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Abstract 
Present research on the air traffic management systems 
is trying to improve an airspace capacity, accessibility 
and cost-efficiency while maintaining the safety 
performance indicators. The discretization of the aircraft 
trajectories in a sequence of the 4D points specifying an 
agreement between the airspace users and the traffic flow 
management, in which the aircraft are required to arrive 
at the certain waypoints in the required time instants, 
opens a huge scope of applications for the decision 
support tools. This paper presents the causal model of an 
induced collision scenario, generated by the Traffic alert 
and Collision Avoidance System logic, tailored by an 
impropriate pairwise collision resolutions. It elaborates a 
unit simulation case and introduces a new modeling 
approach through the Colored Petri Net formalism. The 
proposed model provides a better insight on the 
geometry of collision trajectories which is a baseline for 
the simulation of new conflict-free resolution strategies 
that could be automated, and integrated in the further 
research.  
Keywords: causal modeling, hotspot, induced collision, 
pairwise encounter, resolution advisories 

1 Introduction 
The constant increase in the air transport demand is 
generating a continuous pressure on the air traffic control 
(ATC) system. As a result, more efforts in the ATC 
modernization have been made to satisfy the main ATM 
criteria: enhanced capacity, cost-efficiency and safety. 
Based on the Single European Sky ATM Research 
(SESAR) initiative (Drogoul et al, 2009), there would be 
necessary to shift from the completely centralized 
tactical ATC interventions to more efficient, 
decentralized, collision-avoidance operations. This 
foresees the important changes in the roles and 
responsibilities of the overall air traffic management 
(ATM) system.  

At present, an upgraded Traffic Alert and Collision 
Avoidance System (TCAS II v7.1), has been designed 
for operations in the traffic densities of 0.3 aircraft per 
squared nautical mile. The system demonstrates an 
excellent performance in cases of the pairwise 
encounters (PEs) but, concurrently shows some 

performance drawbacks in its logic due to the well 
reported induced collisions in some traffic scenarios (Jun 
et al, 2014, 2015; Ruiz et al, 2013). These drawbacks are 
also a result of frequent changes in the kinematic 
trajectory elements (the speed and altitude changes), as 
well as an ambiguity in the horizontal level crossings and 
level busts. Thus, one of the goals will be to investigate 
and implement a new operational framework improving 
the TCAS functionalities to react at both tactical and 
operational level as a robust collision avoidance system 
for different complexities of the traffic scenarios, in 
which ergonomics and automation interdependencies 
will be fully considered and aligned with the realistic 
aircraft performances. 

This paper analyzes a pairwise collision scenario as a 
product of the previously resolved conflicts. From a 
causal point of view, it illustrates the case in which some 
inappropriate maneuvers, issued by TCAS to solve one-
on-one encounters, can induce a new collision. This 
effect is known as a downstream effect (i.e. emergent 
dynamics) of the previous TCAS decisions and can be 
treated as a surrounding traffic effect, separately from a 
multi-threat encounter approach. The scenario is then 
simulated using an open-source conflict detection and 
resolution (CD&R) toolset Stratway, and obtained 
results are presented. Based on the simulated case, a new 
approach is introduced through development and 
validation of a Colored Petri Net (CPN) model. The 
model presents a baseline for further research on a 
probabilistic, state-based collision prediction.  

The remainder of the paper is organized as follows. 
Section 2 discusses a conceptual analysis of the hotspot 
scenario describing both the one-on-one encounters and 
pairwise induced collisions. A simulated scenario with 
the obtained results is presented in Section 3, while 
Section 4 describes the causal modeling approach for the 
collision prediction. Section 5 validates the presented 
model, and conclusions are given in Section 6. 

2 Conceptual Analysis 
A reduction of the separation minima might occur due to 
many circumstances; in a moment when an air traffic 
controller issues a resolution directive, in which any 
change in a desired cruising speed, heading or vertical 
rate is not appropriate, or when a pilot performs a 
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maneuver that a controller had not anticipated. The 
airspace volume that encompasses a subset of trajectories 
with tight spatiotemporal interdependencies, which can 
easily lead to reduction of the separation minima, defines 
a hotspot. This volume is both space- and time-
dependent on the aircraft closure rates, in sense that can 
occupy a couple of flight levels (several thousands of 
feet’s) and a longer horizontal distance (several tens of 
nautical miles).  

