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Abstract 
Firing accuracy is an important index in the 

performance evaluation of electromagnetic railgun 

(EMRG). Based on a Six-DOF (degree of freedom) 

computer model of exterior trajectory, Sobol’s method, 

a global sensitivity analysis approach, is utilized to 

analyse the influence of multiply model inputs with 

uncertainty on the strike accuracy of EMRG projectile. 

The method utilizes the firing data error and the 

dispersion error as the firing accuracy assessment 

factors of the projectile, and the input data are sampled 

based on Latin Hypercube Sampling (LHS). 

Furthermore, an example is provided, in which Sobol’s 

method is applied in the analysis and calculation of the 

exterior trajectory. First-order sensitivity and total 

sensitivity of each factor are obtained, and then we 

identify the impact mechanism and interaction of 

different input parameters having on firing accuracy. 

Finally the results verify that the method is feasible and 

effective in the process of performance analysis of 

EMRG exterior trajectory. 

Keywords: Sobol’s method, firing accuracy, sensitivity 

analysis, EMRG 

1 Introduction 

Electromagnetic railgun (EMRG) is a typical 

representative of the electromagnetic emission 

weapons. As a new concept of weapon-system, EMRG 

has the advantages of quick response, hypersonic speed, 

and high damage efficiency for remote ground target 

strike mission (Fair, 2009; Ma, 2007) compared with 

conventional guns. And firing accuracy is an extremely 

important indicator to measure the operational 

performance of the EMRG. Nowadays, especially with 

the rapid development of science and technology, the 

accurate attack of railguns is strongly stressed by each 

country’s military personnel (Fair, 2005). It’s 

extremely necessary and urgent to analyze the shooting 

accuracy of the EMRG accurately. 

Currently, the domestic and foreign research on the 

analysis of firing accuracy of EMRG is still in infancy. 

Shared research about EMRG system firing accuracy 

analysis is limited. Most of the studies concentrated on 

the analysis of guns system problems. Guo had in-

depth research in detail in artillery weapons system. 

Reference (Guo, 2001) described the calculation 

method of gun’s firing accuracy and the influence of 

various factors on the firing accuracy. But for the 

EMRG system, there are few complete solutions to 

analyze its firing accuracy precisely. Therefore, 

figuring out how to analyze the EMRG firing accuracy 

exactly is essential. 

As an important tool for modeling, sensitivity 

analysis can let the modeler know the influence of the 

model parameters and inputs to the model outputs. It 

can be utilized effectively in modeling, model testing, 

and model calibration. There are a lot of classification 

methods about the sensitivity analysis, among which 

the basic idea of Sobol’s global sensitivity analysis 

method is to study the effect of variance of the inputs 

parameters to the variance of outputs, using integration 

to describe the sum of progressive increase items 

factorized by system functions, then calculate ratios of 

the total variance to each partial variance to get the 

accuracy after sampling (Sobol, 2013). Compared to 

other methods of sensitivity analysis, Sobol’s method 

can calculate different order sensitivity more efficiently 

and accurately, and it can also get the impact index, 

named total sensitivity which reflects the interaction of 

all factors. Thereby we can analyze the influence of 

each factor having on EMRG firing accuracy. 

Sobol’s method is widely applied in the field of 

economy, environment and climate (Yu, 2004). In this 

paper, we analyze the firing accuracy of 

electromagnetic railgun exterior trajectory by Sobol’s 

method. Taking six factors as the research objects, such 

as the quality, muzzle and velocity, the first-order 

sensitivity and total sensitivity of each factor are 

calculated by the method. In the end, the influence 

mechanism of various factors on firing accuracy and 

the interaction among them is gained. The process 

verifies that Sobol’s method is feasible in the process 

of accurate analysis and provides a foundation for 

optimizing EMRG’s performance. 

2 Exterior Trajectory Simulation of 

Electromagnetic Railgun 

The model of EMRG exterior trajectory describes the 

process of projectiles’ movement after leaving the 

railgun with a high speed in the atmosphere (Keshmiri, 
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2004; Keshmiri, 2007). It is the foundation of exterior 

trajectory simulation and the characteristic analysis of 

trajectory. The paper considers EMRG’s shooting 

range, high altitude flight, the variation of the earth 

curvature and gravitational acceleration. The Six-DOF 

model of projectiles is built in the paper. In the model, 

the projectile of the EMRG is considered as a particle, 

and Six-DOF motion equations are established. Those 

are dynamic equations of projectile’s centroid, 

dynamic equations around the centroid, kinematics 

equations of the centroid, kinematics equations around 

the centroid and the relevant initial parameters. Run the 

simulation program, corresponding EMRG exterior 

trajectory simulation results can be got. 

