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Abstract

When modeling technical systems as black-box models, it

is crucial to obtain as much and as informative measure-

ment data as possible in the shortest time while employ-

ing safety constraints. Methods for an optimized online

generation of measurement data are discussed in the field

of Active Learning. Safe Active Learning combines the

optimization of the query strategy regarding model qual-

ity with an exploration scheme in order to maintain user-

defined safety constraints. In this paper, the authors apply

an approach for Safe Active Learning based on Gaussian

process models (GP models) to the high pressure fuel sup-

ply system of a gasoline engine. For this purpose, several

enhancements of the algorithm are necessary. An online

optimization of the GP models’ hyperparameters is im-

plemented, where special measures are taken to avoid a

safety-relevant overestimation. A proper risk function is

chosen and the trajectory to the sample points is taken into

account regarding the estimation of the samples feasibil-

ity. The algorithm is evaluated in simulation and at a test

vehicle.

Keywords: machine learning, system identification, active

learning, Gaussian process models, automotive applica-

tions

1 Introduction

For calibration purposes, models are used in order to

speed up the calibration process, reduce the risk of dam-

ages of the system and reduce the time the real system

needs to be available. For example, these models can

be used in Hardware-in-the-Loop or Software-in-the-Loop

environments, or even for automatic model based con-

troller tuning. These models can either be constructed ex-

ploiting physical principles (white-box modeling), using

data-based modeling techniques (black-box modeling) or

a combination of the former (gray-box modeling). White-

box models are often hard to generate, as the physical prin-

ciples and parameters are frequently very complex, hard

to model or unknown. Black-box and gray-box modeling

overcomes these disadvantages, but strongly depends on

informative measurement data. One approach for gather-

ing this measurement data while keeping safety constraints

and estimating a black-box model is presented in this pa-

per. We apply the approach to the high pressure fuel supply

system (HPFS system) of a gasoline engine.

Active Learning is a subfield of machine learning. Its

main idea is to employ a learning algorithm, which chooses

queries to be labeled on its own. Labeling data for model

learning is often costly, for example due to necessary man-

power or expensive test bench time. Thus, it is benefi-

cial to optimize the queries to be labeled in order to mini-

mize the amount of necessary data to achieve a sufficient

model quality. In (Settles, 2009) an overview about the

Active Learning topic and the corresponding literature is

provided.

When taking measurements of a technical system, it is

essential to guaranty the integrity of the system. Espe-

cially in the case of open-loop measurements, critical sys-

tem states can occur when choosing improper input sig-

nals. For example, when measuring the HPFS system, the

maximum allowed rail pressure may not be exceeded.

In many cases, an automation system will avoid thresh-

old violations. Nonetheless, even the attempt to measure

unsafe input signals yields side effects: high stress on

the test subject, wasted measurement time, and the risk

of emergency shutdowns during automated measurement

runs. Thus, it is beneficial to avoid critical system inputs

in advance.

One possibility to combine the goals of Active Learn-

ing, i. e. learning the best model possible using the small-

est amount of data, with the goal of avoiding unsafe input

queries is presented in (Schreiter et al., 2015). There, a

SafeActive Learning algorithm (SAL algorithm) based on

GP models is introduced, which finds a set of input sam-

ples maximizing the model’s entropy, provided that an es-

timated safety measure is satisfied.

In this paper, the algorithm proposed in (Schreiter et al.,

2015) is translated to the real-world application of the

HPFS system of a gasoline engine. Compared to the the-

oretical investigations in (Schreiter et al., 2015), the algo-

rithm is modified in order to meet the requirements of our

system. To the best of the authors’ knowledge, this is the

first time the algorithm is evaluated at a real-world system.
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Figure 1. Partition of the input space 𝕏 into a safe explorable

area 𝕏+ and an unsafe region 𝕏− separated by the unknown de-

cision boundary 𝕏0. The figure is taken from (Schreiter et al.,

2015). There, a discriminative function is learned over the dot-

ted area for recognizing whether the exploration becomes risky.

