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Abstract
In  this  study,  a  variogram  method  was  utilized  as  a
variable selection tool for finding the optimal subsets of
variables for developing predictive models for the
quality of wastewater treatment effluent. The quality of
effluent was here assessed by biological and chemical
oxygen demand and suspended solids in biologically
treated wastewater. The dataset included, in addition to
traditional process measurements, results of a novel
optical monitoring device which was used for imaging
an activated sludge process in-situ during a period of
over one year. The study showed that the variogram
based method has potential in fast and computationally
easy variable selection. The developed models can be
used for proactive monitoring and estimating the quality
of effluent in several stages hours before in comparison
to laboratory analysis taken from treated wastewater.
Keywords:     activated sludge process, BOD, COD,
cross-validation, modeling, optical monitoring,
suspended solids, variogram

1 Introduction
While the amount of produced wastewater is increasing,
the regulations for the quality of discharges by
authorities are constantly tightening, and the operating
costs are necessary to be minimized. Wastewaters are
commonly treated in biological activated sludge
processes (ASP), which are sensitive to external and
internal disturbances, such as changing temperature, and
varying quality and quantity of wastewater.
Disturbances affect the bacterial balance of biomass and
the optimum operating conditions, which are in a key
role for a high pollution removal rate, low suspended
solids in the effluent and a good settling properties of
the sludge. Disturbances in the bacterial balance may
have serious environmental and economic effects as
they often produce dysfunctional flocculation and
settling. The most common problem in ASP is
filamentous bulking, which is caused when the
secondary settler is unable to efficiently remove the
suspended biomass from the wastewater. Recovery from
the occurred disturbances is slow and the effects on
process operation and purification result are long-
lasting. (Tchobanoglous et al, 2003; Amaral, Ferreira,
2005; Mesquita et al, 2009)

On this account, an accurate operating of the
wastewater purification process is required. The
performance of a wastewater treatment process can be
assessed analyzing the quality parameters of treated
wastewater, such as biological and chemical oxygen
demand (BOD, COD), suspended solids (SS), and
sludge volume index (SVI). However, these parameters
only show the poor quality of effluent when it already
occurs and the corrective operations are inevitably late.
Thus, there is a demand for new real-time monitoring
tools and methods to be used in process control in
parallel with the traditional offline analysis of
wastewater samples and expert knowledge. The novel
on-line optical monitoring method gives fast, objective
information about the state of the wastewater treatment
process, reveals some of the reasons for settling
problems, and combined to a predictive model, shows
the quality of effluent in advance (Koivuranta et al,
2015; Tomperi et al, 2017). In this study, a variogram
method is utilized for finding the optimal subset of
variables to develop predictive models for BOD, COD,
and SS in biologically treated wastewater. The dataset
from a period over one year included the results of the
in-situ optical monitoring of an ASP, and the offline
process measurements.

2 Material and methods
2.1 Wastewater Treatment Plant
The data used in this study was collected from the
largest wastewater treatment plant (WWTP) in Finland,
located in Helsinki. Viikinmäki WWTP processes daily
270,000 m3 of wastewater from over 800,000
inhabitants around the Helsinki region. Part of the total
flow (15%) come from industrial sources. This WWTP
is a three-phased activated sludge process that utilizes
the simultaneous precipitation method for phosphorus
removal. Wastewater is processed in nine activated
sludge process lines. In addition to mechanical,
biological, and chemical treatment, a biological filter
has been added to improve nitrogen removal. The unit
operations of the process are intake, screening, grit, and
grease removal, preliminary settling, aeration,
degassing, secondary settling, biological de-nitrification
filtration, and discharge (Figure 1). Screening removes
the large solids from the water. Grit and grease removal
separates rapidly settling, very coarse solids, as well as,
greasy and oily substances that are lighter than water. In
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the preliminary settling phase, easily settling material is
separated from the water. The biological treatment is
conducted by means of a de-nitrification-nitrification
process in an aeration tank which is used to grow
activated sludge. At the head of the aeration tank, there
is a separate mixing area, where new wastewater
entering the tank is reseeded with returned activated
sludge from the secondary settling tank, and recycled
sludge  from  the  end  of  the  aeration  tank.  Activated
sludge, biomass which contains organic matter and
nutrients, is separated from the treated wastewater by
settling in the secondary settling tank and returned to the
aeration tank. Part of the activated sludge is removed
daily to maintain a suitable sludge age and sludge
concentration in the aeration tank. After the secondary
settling phase, wastewater is led to filtration based on
bacterial action to enhance de-nitrification of the
wastewater. (HSY, 2016)

2.2 Optical Monitoring and Image Analysis
To replace the slow, irregular, and subjective manual
microscopic analysis of wastewater samples, a small-
scale optical monitoring device and an image analysis
method were developed (Koivuranta et al, 2013) and
proved functional for monitoring the floc morphology
reliably in-situ in full-scale municipal ASP (Koivuranta
et al, 2015). The device consists of an imaging unit, a
sample handling unit, and a control PC with an
electronics unit. Wastewater samples were taken from
one activated sludge line in the aeration tank, diluted,
and pumped through a cuvette, which was imaged with
a high-resolution charge-coupled device (CCD) camera.
At normal flow, the delay between optical monitoring
measurement and the output of the WWTP was about 13
hours. The optical monitoring device measured several
morphological features of the flocs and filaments: in
addition to the size parameters such as mean equivalent
diameter, floc area, and filament length, the calculated
shape parameters included, for example, fractal
dimension, form factor, and roundness. The parameters
were calculated as an average of the values for

individual objects over a single image. The detailed
description of the device and mathematical formulas of
the calculated parameters are presented in (Koivuranta
et al, 2013).