2.1 Simulation Framework 

The diagram of the simulation process is shown in 

Figure 1. By setting the initial projectile conditions and 

flight termination conditions to limit projectiles flight 

process, the projectile’s flying state in each simulation 

step is determined by calculating atmospheric 

parameters and flight parameters of the projectile. 

After confirming EMRG exterior trajectory simulation 

process, the MATLAB programming language is 

utilized to achieve it. 

Start

Initialize factors

Set the termination 

conditions

If  reach termination 

conditions?

Six-DOF model 

Air dynamics  and 

torque model

Motion state of the 

next moment

Save the data

Simulation clock 

pushing

End

Yes

No

 

Figure 1. Electromagnetic railgun exterior trajectory 

simulation process. 

2.2 The Experimental Design Method 

In order to ensure the reliability of the projectile firing 

accuracy analysis which is based on the Six-DOF 

model, reasonable experimental design method should 

be chosen. Latin Hypercube Sampling (Deng, 2012) is 

employed in the paper. The method has great one-

dimensional projection and stratified distribution 

characteristics, which can cover upper and lower limits 

of the probability distribution uniformly and distribute 

random number to each interval evenly. In this way, 

sampling frequency declines and the result remains 

stable. A lot of duplicate sampling work can be 

avoided, which improves efficiency of sampling (Ding, 

2013; Zhong, 2009). The basic steps of LHS are as 

follows. 

Set the objective function 

                               y f x                                      (1) 

where y is a output variable, f is a definite function 

model,  1 2, , ,
T

kx x x x  is input variable, k is the 

number of input variable. Each input variable

 1 2, , ,
T

kx x x x  subjects to a known probability 

distribution function  i iF x . First of all, the input 

variable ix should be sampled randomly. When random 

sampling, M random numbers should be generated 

between 0 and 1 firstly, and then transform them using 

the equation as follows 

                   1mU U M m M                             (2) 

where 1,2, ,m M ,U is a random number between 0 

and 1. mU are the random numbers in the m’th interval. 

Depending on equation(2), obviously, there is only 

one generated number in each interval. Because 

  1 mm M U m M                                (3) 

where  1m M  and m M are the lower bound and 

upper bound of the m’th interval. 

LHS strictly ensures the entire area was uniformly 

sampled, and it is almost impossible to sample 

repeatedly. Therefore, the method can convergence to a 

smaller sample size. 

3 The Analysis of Electromagnetic 

Railgun Firing Accuracy 

Electromagnetic railgun firing accuracy is influenced 

by multiple factors, and the influence of various factors 

is not identical. Meanwhile, there may be a certain 

coupling relationship between different factors. Thus, it 

is significant to analyze the impact of various factors 

on projectiles’ firing range and direction, confirm the 

main factors. This section introduces the definition of 

firing accuracy, and gives the overall process of 

electromagnetic railgun firing accuracy analysis. 
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Figure 2. Process of electromagnetic railgun firing 

accuracy analysis. 

3.1 Firing accuracy 

In order to facilitate the research of the electromagnetic 

railgun firing accuracy, suppose that the shooting target 

of the electromagnetic railgun is on the ground, which 

is shown in Figure 3. 

Assuming that the origin O is the shooting center, 

the deviation between projectiles average placement 

and shooting center is , the coordinates relative to the 

shooting center are ( , )X Z .The deviation between each 

projectile placement and shooting center is  , the 

coordinates relative to the shooting center are ( , )x z . 

The deviation of between each projectile placement 

and their average placement is r .For each projectile, 

the deviation between each projectile placement and 

shooting center  can be expressed 

 r                                       (4) 

where  is the firing error,   is the dispersion error, r  

is the firing data error. They can be written as 

  ,
T

x z                                      (5) 

 ,
T

x z  
 

                                    (6) 

  ,
T

r r rx z                             (7) 

where x and z are the components of the firing error in

x axis and z axis; x and z are the components of the 

dispersion error in x axis and z axis; rx and rz are the 

components of the firing data error in x axis and z axis. 

In the paper, the firing accuracy of projectiles is 

described by the components of the firing data error in 

x axis and z axis  x , z and the components of the 

dispersion error in x axis and z axis xE , zE . 