Table 1. Overview of the models used in SAL

regression model classifier

model output 𝑓 𝑔
training data 𝑦(𝑥𝑖) ℎ(𝑥𝑖) or 𝑐(𝑥𝑖)
SAL’s goal max. model’s

entropy

satisfy safety

constraints

This contribution is organized as follows: First, the fun-

damentals of the SAL algorithm and the HPFS system are

presented. In Section 3, we describe our enhancements of

the algorithm and the necessary design decisions. Subse-

quently, the evaluation in simulation and at a test vehicle

is shown.

2 Fundamentals

In this section, we will commemorate the fundamentals of

SAL as introduced in (Schreiter et al., 2015) and describe

the HPFS system considered in this paper.

2.1 Safe Active Learning

The key goals of SAL according to (Schreiter et al., 2015)

are:

1. approximate the system based on sampled data as in-

formative as possible,

2. use a limited budget of measured points, and

3. ensure that critical regions of the considered system

are avoided during the measurement process.

A compact and connected input space 𝕏 ⊂ ℝ𝑑 is defined

that is divided into two subspaces 𝕏+ and 𝕏− in which the

system is safe or unsafe, respectively (compare Figure 1).

The latter should be avoided with a probability higher than

the user defined threshold 𝛿.
In this input space, two GP models are learned. One

of the models is a regression of the system output 𝑦. For
this model, a usual GP is used, which is trained using

noisy observations 𝑦 = 𝑓 + 𝜀, 𝜀 ∼ 𝒩 (0, 𝜎2). The sec-

ond model is a problem specific classifier, used to esti-

mate the boundary 𝕏0. It learns a discriminative function

𝑔 ∶ 𝕏 → ℝ, mapped to the unit interval to describe the

class likelihood for each point. This model is trained with

class labels 𝑐(𝑥𝑖) ∈ {−1, +1} or discriminative function

values ℎ(𝑥𝑖) ∈ (−1, 1), depending on the location of the

measured point 𝑥𝑖 in 𝕏 (compare Figure 1). Thereby it

is possible either to only use information whether a point

was feasible or not, or to use more detailed data about the

grade of its feasibility. Here, the discriminative function

value is given by ℎ = 𝑔 + 𝜁, where 𝜁 ∼ 𝒩 (0, 𝜏2) speci-
fies the noise. The mixed kind of training data results in a

non-Gaussian model likelihood, hence a Laplace approxi-

mation is required, to calculate the model’s posterior.

Both GP models use zero mean centered Gaussian pri-

ors and squared exponential covariance functions. A ma-

jor prerequisite is that the hyperparameters of both models

need to be known in advance. These are the signal mag-

nitude 𝜎2
•, the length-scales 𝜆• ∈ ℝ𝑑, and the noise vari-

ance 𝜎2 or 𝜏2. They are summarized in 𝜃•. The dot • is

a placeholder for the regression and discriminative model,

specified by index 𝑓 or 𝑔 subsequently. An overview of

the two models is given in Table 1.

In SAL, the next measurement point 𝑥𝑖+1 is selected

based on a differential entropy criterion. Thus, 𝑥𝑖+1 is

chosen such that the entropy of the regression model 𝑓 in-

creases as much as possible. Namely, the variance at 𝑥𝑖+1
is maximized. In order to ensure safety, the optimization

is constrained with a safety criterion depending on the pre-

dicted probability of failure from the discriminativemodel.

For more details, we refer to (Schreiter et al., 2015).

2.2 The high pressure fuel supply system

The main components of a HPFS system are the high pres-

sure rail, the high pressure fuel pump, and the ECU (En-

gine Control Unit; compare Figure 2). The pump is ac-

tuated by the crankshaft of the engine. A demand control

valve in the pump allows to control the delivered volume

per stroke. A pressure-relief valve is also included in the

pump, but should never open if possible. Hence, we want

to limit the maximum pressure during the whole measure-

ment process. The pump transports the fuel to the rail,

which contains the pressure sensor. From there, it is in-

jected into the combustion chambers. See (Robert Bosch

GmbH, 2005) for more details.