2.3 Variable Selection Using Variogram
Modern plants produce large amounts of data which
often include irrelevant variables for a specific purpose,
for instance modeling. Only significant input variables
should be selected for model development. The greater
number of variables does not necessary mean better
prediction results because correlated, noisy and
uninformative input variables increase the
computational complexity, make the training of the
model more difficult and worsen the prediction result.
Over-fitting may occur if the model contains too many
variables which are fitted not only to the data but also to
the random noise. Additionally, the sampling rates of
different input variables may differ significantly,
therefore describing the process dynamics in different
precisions.

In this work, a variogram-based method is utilized as
a variable selection method in order to find the optimal
subsets for modeling the suspended solids content,
BOD, and COD in biologically treated wastewater. The
idea of utilizing variogram for variable selection comes
from the fact that a variogram of particular measurement
holds the information about the relative error levels of
the sampling and analysis of that measurement.
Variogram is a fundamental tool within Theory of
Sampling (Gy, 2004) and has already been considered
in drift estimation (Paakkunainen et al, 2007), temporal
uncertainty propagation (Jalbert et al, 2011), fault
diagnosis (Kouadri et al, 2012), statistical process
control (Minnit, Pitard, 2008), and as a process stability
measure (Bisgaard, Kulachi, 2005).

Variogram is calculated from a set of systemically
collected data. In this work, it is assumed that the data is
systemically sampled and that the flow rate, or sample
weight, is constant. Hence, the heterogeneity of the data
can be interpreted as:

Figure 1. The wastewater treatment process at Viikinmäki. Modified from (HSY, 2016).
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where hi and xi are the heterogeneity and the
measurement result for sample i, respectively and x  is
the average of measurements xi. The semi-variogram is
calculated as:

 ( )å
=

+ -
-

=
2

1

2

2
1 /N

i
jji hh

)jN(
)j(v  (2) 

where v(j)  is  the  relative  standard  error  between
samples collected with lag j and N is  the  number  of
samples in the data set. The intercept v(0) is estimated
based on a linear extrapolation of the first N/10 (floored)
points of the variogram. The index describing the
relative information content of the measurement and
thus the criterion for variable selection is calculated as
relation between the estimated sampling error v(1) and
process variability Ps :
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A low value of the index I indicates that a single
sample of that measurement can describe the present
process variability with good accuracy. On the other
hand, high value for I indicate that the relative
information content of the measurement is low either
due to higher sampling error or lower variability in the
process.

2.4 Modeling
A k-fold cross-validation is a typical resampling method
for predicting the fit of a model for a validation set,
when dataset is small, and the split to separate training
and validation subsets is not possible without a
significant loss of data. Efficient training and validation
require long and representative subset of data for both.
In environmental related processes, the source dataset
for model training should also encompass at least one
full year of measured data because the temperature and
rainfall, for instance, change depending on the season of
the year and affect the process. In k-fold cross-
validation, the original dataset is randomly partitioned
into k subsets  of  equal  size.  One  subset  is  used  as  a
validation data for testing the model and the remaining
k–1 subsamples are used as training data. The cross-
validation process is repeated k times  and  each  of  the
subsets is used only once as the validation data. A single
estimation is then produced by combining these k results
of the folds. Optimal k is often reported being between
five and ten folds because statistical performance does
not increase notably for larger values of k, and averaging
over less than ten splits is computationally feasible. In

this study, five-fold cross-validation was used.
Multivariable linear regression (MLR) was used to
predict an output variable as a linear combination of
selected input variables as:

 eXb...XbXbbY nn +++++= 22110  (4) 

where bo is a constant value, b1…bn are  the n
regression coefficients, X1…Xn independent variables
and e is  the  error.  The  performance  of  the  model  was
evaluated by using Root Mean Square Error (RMSE)
and coefficient of determination (R2), which can be used
to compare the relative performance of the models. (Rao
et al, 2008; Arlot, Celisse 2010)

3 Results and Discussion
The dataset used in this work consisted of optical
monitoring results and wastewater treatment process
measurements from a period of over one year. On-line
optical monitoring measurements were carried out at
least once a day, but the laboratory measurements, on
the other hand, were done only two to three times a
week. During the process maintenance stoppages or
occasional problems with the device, the optical
measurements could not be performed. The missing
laboratory and on-line data was not interpolated in this
study. Thus, the total number of data points was 94
observations for 50 variables. Measurement data was
scaled  to  range  [-2,  2]  before  variable  selection  as  in
(Tomperi et al, 2017). Only variables that are useful and
reliable to measure were selected. The variables from as
early stage of the process as possible were preferred in
order to establish models which could give proactive
information of the quality of biologically treated
wastewater.

