)
	Estimation of Precautionary Money Demand
	The Role of Business Condition u(t)=napm-50 in Transmission Mechanism of QEMP during QE1, QE2+ and QE3

	Conclusion
	Introduction
	Mathematical Model
	Model Parameters and Geometry
	Results and Discussions
	Conclusions
	Introduction
	Field Excitation Control
	Capability Curve
	Classical Control

	Concept and Formulation of MPC
	MPC as Excitation Control
	Modeling and Control Workflow

	Tuning the MPC Controller
	Time Response
	Open Circuit Conditions

	First-swing Angle Stability Enhancement
	Long-term Voltage Stability Enhancement
	Steady-state Voltage Stability
	Power System Simulator
	LTVS Simulations

	Discussion
	Conclusion
	Introduction
	Grid impedance model
	Impedance-based instability studies
	Practical implementation
	Conclusion
	Aknowledgements
	Introduction
	Literature Review
	Circulating Fluidized Bed Boilers
	Characteristics of RDF
	Agglomeration

	Methodology
	Description of Model
	Mass and Energy Balances
	Hydrodynamics

	Results and Discussion
	Validation
	Agglomerate Prediction

	Conclusion
	Introduction
	Theory
	Stability of Grid-Connected System
	Maximum-Length Binary Sequence

	Implementation in dSPACE
	System Setup
	Experiment

	Conclusions
	Introduction
	Governing Equation for Flow Modeling
	KP Numerical Scheme
	Simulation of the River Flow
	Results and Discussion
	Simulation Results
	Simulation Results for Numerical Stability Analysis

	Conclusion
	Introduction
	Air preparation process
	Fuzzy identification
	Takagi-Sugeno fuzzy model
	Fuzzy clustering

	Data collection
	Structure selection
	Input and output variables
	Representation of the systems' dynamics
	Fuzzy models granularity

	Fuzzy clustering and model validation
	Comments on resulting model performance

	Control experiments
	PID control
	Supervisory logic

	Conclusions
	Introduction
	First step - DES model
	Second Step - Portfolio optimization

	Stochastic DES model through markovian properties
	Product-Form Networks - Convolution algorithm
	Marginal probability
	Mean response time

	Load-haulage cycle
	DES model: Load-haulage system
	Project portfolio formulation
	Conclusion
	Introduction
	Overview of the Method
	Computing the Encounter Probabilities
	Example

	State Transition Matrix
	Projectile with a Single Sensor Fuzed Submunition
	Example
	Projectile with Two Sensor Fuzed Submunitions

	Failure Probability of the System
	Conclusion
	Hydro-pneumatic Accumulator
	Recent Research
	Purpose of This Study

	Logical Structure of Simulation Model
	Physics of Piston Type Hydro-Pneumatic Accumulator
	Nitrogen gas
	Mechanical Structure
	Hydraulic Fluid

	Conceptual Model

	Mathematical Model
	Equations for Nitrogen Gas
	Equations for Piston
	Equations for Friction
	Equations for Hydraulic Fluid
	Equations for Orifice

	Modelling in MATLAB/Simulink
	Calibration and Validation of the Simulation Model
	Testing Setup
	Laboratory Tests
	Validation

	Conclusion
	Introduction
	Contributions
	Setup for the analysis
	Experimental data
	Compressor Map
	Compressor Isentropic Efficiency
	Corrected Mass Flow
	Data Treatment

	 Pressure Losses in Gas Stand
	Pressure Loss in Straight Pipe
	Friction Factor - Laminar Flow
	Friction Factor - Turbulent Flow
	Pressure Loss In Bend
	Pressure Loss in Inlet Nozzle and Outlet Diffuser
	Adjust Measured Data
	Calculate New Compressor Efficiency

	Effect of pressure losses on measured compressor efficiency
	Compressor and Pipes Dimensions
	Case 1: Straight Pipes
	Case 2: Pipes with Diffuser and Nozzle
	Case 3: Pipes with Diffuser, Nozzle and Bend

	Summary and Discussion
	Future Work
	Conclusion
	Introduction
	Traffic Regulation: Stage selection
	Signal Control Schemes
	Pre-timed network control
	Max-Pressure Practical (MPract)