An idea of the PE approach lies in fact that an induced 
collision with the closest points of approach (CPA) of 
two aircraft cannot dimension the hotspot area, which is 
not in the case of the multi-threat encounters. Instead, a 
surrounding traffic aircraft introduce a certain level of 
uncertainty in the geometry of a resolution trajectories 
and, thus, very tight spatiotemporal interdependencies 
between trajectories that can be involved in collision are 
essential to define the hotspot itself (Billingsley et al, 
2013). The CPA is an estimated 4D point on the aircraft 

trajectory, for which a 3D distance between two 
conflicting aircraft reaches its minimum value.  

Even if assumed that integrity levels of the 4D 
trajectories are fully accomplished (i.e. very small along-
track, across-track and vertical path deviations) and the 
flight parameters (heading, altitude and speed) are 
progressively maintained, which also imply the constant 
timestamp changes, it is not possible to predict an 
induced CPA. Naturally, this question opens many 
analytical aspects, but the main ones are a limited TCAS 
logic, based on a certain number of the resolution 
advisories (RAs), TCAS threshold requirements, and the 
feasible maneuvering strategies based on the aircraft 
performance (ICAO, 2006).  

Table 1 lists all advisories for TCAS II v 7.1, while 
Table 2 depicts the TCAS threshold values for different 
flight levels. The second column in Table 2 refers to the 
sensitivity level (SL) indexes. This one-digit number 
features a strength sense of TCAS command.

Table 1. TCAS Advisories. 

TCAS II v 7.1 
Type Text Meaning Required Action 

TA Traffic, traffic Intruder near both horizontally 
and vertically 

Attempt visual contact, and be prepared to 
maneuver if RA occurs 

RA Climb, climb Intruder will pass below Begin climbing at 1500-2000 ft/min 
RA Descend, descend Intruder will pass above Begin descending at 1500-2000 ft/min 
RA Increase climb Intruder will pass just below Climb at 2500-3000 ft/min 
RA Increase descent Intruder will pass just above Descend at 2500-3000 ft/min 
RA Reduce climb Intruder is probably well below Climb at slower rate 
RA Reduce descent Intruder is probably well above Descend at slower rate 

RA Climb, climb now Intruder that was passing above, 
will now pass below Change from descent to climb1 

RA Descend, descend 
now 

Intruder that was passing below, 
will now pass above Change from climb to descent1 

RA Maintain vertical 
speed, maintain 

Intruder will be avoided if vertical 
rate is maintained Maintain current vertical rate 

RA Level off, level off Intruder considerably away, or 
weakening of initial RA Begin to level off 

RA Monitor vertical 
speed 

Intruder ahead in level flight, 
above or below Remain in level flight 

RA Crossing Passing through intruder's level, 
usually added to any other RA Proceed according to associated RA 

CC Clear of conflict Intruder is no longer a threat Return promptly to previous ATC clearance 

 
 
 

                                                
1This is reversal RA that requires change of 1500 ft/min vertical rate. 
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Table 2. TCAS Threshold Values. 

Own Altitude 
[ft] SL 

TAU 
[sec] 

DMOD 
[NM] 

ZTHR 
[ft] 

ALIM 
 [ft] 

 TA RA TA RA TA RA RA 
1000 - 2350 3 25 15 0.33 0.20 850 600 300 
2350 - 5000 4 30 20 0.48 0.35 850 600 300 
5000 - 10000 5 40 25 0.75 0.55 850 600 350 

10000 - 20000 6 45 30 1.00 0.80 850 600 400 
20000 - 42000 7 48 35 1.30 1.10 850 700 600 

> 42000 7 48 35 1.30 1.10 1200 800 700 

2.1 CD&R for One-On-One Encounters 
To explain the concept of induced collision, it is first 
considered an initial state of a non-vectored traffic 
scenario in the vertical plane, which presents the SESAR 
concept for a free routing without a level capping. There 
are four aircraft A/C01, A/C02, A/C03 and A/C04 flying 
on the trajectories that form two predicted encounters 
A/C01-A/C02 and A/C03-A/C04 (Figure 1). 