 

Figure 3. Projectile’s firing error. 

3.2 Sobol’s Method 

Sobol’s method is based on the idea of model 

decomposition, 1, 2 times and higher sensitivity can be 

got through it (Sobol, 2013). Usually first-order 

sensitivity reflects the main influence parameters, and 

second order and higher sensitivity reflect the 

sensitivity among the parameters. To describe Sobol’s 

method, firstly, one k dimension unit k  should be 

defined as the spatial domain of input parameters 

(Saltelli, 2012). The main idea of Sobol’s method is 

dividing the function  f x into some progressive 

increase items. 

1 2 0 ,

1 1

1,2, , 1 2

( , , , ) ( ) ( , )

( , , , )

k

k i i i j i j

i i j k

k k

f x x x f f x f x x

f x x x                

   

   



 

  

 (8) 

where (x)f can be divided by multiple integral. In 

equation (8), f0 is a constant. So we have 

 
1 1 2

1

, i
0

( , , , )d 0
s s ki i i i if x x x x                     (9) 

From equation(8) and equation(9), each item is 

orthogonal, that is if    1 2 1 2, , , , , ,s li i i j j j , then 

 
1 2 1 2, , , , , 0

k s li i i j j jf f dx


                      (10) 

Thus  

  0 k
f f x dx


                               (11) 

The decomposition of equation(8) is unique, and 

each item can be got from multiple integral 

      
1 1

0
0 0

~i if x f f x dx i                  (12) 

         
1 1

, 0
0 0

, ~i j i j i i j jf x x f f x f x f x dx ij      
(13) 

where ~x i ,  ~x ij are the variables, except ix and 

variables except ix and
jx , respectively. 

The total square deviation of (x)f is D 
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  2 2

0k
D f x dx f


                         (14) 

The partial variance can be got though each items in 

equation (8). 

 
1 2 1 2 1 2 1

1 1
2

, , , , , ,
0 0

, x , ,
s s s si i i i i i i i i i iD f x x dx dx    (15) 

where 11 si i k    and 1,2, ,s k .Calculate the 

integral of equation (15) squared in the region of k
 

and from equation, we obtain 

 , 1,2, ,

1 1

k

i i j k

i i j k

D D D D
   

                 (16) 

Thus, sensitivity
1 2,i , , si iS can be described as 

  
1 2 1 2,i , , ,i , , 1= , 1

s si i i i sS D D i i k         (17) 

Therefore, iS is called the first-order sensitivity,
,i jS  

is the second-order sensitivity, By that analogy total 

sensitivity TiS is 

 
1 1 2

1 1

2

1 2

, , , 1,2, ,kTi i i j i j j

i j i j
i j
j j

S S S S S
 




                (18) 

In the process of applying Sobol’s method, to 

calculate the first-order sensitivity coefficient and total 

sensitivity coefficient of factors (Tarantola, 2012), 

assuming the gained sample N rA  , N rB  from LHS, 

where N is sample size, k is the factor number, some 

equations are given like that 

  0

1

1 N

j
j

f f A
N 

                               (19) 

  2 2

0

1

1 N

j
j

V f f A
N 

                            (20) 

     2

0

1

1 N
i

i Aj j
j

V f f A f B
N 

                       (21) 

     2

0

1

1 N
i

i Bj j
j

V f f A f A
N





                     (22) 

where under the condition of A is unchangeable, 

change the i'th column of B into A to get 
 i
BA , and the 

same method to get
 i
AB .Thus the first-order sensitivity 

coefficient iS and total sensitivity coefficient TiS of the 

parameter i can be written as 

 i iS V V                                    (23) 

 1Ti iS V V                                  (24) 

4 Case study 

In order to verify the effectiveness of the Sobol’s 

method for the analysis of firing accuracy, in this 

section, the Sobol’s method is applied in EMRG 

exterior trajectory sensitivity analysis. And the 

influence of each input factor on the firing accuracy is 

obtained. With the purpose of researching the influence 

of model output (ballistic range, m) according to the 

uncertain input factor of the model, six factors, which 

are mass, initial velocity, initial shooting angle, initial 

drift angle, y rotational angular velocities, and z 

rotational angular velocities may have an impact on 

ballistic range are extracted based on the prior 

knowledge, which is shown in Table 1. 