Table 1. Variable selection using variogram.

Variable Value of criterion
Fractal dimension1 0.17
Aspect ratio2 0.18
Temperature3 0.22
Median area of objects4 0.25
Filament length5 0.27
Roundness6 0.30
Sludge age7 0.31
Amount of filaments 0.32
Suspended solids 0.33
Number of small objects 0.34

In this study, variogram was utilized as a variable
selection tool for searching the optimal subset of
variables for model development. The variogram-
derived indices and ten first selected variables are
presented in Table 1. As seen, the most of the variables
are on-line optical monitoring variables and only three
of ten variables are process measurements. In
comparison, five other variable selection methods tested

EUROSIM 2016 & SIMS 2016

314DOI: 10.3384/ecp17142312       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



in (Tomperi et al, 2017), resulted as a suspended solids
model with only one on-line optical monitoring variable
(fractal dimension) and six process measurements
(influent total nitrogen and sulphate, mechanically
treated wastewater iron and nitrate nitrogen,
temperature and anoxic proportion). Plausible reason is
the lower variance of the optical monitoring variables,
which shows in variogram as lower error-estimate and
lower value of criterion. The earlier data analysis also
showed that the quality parameters of biologically
treated wastewater (BOD, COD, SS) have high mutual
correlation and follow the changes of the temperature:
the quality of treated wastewater was good in summer
time when wastewater was warmer. The optical
monitoring parameters also have several mutual
correlations. For example, at summer time the amount
and length of filaments was low, flocs were larger, the
roundness of flocs was higher and the number of objects
was lower (Tomperi et al, 2017). Hence, several
variables in Table 1 have high mutual correlations which
affect the results of model validation.

Seven input variables (n=7, 1-7 in Table 1) were
selected for developing linear models for suspended
solids, BOD and COD in biologically treated
wastewater. The fitness of the models was predicted
using 5-fold cross-validation. The results of modeling,
the R2 and RMSE values, and the regression coefficients
of each developed model, are presented in Table 2. The
results presented here can be considered satisfactory
although in (Tomperi et al, 2017) the R2 values of the
SS model were between 0.79 (received using the genetic
algorithm subset variable selection) and 0.71 (received
using the correlation based variable selection), and the

RMSE values were between 0.47 and 0.55. In the same
study, the R2 values of the BOD model were between
0.55 and 0.45, and R2 values of the COD model were
between 0.56 and 0.45.

The performance of variogram-based model for
suspended solids in biologically treated wastewater is
presented in Figure 2, together with the correlation-
based model from the earlier study (Tomperi et al,
2017). All models developed using input variables
selected by the variogram method have the most
difference to the measured value of BOD, COD and SS
at the same point: between 10-20 data point and around
40 and 75 data point. The visual interpretation also
indicates that the modeling results with the variogram
based variable selection contains less fast fluctuations.

The results of this study show that the variogram
based tool has potential in selecting input variables for
developing predictive models of treated wastewater
quality even though the performance of the models was
not as high as in the earlier study. Expert knowledge is
required to improve the performance of the models.
However, it should also be noted that the computational
effort of variogram-based variable selection was
minimal (less than 0.5 sec.) and implementation of the
method was considerably easier than for example with
genetic algorithm and successive projections algorithm,
whose computational time was tens of minutes.
Although the variogram-based variable selection has
limited performance in the tested dataset, the method is
seen interesting as it could also be developed into a
recursive variable selection method due to its
computational performance.

Table 2. The modeling results and the regression coefficients of input variables
Variable R2 RMSE b0 b1 b2 b3 b4 b5 b6 b7
BOD 0.45 0.71 -0.64 0.47 0.67 0.09 -0.08 0.60 0.12 -0.11
COD 0.37 0.75 -0.35 -0.43 0.39 0.22 0.02 0.37 0.49 -0.13
SS 0.60 0.64 -0.61 -0.47 0.33 -0.25 0.15 0.52 0.67 -0.20

Figure 2. Measured and predicted suspended solids in biologically treated wastewater as scaled values, A) variogram
based selected variables, B) correlation based selected variables (Tomperi et al, 2017).
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4 Conclusions
In  this  study,  a  variogram  method  was  utilized  as  a
variable selection tool. Selected variables were used as
input variables in predictive models of BOD, COD and
suspended solids, which are important and critical
quality parameters of the wastewater treatment process
efficiency. Dataset included process measurements and
the results of a novel optical monitoring method from a
period of one year. Five-fold cross-validation was used
to evaluate the performance of the developed models.

The presented results of variable selection show that
the variogram based tool has potential in selecting input
variables for developing predictive models of treated
wastewater quality even though the fitness of the
developed models was not as high as in the earlier study.
The variogram method is, however, easier to implement
and faster to use than some traditional variable selection
methods. Nevertheless, the results can be considered
satisfactory and the developed models can be used for
proactive monitoring and estimating the quality of
treated  wastewater  in  several  stages  hours  before  in
comparison to laboratory analysis taken from the treated
water.
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