A/C01 is cruising on FL160 while A/C02 starts 
descending at FL180 in the opposite direction from 
A/C01, which means a direct approch to A/C01 with a 
loss of height. On the other side, A/C03 starts climbing 
at FL130, and, with an increase in height, approaching to 
A/C04, which is crusing at FL153 in opposite direction 
from A/C01. The sequences of 4D waypoints (WPs) for 
all four trajectories are assumed to be charaterized by the 
same absolute timestamps, which confirms the time-
based dimension of potential hotspot. It can be noted that 
a difference in altitude between A/C01 and A/C04 is only 
700 feet, and in this case TCAS vertical threshold is still 
satisfied since the hotspot area belongs to SL6 with an 
RA activation at the 600-feet difference. Therefore, by 

analyzing the vertical trajectory profiles, it can be 

concluded that these two aircraft operationally maintain 
the required vertical separation.  

As known, in the normal flight conditions TCAS is 
incessantly surveying the surrounding airspace by 
sending queries (interrogations) and receiving responses 
from the neighbouring aircraft. Therefore, when A/C02 
flies into the range of A/C01, the TCAS on-board both 
aircraft issues traffic advisory (TA) to warn the crew 
about a possible conflict. In this scenario, the TCAS 
advises A/C01 and A/C02 in moments 01

TAt  and 02
TAt , 

respectively. Naturally, this warning is activated if and 
only if all three TCAS thresholds for the particular SL 
are infringed (Table 2). Based on the current flight 
configuration of both aircraft and approaching closer to 
each other, at the instances 01

RA1t  and 02
RAt  TCAS issues 

the RAs requiring that both aircraft perfom an 
appropriate maneuver (Table 1). Moreover, the RAs are 
also a subject to the TCAS threshold infringements 
(Table 2).  

The corresponding maneuver depends on the CPA 
which is determind by speed, heading and position of the 
aircraft. It is worth mentioning that, due to high level of 
range-bearing errors in the horizontal plane 
(Kochenderfer et al, 2013), the RAs consider only 
maneuvers in vertical plane, possibly combined with 
some turns or heading changes. However, those cases are 
a measure of the aircraft performances and the crew 
experiences, and are out of scope of this study. There are 
four rules in the TCAS logic for the PEs: 
1. Two aircraft are alerted by the RAs when the 

horizontal and vertical threshold distances, DMOD 
and ZTHR respectively, are violated, or when the 
time to the CPA (TAU) falls below a specific 
threshold, with respect to the current aircraft closure 
rates and a corresponding SL. 

Figure 1. An induced collision scenario. 
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2. Two RAs are opposite to each other, i.e. they advise 
an opposite sense for maneuver to the crew (for 
instance, climb-descend or descend-climb). It is 
defined as a reversal TCAS logic. 

3. When the RAs are alerted, an aircraft at a lower 
altitude performs descending maneuver and the one 
at a higher altitude complies to a climbing 
amendment, without consideration of the current 
flight configuration (cruise, climb or descent); 
However, the strength sense of the requested 
manouver will depend on the flight configuration 
consequently (Table 1). 

4. After the RA activation the aircraft following the 
requested amendments must achieve a vertical 
separation minima at the CPA, called the altitude 
limitation (ALIM), as illustrated in Figure 2. 

 
Figure 2. “Descend” RA to achieve ALIM. 

TCAS computes TAU as a ratio between the range (an 
interdistance among the aircraft) and closure rate (or, 
range rate). Both range and range rate in horizontal plane 
are obtained from the TCAS interrogations, usually with 
one-second update, and they apply to aircraft in crusing 
configuration. In vertical plane, the time to co-altitude 
(vertical TAU) is computed as a vertical separation 
divided by a vertical closure rate (Jun et al, 2015). 