	Modelling and Simulation Overview
	An event-driven approach
	PointQ design

	Case Study-Data description
	From theory to applications
	System Stability
	Trajectory Delay Measurement
	Queue Delay Measurement
	Varying Traffic Conditions

	 PointQ versus AIMSUN Network Performance
	Evolution of phase (137,154)
	Evolution of phase (254,237)

	Conclusion
	Introduction
	Background
	MVB and Master Transfer
	Multifunction Vehicle Bus
	Mastership Transfer

	Model Checking with temporal logic

	System Modelling
	Bus Administrator Modelling
	basic data structure
	finite state machine of Bus Administrator

	Communication and Timing Modelling
	communication mechanism of BusAdmin
	timing mechanism

	Property Modelling
	Property Classification
	safety property
	liveness property

	Live sequence charts
	Observer Automata modelling

	Experiments
	Conclusion
	Introduction
	Experimental data
	Modeling
	Compressor
	Turbine
	EGR Blowers
	Auxiliary Blower
	Exhaust Back Pressure
	Combustion Species and Thermodynamic Parameters

	Parameterization Procedure
	Complete stationary parameterization
	Dynamic estimation

	Model Validation
	Conclusions
	Nomenclature
	Introduction
	Fundamentals
	Safe Active Learning
	The high pressure fuel supply system

	Design and Implementation
	Training of the hyperparameters
	The discriminative model
	The risk function
	The path to the next sample
	The algorithm

	Evaluation
	Evaluation in simulation
	Evaluation at a test vehicle

	Conclusion
	Introduction
	Modelling
	Centre of Gravity
	Aerodynamic Forces
	Definition of Angles
	Lever Arms
	Catenary
	Equations of Motion
	Velocities
	Self Stabilisation
	Complete Model

	Model Parameters
	Simulation Results
	Gliding Flight
	Towing Process

	Conclusions
	Introduction
	Context
	Compton scattering tomography (CST)

	Modelling of the new CST modality
	Proposed setup by back-scattering
	Direct problem : Image formation
	The half-space Radon transform (HRT)
	Image formation

	Inverse problem : Object Reconstruction
	Inversion of the HRT
	Filtered back-projection

	Simulation of the new CST modality
	Energy resolution of the detector
	Spatial discretization
	Window functions

	Conclusion and perspectives
	Introduction
	Powertrain model
	Problem formulation
	Tip-in problem constraints
	Boundary conditions for the tip-in problem
	Path constraints during tip-in

	Optimal control problem formulation
	Numerical solution of optimal control problems

	Optimal control results
	Extreme transients
	Compromise between time, Jerk and energy
	Jerk-Energy trade-off
	Efficient state and control transients

	Conclusions
	An Improved Kriging Model Based on Differential Evolution
	1 Introduction
	2 Theory of kriging model
	3 Kriging model based on DE algorithm
	3.1 Theory of DE algorithm
	3.2 Kriging interpolation based on DE algorithm
	3.3 Process of kriging Model based on DE algorithm

	4 An engineering example
	4.1 Setting DE algorithm parameters
	4.2 Data preprocessing
	4.3 Model computation and optimization

	5 Conclusion
	Introduction
	Model for slug flow
	Simulation for slug flow
	State estimation
	Control strategies
	Model predictive control
	PI control

	Simulation results and discussion
	Control structure I
	Control structure II
	Control structure III

	Computational time for MPC
	Maximum valve opening
	Conclusion
	Introduction
	Description of the loading bridge
	Modelling with Modelica
	Package of mechanical components Mechanics
	Package of causal components Blocks
	Structure and components of the overall model
	Model of the loading bridge
	World
	Cart
	Pendulum
	Drive

	Controller in Matlab Simulink environment
	Experiments
	Open loop experiments
	Closed loop experiments

	Conclusion
	Introduction
	MMT - Mathematics, Modelling and Tools
	Structure of MMT
	Usage of MMT

	Maple T.A. - Maple Testing and Assessment
	Structure MTA
	Usage MTA
	Mathapps
	MTA - Moodle Connector