The system has three inputs and one output. The engine

speed (nmot) affects the number of strokes per minute of

the pump and the engine’s fuel consumption. The fuel

pump actuation (MSV ) gives the fuel volume which is

transported with every stroke of the pump. It is applied

by opening and closing the demand control valve accord-

ingly during one stroke of the pump. The injection time is

a variable calculated by the ECU, which sums up the open-

ing times of the single injectors and is, thus, related to the

discharge of fuel from the rail.

A notable difference to the systems considered in
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injection time

rail pressure

engine speed

actuation

Figure 2. Sketch of the HPFS system’s main components, inputs

(continuous lines), and output (dashed line). The figure is taken

from (Tietze et al., 2014).

(Schreiter et al., 2015) is that the input signals cannot be

set directly, but have to be changed continuously. This be-

comes clear using the example of the engine speed, which

cannot change immediately. Another reason for changing

the input signals slowly is the system’s dynamic behavior.

Too fast actions could lead to pressure overshoots which

can damage the engine.

If we move from each measurement point on the short-

est path to the next one, we would have to assume that 𝕏+
is convex. However, experiments show that this assump-

tion does not hold in the case of the HPFS system. Thus,

we always make the detour via a global safe point (GSP),

which weakens the precondition on 𝕏+ to star-convexity.

This is a sufficient approximation of its real shape if the

GSP is chosen correctly. When predicting the feasibility

of an input point, the trajectory from the GSP to that point

needs to be considered as well.

During the measurement procedure, the injection time

is not varied manually but set by the ECU. The permis-

sible times depend on many factors and a wrong choice

could extinguish the combustion or even damage compo-

nents. The engine load would have a major influence on

the HPFS system via the injection time, but is omitted to

prevent the necessity of a vehicle test bench. In principle,

both variables could be additionally considered in the SAL

algorithm without major changes of the method.

3 Design and Implementation

The system considered in this paper is defined as fol-

lows: the 𝑑-dimensional input 𝑥 ∈ 𝕏 results in a one-

dimensional output 𝑦 ∈ ℝ to be modeled. As the input

space is divided in a safe and unsafe subspace (compare

Section 2.1), we are only interested in measuring the sys-

tem output 𝑦 ∶ 𝕏+ → ℝ. The safe and unsafe subspace

must be distinguishable by supervising the 𝑑𝑧-dimensional

additional output 𝑧 ∈ ℝ𝑑𝑧. We assume that all outputs are

only observable within 𝕏+. Outside of this subspace, the

system cannot be operated safely and thus, no steady state

measurements can be taken.

In order to apply the SAL algorithm presented in (Schre-

iter et al., 2015) to the HPFS system of a real car, three

main issues have to be solved:

• learning the hyperparameters 𝜃𝑓 of the regression

model and 𝜃𝑔 of the discriminative model,

• defining the risk function ℎ̃ ∶ 𝑧 → [−1, 1] based
on the supervised system output, which is, in combi-

nation with measured data, used to calculate the dis-

criminative function value ℎ = ℎ̃(𝑧), and

• implementing the assessment of the feasibility of the

trajectory to the next sample.

In the progress of solving these issues, several changes of

the algorithm become necessary. This includes:

• implementing an online estimation of the hyperpa-

rameters, which requires carefully chosen limits,

• finding a heuristic for an initial set of hyperparame-

ters, and

• replacing the problem specific classifier applied in

(Schreiter et al., 2015), which can be trained with la-

bels as well as discriminative function values, by a

usual GP regression model.

In the following, these issues are discussed.

3.1 Training of the hyperparameters

In (Schreiter et al., 2015) it is assumed that the hyperpa-

rameters of the GP models are given in advance. Thus,

when modeling a system from scratch, the hyperparame-

ters need to be determined before the SAL algorithm can

be started. The hyperparameters are usually learned by

maximizing the marginal likelihood, as shown in (Ras-

mussen andWilliams, 2006). Therefore, already observed

data is required. If we assume that we only know one start-

ing point in 𝕏+ in advance, we have almost no idea where

the system is in safe operation, so that it is not possible to

safely generate measurement data to estimate the hyperpa-

rameters.

If we have expert knowledge, which gives us a suffi-

ciently large subspace of 𝕏+, we could generate and mea-

sure a space-filling design of experiment (DoE) in this sub-

space. With the generated data, we could estimate the hy-

perparameters and subsequently start the SAL algorithm.