It can be observed from Figure 1 that A/C01 at 
moment 01

RA1t , from the crusing phase, starts descending 
while A/C02 changes from descending to climbing 
manouver at 02

RAt , both achieving required separation 
minima at the CPA. Another PE, A/C03-A/C04, results 
in a similar way. The TAs in the moments 03

TAt  and 04
TAt  

warn A/C03 and A/C04 about a potential conflict. At 03
RAt  

and 04
RA1t , the RAs are activated and both aircraft start 

performing the advised maneuvers. A/C03 is passing to 
the descending and A/C04 to the climbing amendment. 
In practice, it could happen that any of the Ras is not 
properly applied due to some unpredictable factor(s) (a 
meteo situation – a wind component, lack of the 
requested aircraft performance, or any technical error on-
board the aircraft). In this case, the ALIM might be 
infringed and the conflict evolves into a collision. 

2.2 Induced collision scenario 
The previous subsection has led to the conflict 
resolutions of two neighbouring encounters. However, 
the main question is whether these amending trajectories 
could possibly generate a new conflict. This induced 
conflict can be elaborated though the emergent dynamics 
concept. Based on the dimensioned hotspot, it can be 
observed that A/C02 and A/C03 leave the area on their 
new conflict-free paths. In other words, they achieve 
their clear of conflict (CC) points (Table 1). 

Concurrently, by following the previous RAs A/C01 
and A/C04 induce a conflict. This state could be 
ambiguous. If the hotspot encompasses several flight 
levels and a larger horizon this encounter would become 
an induced conflict and might remain a conflict-based 
with enough time for the new RAs activation. However, 
if there is no sufficient time, the induced collision occurs. 
The analyzed scenario points out to that state. As a 
collision avoidance layer activates in less than 60 
seconds and the RAs are issued in less than 35 seconds 
before the CPA reachability, once resolved conflicts 
produce very high uncertainty in guidance over the 
resolution amendments. Since the original trajectories of 
A/C01 and A/C04 have been vertically separated only by 
700 ft and, by performing their resolution manouvers, the 
aircraft triggered the new TCAS alerts, the vertical 
thershold has been considerably violated. A/C01 and 
A/C04 were automatically alerted by the succeeding 
RAs, at the timestamps 01

RA2t  and 04
RA2t , respectively. Due 

to insufficient time for the appropriate maneuvers, the 
aircraft came to the induced collision. 

TCAS is operating in vertical plane which comprises 
a set of the vertical RAs only. Therefore, a collision event 
is predominantly affected by the upstream and 
downstream traffic flows.  

3 Scenario Simulation – Unit Case 
This section describes the simulation platform for CD&R 
algorithm and provides the scenario results for unit case. 
Results are presented both graphically (within integrated 
Graphical User Interface – GUI) and textually (in form 
of the log messages). 

3.1 Simulation Platform for CD&R 
algorithm 

For simulation of our scenario we have used the Stratway 
tool. It is the algorithm for a strategic, intent-based, 
CD&R, developed by the NASA Langley Research 
Center. Stratway is an open source software tool, 
implemented both in Java and C++ environment, and can 
be called from other programs through an Application 
Program Interface (API) and also excuted from a 
command line. The main features are as follows: 
 work with the complete 4D flight plans as inputs 

(three spatial geographic coordiantes + time); 
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 generation of the conflict resolution in the form of 
conflict-free paths for the ownship aircraft (a 
reference trajectory) in presence of the multiple 
traffic aircarft (intruders), if feasible; 

 use of a set of the heuristic search strategies for the 
conflict resolution; 

 output of the message errors and warnings, as well 
as the textually-based solutions;  

 considerably based on the real aircraft performances 
and use of a large set of the navigation parameters, 
that are user-configurable;  

 implementation of a set of maneuvering strategies 
(vertical, track, speed, or side-step) which are 3D-
oriented (Figures 3, 4 and 5); 

 iterative tests of all involved trajectories, and output 
of all possible combinations for the trajectory 
resolutions; 

 no current support to testing the induced collision 
scenarios; however, there are possibilities for 
making the upgrades with the new functionalities 
and strategies. 

 

 
Figure 3. Track search strategy. 

 
Figure 4. Vertical search strategy. 

 
Figure 5. Side-step search strategy. 

