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Abstract
In wastewater treatment, the dewatering of sludge is one
of the most important steps, because it affects largely in
both the process economics and the costs of sludge
disposal. To optimize the dewatering processes, it would
be beneficial to be aware of the different water types
present in the sludge. In addition to free water, generally
there are also mechanically, physically and chemically
bound water within the sludge. All these water types
behave differently when the sludge is dried, and they all
require a different amount of energy when being
removed. In this study, the Independent Component
Analysis (ICA) method has been applied to an analysis
of NMR (Nuclear Magnetic Resonance) relaxation data
obtained from the measurement of wastewater sludge
samples with a known moisture content. The results
strongly suggest that the ICA method can be used for
determining the amount of different water types within
the wastewater sludge without a priori knowledge on
their shares.
Keywords: independent component analysis, water
content, nuclear magnetic resonance, sludge, relaxation
decay

1 Introduction
Sludge is a semi-solid by-product remaining after
wastewater treatment, industrial or refining processes. It
is a separated solid suspended in a liquid,
characteristically comprising large quantities of
interstitial water between its solid particles (Global
Water Community, 2015).  This material can be dried to
reduce its volume and to remove most of the moisture
content of the solids within the sludge (Global Water
Community, 2015). In wastewater treatment, the
dewatering of sludge is one of the most important steps,
because it affects largely both the process economics
and the costs of sludge disposal.

It is suggested by several authors that the moisture in
activated sludge can be classified to the following four
categories (Kopp & Dichtl, 2000; Vesilind 1994; Tsang
& Vesiling, 1990; Vesilind & Hsu, 1997; Smith &
Vesiling, 1995):

 Free water: water which is not bound to the
particles, including void water not affected by the
capillary force.
 Interstitial water: water bound by capillary forces
inside crevices and interstitial spaces of flocs.
 Surface water: water bound to the surface of solid
particles by adhesive forces.
 Bound intracellular water.

This is a widely accepted classification and can be used
as the reference in determining the main water types of
sludge.

Another classification of water types in sludge is to
divide it in three groups, i.e. 1) free water, 2)
mechanically bound water, and 3) physically or
chemically bound water. The free water in sludge can be
easily removed by mechanical means, whereas the
bound water is held firmly within the floc, bound to the
sludge or trapped between the sludge particles, and thus
cannot be easily removed (Jin et al., 2004). The bound
water can be further divided into chemically or
physically bound water which is removable only by
thermal drying, and mechanically bound water which is
bound by weaker capillary forces (Colin & Gazbar,
1995).

In summary, it has to be emphasized that determining
the water types is not straightforward, and based on the
literature it is difficult to reach an unambiguous
interpretation on the distribution of water within
activated sludge (Vaxelaire & Cézac, 2004).
Furthermore, there seem to be no studies concentrating
on the analysis of water types in sludge without a priori
knowledge of the shares of different water types.

Time domain nuclear magnetic resonance method
(TD- NMR) is also becoming highly attractive for
industrial applications due to relatively low price,
mobility, easy operating, and simple sample preparation
procedure. The most successful applications of TD-
NMR confirmed by international standards are solid fat
content determination in food and water (ISO 8292) and
oil content in oilseeds (ISO 10565). They are based on
the difference of NMR parameters of water and lipids
and a low exchange degree between these two fractions.
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A possibility to use the same principle for analysis of
lipid content in microalgae (Gao et al., 2008), for
analysis of oil content of olive mill wastes and
municipal wastewater sludge (Willson et al., 2010) was
demonstrated. Effects of flocculation on the bound
water in sludge as measured by the NMR spectroscopy
has been studied by Carberry and Prestowitz (1985).

Moreover, the international standard for hydrogen
content determination in aviation fuels (ASTM D7171 –
05, 2011) has been developed recently. Metal ions,
particularly paramagnetic ions, can also change
significantly relaxation times in water and biological
samples (Yilmaz et al., 1999; Grunin et al., 2013) which
can be applicable when controlling wastewater
treatment. Time domain NMR data have also been used
in analyzing the water contents of wood and peat based
fuels (Nikolskaya et al., 2011) and monitoring the
precipitation of metals in mine waters (Nikolskaya et al.,
2015).

Independent component analysis (ICA) is a statistical
method that has been successfully applied to a variety of
problems in signal processing (Hyvärinen et al., 2001).
For example, the method has been applied to a variety
of problems in several fields such as brain imaging
(Pulkkinen et al., 2005; Calhoun et al., 2002), vision
research (Zhang & Mei, 2003; Ameen & Szu, 1999),
telecommunications (Ristaniemi & Joutsensalo, 1999)
and financial research (Kiviluoto & Oja, 1998; Back &
Weigend, 1997). ICA is a method for extracting
underlying, fundamental factors or components from
multivariate data. It is designed so that it searches for
components that are both statistically independent and
non-Gaussian (Hyvärinen et al., 2001), which makes it
a distinguished method among the other techniques.

The complexity of spectral information can be
approached by assuming that the obtained spectra are
statistically independent. Principal component analysis
(PCA) is the standard approach to analyze spectral data
(Hyvärinen et al., 2001). PCA is based on second-order
statistics, which is applicable in the analysis of Gaussian
distributed data. However, spectral data can comprise
interesting information having a non-Gaussian
distribution that can potentially be analyzed with ICA.