	Case Study
	Conclusion
	Outlook
	Introduction
	Signal processing
	DFT and derivatives
	lp-norms and MIT-indices
	Nadaraya-Watson nonparametric regression

	Measurements and gearbox properties
	Load haul dumper front axle
	Water power station gearboxes

	Calculations from the LHD measurements
	Calculations from the WPS measurements
	Conclusion
	Introduction
	Preliminaries
	Problem Statement
	Vector Smoothing Splines

	Trajectory Planning
	Trajectory between Two Lines
	Centerline and Intermediate Time Instants
	Smoothing Spline Trajectory

	Numerical Examples
	Path with Piecewise Linear Boundaries
	Path in Obstacle Avoidance Problem

	Concluding Remarks
	Introduction
	Literature Review
	Dynamic multi-workstation model based on electrical components

	Simulation Model with a PI Controller
	Test and Results
	Final Remarks
	Introduction
	Related Work
	Methodology
	DataSet

	Semantic Identification Through Multiple Classifiers
	Global Feature Extraction through Wavelet Decomposition
	Deep Learning of Neural Network

	Image Retrieval
	Performance Analysis
	Conclusion
	Motivation
	Related work
	Data set and pre-processing
	Defining the curvature of a steel plate
	Experiment
	Discussion
	Conclusion
	Introduction
	New Evolutionary Computation
	Island model parallel distributed in NN-DEGA
	Self-adaptive using Neural Network
	Reconstruction of differential vector
	Elite strategy

	Numerical Experiments
	Benchmark Functions
	Experiment Results
	Comparison for Robustness

	Conclusion
	Introduction
	Classical RF Prediction
	Fuzzy Clustering Prediction
	Analysis
	Conclusion
	Introduction
	Dynamic Artificial Neural Network
	Back Propagation Through Time (BPTT)
	Real Time Recurrent Learning (RTRL)
	Extended Kalman Filter Learning (EKF)

	Experimental Set-up
	Results
	Simulation Study
	Experimental Study

	Conclusion
	Introduction
	Overview of Toolbox
	DANN Main
	Uploading data set
	Division of data set
	Validation check
	Bias
	Learning algorithm
	Learning parameters
	Past inputs and outputs
	Additional parameters

	Parameter Tuning
	Plot Menu
	Performance plot
	Regression plot
	Prediction plot
	Parameter plot
	Error plot

	Additional information
	Installing the MATLAB DANN toolbox

	Case Studies
	Case I: BPTT learning algorithm for flow measurement
	Case II: EKF learning algorithm for temperature measurement
	Case III: RTRL learning algorithm for mortality prediction

	Conclusion
	Modeling and Simulation of Train Networks Using Max-Plus Algebra
	1. Introduction
	2. Max-plus algebra
	3. Scheduled max-plus linear systems
	4. Timetable stability
	4.1 Delay sensitivity analysis
	4.2 Dynamic Delay Propagation
	4.3 Recovery Matrix

	5. Conclusion
	Introduction
	Construction of DBN metamodels
	Utilization of DBN metamodels
	Example analysis - simulated operation of air base
	Conclusion
	Introduction
	Metastable liquids

	Model for two phase flow and phase transition
	The van der Waals equation of state

	Solver
	Stiff pressure relaxation
	Stiff thermodynamic relaxation

	Experiments
	Simulation set-up
	Results and discussion
	Conclusion
	Introduction
	ParModelica
	Previous Research on PDEs in Modelica
	Partial Differential Equations (PDE)
	Explicit Form

	Numerics
	Discretisation
	Runge-Kutta with Variable Step Length

	General-Purpose Computing on Graphics Processing Units (GPGPU)
	PDEs in Modelica
	Algorithmic Modelica and ParModelica
	Solver Framework
	User Defined State Derivative and Settings
	Types Used by the Solver
	Solvers

	Use Case — Heat in Plane
	Poor Insulation and Constant Temperature
	Constant Temperature Depending on Location

	Performance Measurement
	Pros & Cons of Solver Written in Modelica
	Conclusions
	Blood Flow in the Abdominal Aorta Post 'Chimney' Endovascular Aneurysm Repair
	1 Introduction
	2 Methodology
	2.1 Governing Equations
	2.2 Anatomical Model
	2.3 Numerical Model
	2.4 Numerical Discretization