Figures above illustrate three types of maneuvering 
strategies. The first type is a track strategy (Figure 3) 
which is based on a heading change. The goal is to avoid 
a hotspot by isolating the WPs, positioned inside the 
hotspot, and to directly re-route to the first available WP 
outside the hotspot. Nevertheless, this strategy can be 
treated as a fly-by-waypoint procedure, where this WP is 
an imaginary center of the hotspot area. The second type 
is a vertical strategy (Figure 4). It seeks to resolve the 
conflict through a sequence of climbs or descents 

without changing the current heading of the trajectory. 
The strategy starts from the WP in vicinity of the hotspot 
using the same isolation method as the track strategy. 
From this WP, an aircraft increases the climb amendment 
(or descent, in the opposite case) in order to overtop a 
potential intruder. The amending trajectory leg is usually 
shaped as a polygon consisting of the shorter segments. 
A side-step strategy (Figure 5) is the third type, and is 
not considered so flight-efficient as the track strategy, 
but sometimes can provide the comparable solutions. It 
resolves a conflict by only removing a WP right before 
the conflict. The strategy is very effective for the 
trajectories containing longer segments. It inserts a lead-
in WP (blue-colored point) in advance of the current 
aircraft position, from which the aircraft starts with an 
amending leg, and then continues with a resuming leg to 
the original trajectory. A deviation from the original 
trajectory, or the point at which amending leg terminates 
and the resuming leg starts, depends on the geometries 
of the conflicting trajectories and the closure rates. 

3.2 Unit Case Simulation and Results 
Validation 

For simulation of two PEs, it has been implemented a 
unit case scenario within the Dortmund enroute airspace 
(51°30′53″ N, 7°27′57″ E), between 13000 and 18000 ft 
(FL130 – FL180). Each of four trajectories has been 
generated in a sequence of 10 WPs with the constant 
time-based segments (15 seconds of the time interval) in 
order to facilitate the encounters prediction. Closure 
rates, i.e. the true airspeed (TAS) in cruising and vertical 
speed - rate of climb/descent (ROC/D) - are assumed to 
be constant as well, and by default set to TAS = 330 knot 
and ROC/D = 1500 ft/min. Nevertheless, these values 
can be changed as per user preferences, or adopted to a 
specific SL. Table 3 illustrates a sample of the sequences 
of the 4D WPs for all four trajectories used as an input. 
OWN in the table denotes the ownship aircraft, while 
TRAF with the given index corresponds the traffic 
aircraft. 

Table 3. Input Data. 

Name Latitude 
[deg] 

Longitude 
[deg] 

Altitude 
[deg] 

Time 
[sec]  

OWN 51.51389 7.53075 16000 2400 
OWN 51.51389 7.55370 16000 2415 
TRAF1 51.51649 7.61961 18000 2400 
TRAF1 51.51604 7.61894 17625 2415 
TRAF2 51.48779 7.68225 13000 2400 
TRAF2 51.48824 7.68292 13375 2415 
TRAF3 51.49155 7.80565 15000 2400 
TRAF3 51.49155 7.78405 15000 2415 

 
In order to graphically present the simulated results, a 

graphical user interface (GUI) has been developed as a 
part of the Stratway algorithm. The Stratway GUI is 
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composed of 6 views illustrating the interdependencies 
between 4D coordinates: 
 latitude-longitude, 
 altitude-longitude,  
 altitude-latitude,  
 altitude-time,  
 latitude-time,  
 longitude-time.  

 
By default, latitude and longitude are expressed in 

degrees [deg], altitude in feets [ft] and time in seconds 
[sec]. The simulation of the Dortmund scenario in 
Stratway has validated that the present resolution 
algorithm cannot find a conflict-free path within an 
induced collision (Figure 6). None of four aircraft, set 
iteratively as the ownship, could avoid induced collision 
as it has occurred on the central segments of their 
trajectories. The Stratway also generates also the 
graphical output of the pairwise conflicts without a 
possibility for any aircraft approaching to the induced 
collision state to perform an appropriate RA maneuver 
(Figure 7). 

 

 
Figure 6. Log message output. 

4 Causal Model for Collision 
Prediction 

4.1 CPN Formalism 
The main CPN characteristics that present very 
applicable formalism for a description of the discrete 
event-oriented simulation models are: 
 all events that could appear according to a certain 

system state can be easily determined by a 
reachability graph; 

 all events that can set off the firing of a specific event 
can be detected visually. CPNs are considered as a 
graphical modeling tool with a few syntactic rules. 