In Section 4.1, we benchmark this approach against the

online hyperparameter training we will develop in the fol-

lowing. A representative subspace of 𝕏+ and a suitably

chosen number of predefined measurement points are nec-

essary to obtain a goodmodel with littlemeasurement data.

This contrasts the goals of SAL to model the system with

little initial knowledge about 𝕏+ and to be content with

little measurement data. In industrial practice, a system of

similar complexity as the HPFS system would be modeled

using about 25 measurement points. Thus, the necessity of

previous hyperparameter estimation is a major drawback

of the original SAL algorithm.
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To overcome this drawback, we estimate the hyperpa-

rameters during the SAL. We have to be very careful do-

ing so, as falsely estimated hyperparameters can lead to an

overestimation of 𝕏+ and hence to samples in 𝕏−. The es-

timation is especially error-prone if only a small number

of samples is available yet. To reduce this risk, we limit

the classifiers length-scales 𝜆𝑔 during the first optimiza-

tion steps.

According to (Rasmussen and Williams, 2006), the

characteristic length-scales 𝜆 of a Gaussian process with

squared exponential kernel can be interpreted as the dis-

tances one has to move in the input space, before the func-

tion can change significantly. Thus, large length-scales 𝜆𝑔
of the classifier will result in a fast exploration, because the

SAL algorithm assumes little changes in the discriminative

function. We do not want the length-scales of the classi-

fier to become too large, as this gives raise to overestimate

𝕏+. To prevent this, 𝜆𝑔 is limited to
Δ𝑥
4

until 10 points

have been measured and to
Δ𝑥
2
until 20 measurement sam-

ples have been acquired, whereΔ𝑥 ∈ ℝ𝑑 is the extent of 𝕏
in each input dimension. During the first 5 steps, 𝜆𝑔 is kept

constant at
Δ𝑥
4
, to ensure a good conditioning of the hyper-

parameter optimization problem. With increasing number

of available samples, the estimation of the hyperparame-

ters improves and the limits can be relaxed.

This setup was chosen heuristically and shows good re-

sults in the practical application. A motivation for this

choice, though no formal derivation, can be given using the

expected number of level-zero upcrossings of 𝑔 in the one-
dimensional case. According to (Rasmussen andWilliams,

2006), the mean number of level-zero upcrossings in the

unit interval for a GP with squared exponential kernel is

𝔼(𝑁0) = 1
2𝜋𝜆

. (1)

As we assume 𝕏+ to be compact and connected and, if 𝕏−
is not empty, we expect the discriminative function ℎ to

have
2
3
level-zero upcrossings in 𝕏 on average (compare

Figure 3). If we scale 𝕏 to the unit interval, this results in

a length-scale of

𝜆 = Δ𝑥
2𝜋𝔼(𝑁0)

= Δ𝑥
2𝜋 2

3

≈ Δ𝑥
4

. (2)

The other initial hyperparameters of the classifier were

set to 𝜎2
𝑔 = 1 and 𝜏2 = 0.01, based on the amplitude and the

expected (low) noise level of the discriminative function.

Poorly estimated hyperparameters of the regression model

𝑓 have less severe consequences as those of the classifier

𝑔, as they do not result in samples outside 𝕏+. They will

lead to a wrong density of the measurement samples’ dis-

tribution, but this can be corrected by inserting additional

samples, once the hyperparameters are well known. Fur-

thermore, the limitations on the length-scales of the clas-

sifier will restrict the exploration speed and subsequently

enforce a minimum sample density. Thus, no limits on

𝑎 𝑏
−1

0

1

unsafe

safe

𝑥

ℎ

Figure 3. Three representative examples for a discriminative

function ℎ(𝑥) without noise in 1D. In this case, 𝕏 = [𝑎, 𝑏] and
𝕏+ = {𝑥 ∈ 𝕏 ∶ ℎ(𝑥) > 0}. As one can see, two of the three

examples have one zero-level upcrossing, marked with circles,

the last one has none.

regression hyperparameters were enforced. The initial hy-

perparameters until 5 points have been sampled, were cho-

sen as 𝜆𝑓 = Δ𝑥
4
, 𝜎2

𝑓 = (
Δ𝑦
2 )

2
, and 𝜎2 = (

Δ𝑦
200 )

2
, based on

similar considerations as in the classifier case. Here, Δ𝑦
denotes the expected range of the output signal 𝑦.