	3 Results
	3.1 Validation
	3.2 Flow Patterns
	3.3 Flow Regime

	4 Discussion and Conclusions
	Introduction
	Spin-Image Algorithm
	The Proposed Parallel Spin-Images Algorithm
	Results and Analysis
	Platform Specification
	Experimental Data
	Results

	Conclusions and future work
	Introduction
	Overview of Python API
	Goal
	Installing the OMPython Extension
	Status
	Description of the API
	Python Class and Constructor
	Utility Routines, Converting Modelica FMU
	Getting and Setting Information
	Operating on Python Object: Simulation, Optimization
	Operating on Python Object: Linearization

	Use of API for Model Analysis
	Case Study: Simple Tank Filled with Liquid
	Model Summary
	Modelica Encoding of Model
	Use of Python API
	Basic Simulation of Model
	Parameter Sensitivity/Monte Carlo Simulation

	Discussion and Conclusions
	Introduction
	Related Work
	Virtual Testing of Open embedded Systems
	Simulator Coupling for Network Simulation
	Network Fault Injection Testing
	Case Study
	Conclusions and future work
	Validation Method for Hardware-in-the-Loop Simulation Models
	1 Introduction
	2 Validation Methods
	2.1 Open-Loop Operation
	2.2 Independent Closed-Loop Operation
	2.3 Compensated Closed-Loop Operation

	3 Related Work
	3.1 Example Circuit
	3.2 Simulation Models

	4 Simulation Results
	4.1 Models with Different Switching Delays
	4.2 Discrete-Time Models
	4.3 Fixed-Point Models

	5 Conclusion
	Introduction
	Control Engineering: The Teacher's Challenge
	New Curriculum For Teaching Automatic Control
	Luma Activity
	Conclusion
	Introduction
	The Activated Sludge Process
	Mass balances and expression for the sludge age
	The settler

	ASP with ideal settler model
	Steady-state solutions
	Substrate input-output relationship for constant sludge age

	ASP with DZC settler model
	Steady-state solutions
	Substrate input-output relation for constant sludge age

	An approximation for S* given 0
	Numerical example
	Theorem 1
	Theorem 2

	Conclusions
	Introduction
	Materials and Methods
	Gaussian Mixture Models
	GMM based fault detection criteria

	Case Study: Monitoring a Secondary Settler
	Results
	Discussions
	Conclusions
	Introduction
	Industrial Process Description
	SIAAP Waste water and sewage Sludge Treatment Process
	Incineration Process
	The Furnace
	The Heat Exchanger

	Identification Process Overview
	Sludge Incineration sub-models: Input-output interaction.
	Identification Strategy

	Validation Methods
	Absolute Criteria
	Relative reference-model criteria

	Results and Discussions
	Relative Reference-Model Criteria Results

	Conclusion
	1 Introduction
	2 Modelling
	2.1 Basic Process Components
	2.2 Boiler Evaporator Loop
	2.3 Test Model

	3 Simulation Tests
	3.1 Comparison of Numerical Solvers
	3.2 Effects of Initial State and Parameters

	4 Conclusions
	Introduction
	TCP-100 solar field description
	Mathematical modeling of TCP-100 solar field
	 Optical and geometric efficiencies
	Characteristics of the heat transfer fluid
	Thermal losses

	Simulations
	Conclusion
	Introduction
	Description of a Basic Gas Turbine Model
	Compressor
	Combustion Chamber
	Turbine Module

	Computational Causality And Conditions for Numerical Convergence
	First Principles Compression and Expansion Maps
	Compression Case
	Expansion Case

	Simulation Results
	Conclusion
	Appendix
	Introduction
	Modelling methodology, libraries and tools
	Plant Description
	Innovative aspects
	OTSG topology

	Device modelling
	Re-used components
	Custom component models
	Separator
	Feedwater heater
	Deaerator
	MS fluid model

	Plant modelling
	OTSG model
	Turbine model
	Feedwater preheaters train
	Plant control system
	Complete plant model