The main CPN components that meet the modeling 
requirements are: the places, represented by the circles, 
and specifying the system states; the transitions, 
depicted by the rectangles and expressing the system 
events; the input arc expressions and guards, indicating 
the types of tokens used to fire a transition; the output 
arc expressions indicating the system state change that 
appears as a result of firing the transition; the color sets, 
the entity attributes which determine types, operations 
and functions that can be used by the elements of the 
CPN model; a state vector, the smallest piece of 
information for prediction of the events that could 
appear. This vector denotes the number of tokens in each 
place and the colors in each token. The color sets allow 
specification of the entity attributes, and the output arc 
expressions define what actions should be coded in the 
event routines linked to each event. 

4.2 CPN Modeling Approach for Pairwise 
Collision Prediction 

This subsection proposes a new causal modeling 
approach for the right discretization of conflict/collision

Figure 7. Stratway GUI Output. 
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events (Munoz et al, 2013) considering a larger time 
horizon in form of a look-ahead time (LAT), which is 
decomposed into a sequence of shorter time intervals for 
the control actions. For the simulated induced collision 
scenario, it is proposed the LAT of 300 seconds. Since, 
the simulation case assumes the ideal case – the constant 
closure rates and timestamps - the CPA will occur after 
150 seconds. In real cases, i.e. the flown trajectories that 
include the trajectory prediction states, the CPA presents 
a fluctuating point, so it may occur in less or more than 
150 seconds.  The LAT could be sequenced in different 
time intervals. In this scenario, an update rate of 30 
seconds has been used, meaning that the system has been 
considered in the discrete moments: 120, 90 and 60 
seconds before the CPA. The elapsed time in less than 60 
seconds denotes the TCAS convergence area based on 
the TAU thresholds (the TA and RA activations). The 
model is based on the following pre-conditions: 
 The LAT provides a prediction of collision event and 

a way on how to avoid the hotspot at all. 
 A pre-decision process (a multi-trajectory selection) 

is given advantage over a decision process (RA 
maneuver) with respect to the aircraft performance 
(feasibility criteria); 

 With a continuous decrease in distance to the CPA 
less number of the potential conflict-free trajectories 
is achievable. 

The proposed model relies on one basic concept – 
protected volumes. They take a shape of the imaginary 
cones, ground-in horizontally, with the peaks presenting 
the starting points of the 300-seconds time horizon. The 
shortest distance within these cones is the LAT distance 
along x-axis. These protected volumes have been 
considered to denote the aircraft capability to fly in a 
limited airspace. The limitation reflects both laterally 
and vertically, in the following way: 
 The maximum heading change in the horizontal 

plane is 30 degrees. For an easier model 
representation, it is used the term gradient, 
presenting a coefficient of a gradual increase of the 
horizontal divergence measured from the x-axis, 
with the beginning at an identified LAT WP; 

 The maximum vertical gradients from the LAT WP, 
i.e. ROC/D are ±5000 ft/min. 

With the shortest distance and specified gradients, it 
is possible to define a base of the cone computing the 
LAT distance. After this distance, both gradients form a 
base with two radiuses. This imaginary base takes a 
shape of an ellipse. The simulation model computes all 
the aircraft cones together with its proximity and/or 
intersections defining the hotspot volumes. The 
intersection volumes are defined by the aircraft cones 
that mutually intersect in some segments of their 
trajectories. The shape of these volumes depends on the 
trajectories geometry, and considerably on the four-time 

colors: an entrance time of first aircraft (time-in, t1i) and 
its exit time (time-out, t1o), as well as an entrance time of 
second aircraft (t2i) and its exit time (t2o).  

Once a hotspot volume has been computed and 
projected, the simulation model searches for the collision 
states by applying the TCAS RA thresholds within the 
intersection volumes. Therefore, any aircraft flying 
within its cone, but outside the intersection area, is 
supposed to be in a CC state. This search also includes 
the neighboring aircraft trajectories for the induced 
collision cases. If a collision state is identified/predicted 
the proper RAs are issued, and the aircraft perform 
requested maneuvers inside their imaginary cones. The 
model records the pairwise collisions only. It is 
graphically described in Figure 8. 