3.2 The discriminative model

Reference (Schreiter et al., 2015) assumes that there is

only limited information about the discriminative function

when measuring deep within 𝕏+. In contrast, the super-

vised output 𝑧 of the HPFS system can be observed within

the whole space 𝕏+. Thus, it is reasonable always to use

the discriminative function value instead of class labels for

learning the discriminative model. Another reason for do-

ing so is hyperparameter training. Using the original al-

gorithm and starting deep inside 𝕏+, it is likely that for

the first samples only positive labels are drawn. It is not

possible to learn correct hyperparameters from these la-

bels using the standard training method, as shown in (Xiao

et al., 2015). Therefore, the hyperparameters of the dis-

criminative function would be estimated wrongly, which

may again result in an overestimation of 𝕏+.

Using labels in 𝕏− has some drawbacks, too. As a label

only determines the discriminative function to be positive

or negative in a certain point, not to have a specific value,

the training algorithm can gain more information from dis-

criminative values than from labels only. Furthermore, the

regression model is not updated at all when no output 𝑦 can
bemeasured. Thus, the optima of the unconstrained part of

the optimization problem described in Section 2.1 will not

change if a labeled sample from 𝕏− is added. In combina-

tion with the not too strong influence on the discriminative

model, this may result in the next sample being generated

very close to the preceding sample, as simulations showed.

For these reasons, we use a standard GP regression for

the discriminative function instead of the problem specific

classifier from (Schreiter et al., 2015). This has the addi-

tional advantage that no Laplace approximation for calcu-

lating the posterior is necessary. If a sample inside 𝕏− is

drawn, the measurement automation tries to measures at

a point near the border, but inside of 𝕏+ instead. At this

position, 𝑦 as well as 𝑧 can be measured. Since the orig-

inal sample is usually near the boundary, the replacement

sample is not far away.
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3.3 The risk function

The risk function is used to encode the supervision of the

systems’s outputs 𝑧 into a scalar discriminative function

value ℎ̃. This function value should be in the interval

(−1, 1), where -1 describes the least permissibility, 1 the

highest, and 0 represents the boundary between the al-

lowed and disallowed region.

The shape of the discriminative function ℎ has an in-

fluence on the exploring behavior of the SAL algorithm.

Comparing the continuous and the dashed line in Figure 3,

one can see that the continuous line has a rather well de-

fined zero-crossing, whereas the dashed line has only a

small gradient near zero. While the former will result in a

faster exploration, but with an increased risk of false pos-

itive samples in case of wrongly estimated hyperparame-

ters, the latter will yield a slower exploration, as the dis-

criminative model has to become very certain before sam-

ples near the boundary are queried.

By defining the risk function ℎ̃(𝑧) accordingly, we can
alter the discriminative function ℎ(𝑥) to be learned. A

proper choice could further improve the learning and ex-

ploring behavior of the algorithm. Unfortunately, ℎ̃ has to

be defined before starting the SAL, when the dependency

of 𝑧 regarding 𝑥 is still unknown. Perhaps, an online op-

timization of ℎ̃ would be possible, but this is beyond the

scope of this contribution. Instead, we define ℎ̃ as a linear

function of 𝑧. In case of the HPFS system with 𝑧 = 𝑝 this

yields

ℎ̃ = 1 −
𝑝(𝑥)
𝑝max

(3)

where 𝑝 is the current and 𝑝max the highest allowed rail

pressure.