	Simulation objectives - methodology
	Simulation performance
	Conclusion
	Introduction
	Formal Problem Statement and SVM
	SVM by Set-Valued Training Data
	A Modification of the AdaBoost
	Imprecise Updating Weights of Robots
	Conclusion
	Introduction
	Methodology
	Power grid connection
	Electrolyser
	Interim gas storages
	Methanation
	MEA CO2 capture
	CH4 compression

	Control sequences
	CH4 compression
	Start-up
	Power grid connection
	Methanation reactor
	Electrolysers
	Interim gas storages
	CH4 compression

	Shutdown
	Methanation reactor
	CH4 compression
	Interim gas storages
	Electrolysers

	Results
	Conclusion and future work
	Acknowledgment
	Introduction
	Mathematical Model
	Assumptions
	Development of Model
	Material Balance
	Energy Balance
	Heat Exchanger

	Simulation Results and Discussion
	Simulation Results
	Comparison with Previous Work

	Conclusions
	1 Introduction
	2 Herding behavior of rhinos
	2.1 A synoptic model of space use
	2.2 Population size updating model

	3 Rhino herd (RH) algorithm
	3.1 Synoptic model
	3.2 Population size updating model
	3.3 RH algorithm

	4 Simulation results
	5 Discussions and conclusions
	Acknowledgements
	References

	Introduction
	Structure and Kinematics of the Double-Spiral Mobile Robot
	Structure
	Forward kinematics
	Gripper positions
	COG

	NESM
	Numerical Case Study
	Conditions and methods
	Results

	Discussion
	Conclusion
	Introduction
	Data analysis
	Nonlinear scaling
	Interactions
	Uncertainty
	Natural language

	Recursive analysis
	Scaling
	Interactions
	Fuzzy logic
	Smart adaptive systems

	Temporal analysis
	Trend indices
	Fluctuations
	Changes of operating conditions

	Conclusion
	Introduction
	MOEA/D
	Algorithm
	Focused Issue

	Proposed Method: Chain-Reaction Initial Solution Arrangement
	Aim and Concept
	Method

	Experimental Settings
	Results and Discussion
	Search Performance at Final Generation
	Search Performance over Generations

	Conclusions
	Introduction
	Modeling demand-side management
	Markets
	Actors
	Other elements

	Controlling consumption
	Optimizing scheduling
	Controlling (via) frequency

	Discussion and conclusions
	Introduction
	Components and Parameters of Musical Expression
	Learning Support System of Musical Representation
	Generation of Example of Musical Expression
	Construction of Kansei Space
	Image Estimation
	Parameter Values Estimation using Fuzzy Inference
	Interactive Modification of Musical Expression

	Comparison of Parameter of Musical Expression
	Advice for Parameter of Musical Expression

	Range of Learner's Musical Expression on Kansei Space
	Estimation of Range of Musical Expression
	Advice about Impression

	Experiment
	Results and Discussions

	Conclusion
	Introduction
	Formulating the GA Optimization
	The Problem Encoding
	The Objective Function (Fitness)
	Selecting The GA Operators
	Tuning the GA Parameters

	FPGA Implementation
	GA's HDL Entities
	Fitness
	Selection
	Crossover
	Mutation
	Generating Pseudo Random Sequences
	Replacement

	Performance Evaluation
	Functional Verification
	Fitness
	Selection
	Replacement
	Crossover
	Mutation
	LFSRs
	Comparator

	Integrating GA into the SoC
	Interfacing GA with the HPS
	Controlling GA from the Linux host

	Conclusion and Future Work
	Introduction
	Related Work
	Earthmoving Simulator
	Workspace Subdivision with Scoop Area
	High Point and Zero Contour Methods
	Simulation Results and Discussion
	Conclusion and Future Work
	Introduction
	SDNized Wireless LAN Testbed
	 Central Manager
	 Aggregator and Transport Network
	 Network Edge
	 Android Measurement Application
	Experiment Automation

	Mobility Management - A Use-Case Scenario Implementation
	Mobility Handling in Developed Testbed
	Logging
	Running the Experiment
	Parsing and aggregating results

	Conclusion