The elements of the model are structured as follows: 
 T1 – the first transition denoting the protected 

volumes construction with its guard function GU1; 
T2 - second transition defining the intersection 
volumes with the guard function GU2; T3 – third 
transition that checks out the number of collision 
events controlled by the guard function GU3;  

 P1 – the place expressing the vertical gradients; P2 – 
the place expressing the lateral gradient (the heading 
change); P3 – the place containing 300-seconds time 
window; P4 – the place that stores the along-track 
distances; P5 – the control place 1 assuring that input 
values are satisfied; P6 – the place linking the 
transitions T1 and T2, and marking the protected 
volumes state; P7 – place denoting the time matrix 
values; P8 – the control place 2 checking that 
extracted time values are satisfied; P9 – the place 
that depicts the intersection volumes; P10 – the place 
containing the 4D trajectory data; P11 – the place 
containing the RA thresholds; P12 – the place that 
stores the pairwise checks within a set of aircraft; 
P13 – the place storing the pairwise induced 
collisions. 

5 Validation and Evaluation 
Presented CPN model is deployed as an essential 
approach to the quantitative state space analysis of the 
events in which the potential conflicts can likely result in 
collisions. At present, the causal model has been 
validated with some stakeholders by means of: 
 Model Purposiveness: the conceptual model has 

been validated by means of a unit test (mainly though 
the extreme scenarios), and all detected bugs have 
been removed. As a result of the meeting with the 
experts, some modifications to the conceptual model 
has been added to extend the simulation/tests targets. 

 Model Plausibility: the level of plausibility, or the 
expert opinion, basically referes to two features of 
the model. The first considers a question of whether 
the model looks logical. This answer on this question 
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gives the characteristics of the model structure (the 
rules and hypothesis) and its parameters. The second 
is related to the question of whether the model 
behaves logically. This part provides an assessment 
of the reaction of the model outputs to the typical 
events (scenarios) on the inputs.   

The aircraft state information, such as position and 
velocity, coming from the analyzed non-vectored 
scenario have been fed the Stratway simulation tool, and 
the obtained outputs – conflict segments in a form of the 
4D points – have been used as an intial marking, or zero 
conditions, for generaion and execution of the CPN 
model. In addition, defined metrics, such as vertical and 
lateral gradients, conflict time intervals and constants 
(RA values) had provided a better insight of the 
spatiotemporal interdeoendencies in the potential 
collsion scenario, and creation of the intersection 
volumes as a qualitative solution. Finally, several 
simulation runs, performed in Stratway, had provided 
different initial markings, that are further used for 
computation of the final solution state in the CPN model. 
The intial markings pointed out to the different 
geometries of the conflict segments.  

The follow-up validation steps will consider the state 
space analysis of a conflict scenario for detection of the 
sequence of maneuvres, that could lead to an induced 
collision. The generated data will be fed to InCAS (the 
simulation tool developed by EUROCONTROL) to 
validate the trajectories computed by the causal model. It 
will be also used TimSpat (Baruwa et al, 2015) to 
perform the computation of all states that can be reached 
from initial configuration, as illustrated in Figure 9.  

 

 
Figure 9. Reachability graph for collision events. 

Each node in the graph represents a feasible marking 
and each arc the transition or event which allows the 
system evolution from the initial state to a new one. The 
reachability graph is structured in four levels and 
composed of nodes of the hotspot areas that are classified 
in three categories: conflict-free (white-coloured), 
conflict (grey-coloured) and collision (black-coloured) 
hotspots. There is only one node in the final level 
obtaining one collision hotspot. Still, the third level 
reaches also a node with a conflict-free hotspot. 

6 Conclusions 
This paper analyses the induced collision scenario in the 
en-route airspace as a product of the previously resolved 
pairwise conflicts. Based on the TCAS shortages, it tries 

Figure 8. CPN model for pairwise collision prediction. 
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to identify the dynamic structures of the 4D trajectories 
involved in collision through simulation of their tracks 
and implementation of the appropriate feasible 
strategies. The paper further focuses on causal modeling 
trying to generate a new approach that will provide a 
higher awareness of the collision hotspot and a better 
decision-making process. 
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