3.4 The path to the next sample

As described in Section 2.2, we need to include the path

from the GSP to the next sample in the estimation of its

feasibility. Therefore, we require the constraint of the op-

timization problem described in Section 2.1 to be fulfilled

not only at the sample point 𝑥𝑖+1, but also at a number of

waypoints between the GSP and 𝑥𝑖+1. Even though this

is only an approximation for the path’s feasibility, exper-

iments showed good results, given a sufficiently smooth

discriminative function. Furthermore, it can be calculated

quite fast and simple. The major drawback of this ap-

proach is that the derivative of the probability cannot be

calculated analytically anymore, and thus is not available

for the optimization algorithm. This results in a slightly re-

duced rate of convergence of the constrained optimization

problem.

3.5 The algorithm

The SAL algorithm is implemented inMATLAB. Listing 1

describes the program flow in pseudocode.

Listing 1. Pseudocode for the SAL algorithm.

require initial measurement data 𝒟𝑚0

containing 𝑚0 ≥ 1 samples, initial

hyperparameters 𝜃𝑓 and 𝜃𝑔, desired

sample size 𝑛, desired safety 𝛿
train models 𝑓 and 𝑔 using 𝒟𝑚0

for 𝑖 = 𝑚0 + 1, … , 𝑛 do

get 𝑥𝑖 from optimization (compare

Section 2.1)

measure 𝑦𝑖 and 𝑧𝑖 and add them to

𝒟𝑖−1 to get 𝒟𝑖
calculate ℎ(𝑥𝑖) = ℎ̃(𝑧𝑖) and add it to

𝒟𝑖
if 𝑖 is large enough (compare

Section 3.1) then

optimize hyperparameters of

𝑓 and 𝑔 using 𝒟𝑖 while

keeping maximal

length-scales, where

applicable

end if

train models 𝑓 and 𝑔 using 𝒟𝑖
end for

4 Evaluation

4.1 Evaluation in simulation

In the first step, the SAL algorithm is evaluated using a

simulated HPFS systemwith additive zero-mean Gaussian

noise. For this purpose, a data-based GP model of the sys-

tem was generated using measurement data acquired with

a space-filling DoE and the ODCM algorithm presented in

(Hartmann et al., 2016). ODCM allows to skip some sam-

ples based on their estimated feasibility, after a number of

points in 𝕏− has been sampled.

To assess the quality of the classifier, several criteria can

be used. In the simulation case, we assess the classifier

on a set of 10 000 test points with space-filling distribu-

tion. For the interpretation of the results, it is beneficial to

consider the relative measures sensitivity and specificity.

They describe the fraction of correctly classified test points

in 𝕏+ and 𝕏−, respectively.

In order to benchmark the quality of the regression

model, we use the root mean square error (RMSE) on 𝑚
test data samples 𝑦t,𝑘 and the corresponding model outputs

𝑓t,𝑘, 𝑘 ∈ {1, … , 𝑚}.
In Table 2, a comparison of the SAL algorithm with

pre- and online estimated hyperparameters is shown. In

the first case, 5 to 20 initial points are sampled in a space

covering about 20 % of 𝕏+. This region has to be defined

by an expert in advance. In our case it spans about 50 % of

the engine speed range and 30 % of the fuel pump actuation

range. These points are used for learning the hyperparame-

ters, which are not altered during the following SAL phase.

In total, 25 points are sampled and used for modeling. At

the end, the hyperparameters are optimized again using all

available training data. In case of SAL without predeter-

mined hyperparameters, these are learned online using the
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Table 2. Comparison of SAL with pre- and online-learned hy-

perparameters in simulation after 25 samples

pre-learned online-

learned

Initial points 5 12 20 0
RMSE 0.5900 0.0383 0.1340 0.0386

Sensitivity 0.7845 0.9928 0.9785 0.9941
Specificity 0.9647 1 1 1
Samples in

𝕏−

14.7 1.2 0.1 0.8

approach described in Section 3.1. All values are averaged

over ten runs of the algorithm.

As one can see, 5 initial points are not enough for proper
hyperparameter optimization. This leads to a disadvan-

tageous placement of the samples, many samples in 𝕏−,

and, subsequently, to a bad model with high RMSE. For

the initial hyperparameter estimation, 12 points are a bet-

ter choice, since this leads to the lowest RMSE of the final

model and a small number of samples in 𝕏−. Nonethe-

less, we can outperform this variant regarding the num-

ber of unwanted samples with our online hyperparameter

learning approach. The number of unwanted samples can

be further reduced using 20 initial points. The remaining

5 points after the initialization are not enough to explore

the whole 𝕏+ though, which results in a worse RMSE and

reduced sensitivity compared to 12 initial points and the

online learning approach.