In the present study, the ICA method has been applied
to an analysis of NMR relaxation data obtained from the
measurement of wastewater sludge samples with a
known moisture content.

2 Materials and methods
2.1 NMR measurements
The seven sludge samples (See Table 1) were obtained
from an industrial waste water treatment plant. The
samples were gathered after the dewatering stage of the
process. The water contents of samples were measured
using the standard oven drying method.

Relaxation times measurements were done using a
mobile NMR device with a 1H resonance frequency of
25.7 MHz (Resonance Systems Ltd). The device has
been modified for online measurements in industrial
conditions. The permanent magnet of 0.6 T has
dimension of 140 190 150 mm weighting 19 kg. The
diameter of sensor hole was 10 mm. CPMG (Carr-
Parcell-Meiboom-Gill) pulse sequence for spin-spin
relaxation time T2 measurements was used.

Table 1. Description of sludge samples

Sample ID Water content [%]

Sample 1 54
Sample 2 68
Sample 3 75
Sample 4 79
Sample 5 83
Sample 6 85
Sample 7 89

2.2 Independent Component Analysis
It is assumed here that there are n observed signals (i.e.,
types of water), WS1, WS2, ..., WSn in the data, which
are linear combinations of m independent components,
IC1, IC2, ..., ICm. The equation for ICi can be written as:

= + + +

= (1)

where i =  1,  2,  ..., n and the aij are real coefficients
(contributions of ICs). The independent components,
ICj, and also the corresponding coefficients, aij, are
unknown.

The statistical model in Eq. (1) is called the
independent component analysis model (Hyvärinen et
al., 2001). The ICA model is a generative model that
describes how the observed data are generated by a
process of mixing the components ICi. Both ICi and aij
need to be estimated using the observed data. The
starting point for ICA is the assumption that the
components ICi are statistically independent, which can
be concluded from non-gaussianity (Hyvärinen et al.,
2001). Here, a fixed-point algorithm (Fast-ICA) was
used as an implementation of ICA (Hyvärinen et al.,
2001). The analysis was performed using the Fast-ICA
toolbox under the Matlab software platform
(Mathworks, Natick, MA, USA).

After the analysis, the relative shares of each
component can be calculated using the following
formula:

, = × 100 (2)
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3 Results
The original NMR measurement signals can be seen in
Fig. 1. It can be seen that there is a clear dependency
between the amplitude of the signal and the moisture
content of sludge samples. The gained NMR relaxation
data were then analyzed by the ICA method based on
the Hyvärinen’s fixed-point algorithm (Hyvärinen et al.,
2001). Several numbers of ICs were tested, and three
ICs were eventually used, because this setting was found
to yield the most consistent and stable results. The three
independent components (IC) can be seen in Fig. 2. It
can be seen that all three ICs have their own,
independent behavior.

According to theory, the share of bound water from
the total amount of water remains stable in the sludge
when the water content is increased from 0 on to a
certain point (See Fig. 3, above). After this point, other
types of water start to accumulate. When moisture
content is 100%, all water is considered to be in a free
form, but when the sludge is dried, the share of free
water decreases dramatically, and the share of bound
water increases. The share of the so called interstitial
water (bound by weaker capillary forces) reaches its
highest value at around 70 – 90 % moisture content.

In Fig. 3 (below), the calculated relative shares of
different water types as a function of the total water
content of the samples can be seen. It can be seen that
the measured and analyzed values roughly follow the
theoretic values and thus support them.

Figure 1. The observed NMR measurement signals (WS)
from the 7 samples. WC = the water content of sample.

Figure 2. The three independent components (IC)
computed from the NMR relaxation data.

Figure 3. Theoretic (above) and calculated (below)
relative shares of different water types as a function of the
total water content of the samples.

4 Discussion
Measurement of the different water types in sludge is an
exceptionally challenging problem, and to our
knowledge this has not been tried before. In this respect,
the results are extremely promising.

ICA is a universal statistical technique in which
observed data are linearly transformed into components
that are maximally independent from each other. A key
issue in using the ICA method is to decide the number
of ICs to be estimated. For the data set used, only the
physically meaningful components were chosen. Our
results support the use of three independent components
in this case. This suggests that there are three types of
signals in this data.

There is no universal truth on how many water types
are present in sludge. The four water types including
free, interstitial, surface and bound water, are widely
accepted, but also other viewpoints exist. In this
particular case three independent components could be
most easily extracted from the NMR relaxation data.
This suggests that there are three signals that are
maximally and statistically independent when it comes
to their spectra, but this does not mean that there could
be more water types present as well.

Based on the results it seems that the combination of
time-domain NMR and ICA can be used for determining
the amount of different water types within the
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wastewater sludge. It is also beneficial that the ICA
method does not require a priori knowledge on the water
types and their shares in the sludge. This makes it very
specific and a promising approach to optimize the
dewatering processes of sludge.

5 Conclusions
Based on the results it can be concluded that
incorporating ICA into data analysis allows for
decomposition of independent, systematically occurring
patterns in NMR relaxation data.  This new information
can be used for guiding further study and may lead to a
way of extracting the shares of different water types in
wastewater sludge. This would help in making the
sludge dewatering more economical and in reducing the
costs of sludge disposal.
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