Since a large number of interference parameters, in 

order to simulate the real environment, random wind 

along the positive direction of the Z axis is added to the 

model. After that 500 groups of testing conditions are 

designed by LHS. Take the series of testing conditions 

into the EMRG ballistic model, this series of processes 

are completed by simulation in MATLAB, scatter 

diagram is shown in Figure 1. 

Table 1. Scope of Each Factor. 

No. Name of factor symbol units value range 

1 mass m kg [9.9,10.1] 

2 initial velocity v m/s [1990,2010] 

3 initial shooting angle   rad [0.8373,0.9769] 

4 initial drift angle   rad [-0.001,0.001] 

5 y rotational angular velocities yw  rad/s [-0.001,0.001] 

6 z rotational angular velocities zw  rad/s [-0.001,0.001] 

Table 2.  Experimental Result of Longitudinal Dispersion. 

Factor Names m v     yw  
zw  

First-order Sensitivity 0.2197 0.5851 0.5016 0.1359 0.1460 0.1440 

Total Sensitivity 0.1931 0.2762 0.4432 -10
-5 

-0.0014 0.0111 

Table 3. Experimental Result of Lateral Dispersion. 

Factor Names m v     yw  
zw  

First-order Sensitivity -0.013 -0.012 -0.014 0.9935 -0.013 -0.014 

Total Sensitivity -0.001 0.0046 0.0013 1.0101
 

0.0013 10
-5
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Figure 4. Scatter diagram of experiment. 

The influence of each factor on the firing accuracy 

in two directions cannot be got from the simple scatter 

diagram. So we need the calculation of Sobol’s method. 

The simulation in MATLAB needs to be run

6 2 1 500  （ ） times. Analyze longitudinal dispersion 

and lateral dispersion, respectively. The experimental 

results are shown in and Table 3. 

Transform the tables into histograms, as shown in 

Figures 5 and 6. From Table 2 and Figure 5, we can 

draw the conclusion that each factor has influence on 

the longitudinal dispersion and the influence degree is 

different. First-order sensitivity and total sensitivity of 

initial velocity, initial shooting angle and mass are 

large. Though comparing the first-order sensitivity and 

total sensitivity, it is explicit that influence of velocity 

on longitudinal dispersion decreases obviously under 

the comprehensive effect of multiple factors. On the 

contrary, the influence caused by the initial shooting 

angle and mass is mainly not affected by other factors. 

Furthermore, the sensitivity of the latter three factors is 

close and small. And there is poorly impact on 

longitudinal dispersion after they interact with other 

factors. In conclusion, there are three main influencing 

factors, initial velocity, initial shooting angle and mass 

under the designed experimental condition. 

It is clear from Table 3 and Figure 6 that the first-

order sensitivity and total sensitivity of initial drift 

angle all are largest (close to 1), and the sensitivity of 

other factors is very little (close to 0). It turns out that 

for the lateral dispersion, the impact of the initial drift 

angle is extremely significant and basically there is no 

effect on other factors. So in the process of testing the 

firing accuracy on lateral dispersion, initial drift angle 

should be taken into account particularly. 

The first-order sensitivity in the table reflects the 

individual effect of each factor and the total sensitivity 

reflects the interaction among factors. It describes the 

effect of one factor on the firing accuracy under the 

interaction of other factors. Furthermore, the first-order 

sensitivity and the total sensitivity of each factor are 

different, which shows the interaction between the six 

factors is disparate.  

 

Figure 5. Result of longitudinal dispersion. 

 

Figure 6. Result of lateral dispersion.

5 Conclusions

In this paper, the Sobol’s method, a global sensitivity

analysis approach, is applied to analysis of EMRG

exterior trajectory firing accuracy. Single influence and

interaction among each factor can be analyzed using

the method, especially in the analysis which has much

uncertain impact factors, a wide range of design

parameters and obvious interactions between each

factor. Simulation analysis results using Sobol’s

method show that various factors have different impact

on firing accuracy of EMRG exterior trajectory, which

verifies that Sobol’s method is feasible and effective

for firing accuracy of it. Finally the impact mechanism

of each input factor on the firing accuracy and the

interaction among them is obtained. In this paper, the

simulation of EMRG exterior trajectory, data collection

and application of Sobol’s method are all implemented

in MATLAB. It is easy to achieve, but the simulation

needs to take a long time. In order to improve it and

make firing accuracy analysis faster and more accurate,

EMRG exterior trajectory simulation and data analysis

tools based on C++ and Visual Studio 2010 will be

designed and achieved in the future.
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