Despite that, the variants using initial points show an-

other unwanted property, which is not obvious from the

data in Table 2: The first points during the SAL phase are

often sampled far away from the initial space. In case the

initial space is representative for the whole input space,

this might indicate a well trained discriminative model

which is able to extrapolate. This holds true in case of the

HPFS system. Nonetheless, this step induces a high risk of

samples in 𝕏− if the initial space is not exactly represen-

tative and the discriminative function increases faster than

estimated on the outside. In the online learning case, we do

not observe such behavior, but a more steady exploration.

The sensitivity can be seen as a measure for the cov-

erage of 𝕏+. One can see the same pattern as with the

other quality parameters: The online learning approach

performs best, closely followed by the 12 initial points-

case.

With the right number of initial points, using pre-

estimated hyperparameters performs almost equally well

as the online hyperparameter learning variant. Neverthe-

less, it shows several drawbacks: The need to define a

safe subspace in advance using expert knowledge, the right

number of initial points that is hard to choose, and the large

steps outside the initial space once the SAL algorithm is

started. All of these drawbacks can be overcome using the

online hyperparameter learning approach.
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Figure 4. (a) shows the RMSE using SAL (continuous line) and

space-filling plans (dashed line) at a test vehicle. The RMSEwas

calculated using a set of 60 space-fillingly distributed test points

in 𝕏+. After 25 measured samples, the SAL approach obtains

a RMSE of 0.7045, while a space-filling DoE results in 0.6225.
(b) displays sensitivity (continuous line) and specificity (dashed

line) using SAL at the test vehicle. Themeasures were calculated

using a set of 129 space-filling test points in𝕏. After 25 samples,

the sensitivity reaches 0.9294 and does not change considerably

with a further increasing number of samples.

4.2 Evaluation at a test vehicle

After successful test runs in simulation, we apply the SAL

algorithm with online hyperparameter estimation to the

HPFS system of a real test vehicle. For this purpose, we

use a car with 1.4 L four-cylinder gasoline engine. We im-

plemented an automation in MATLAB, which is able to

read and write labels from and to the ECU via ETAS INCA

MIP, ETAS INCA, and an ETK (an ECU interface).

In Figure 4a, a comparison of the RMSEs achieved by

SAL and space-filling designs over the number of training

points is given. Our approach performs comparably to the

space-filling DoEs. This seems acceptable, as the space-

filling DoEs do not consider any limits in the input space

and cannot be conducted easily this way. More measure-

ment points do not result in a major improvement of the

RMSE. The measured points in input space are shown in

Figure 5.

Figure 4b shows sensitivity and specificity for each step

of the SAL algorithm averaged over two runs. As one can

see, the sensitivity rises rather continuously until most of

𝕏+ is explored. The specificity stays at its maximum value

of 1 for the whole time. Note that the number of test points

is much smaller compared to the simulation case, which

leads to a decreased resolution of sensitivity and speci-

ficity. In average over two runs of the SAL algorithm, 0.5
points in 𝕏− are sampled. As all unwanted points are sam-

pled near the boundary, only little risk for the engine arises

from them.

5 Conclusions

The test runs show that the introduced variant of the SAL

approach manages to obtain a good model of the HPFS

system while correctly estimating the limits of the driv-

able region 𝕏+. Only very few points are sampled in 𝕏−
and those which are, lie near the boundary. The resulting
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Figure 5. Measured points (crosses) in case of SAL (upper plots)

and space-filling DoEs (lower plots). The algorithmic steps and

plans are shown for 5, 12, and 25 points, respectively. The GSP

is indicated by a circle. In the SAL case, the current estimated

boundary 𝕏0 is plotted as dashed line.

model is almost as good as a model learned from space-

filling distributed data. It must be pointed out that the lat-

ter does not comply with safety constraints or implement

an exploration scheme, in contrast to the SAL approach.
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