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Abstract
A simulation model of a paraglider flight is presented in
this paper. The dynamics of the paraglider trajectory, as
well as its twist angle are governed by a complex interplay
between gravity and drag force. Differential equations de-
scribing this dynamical behaviour are developed by bal-
ancing all the forces and torques acting on the system. The
developed model allows to compare different flight situa-
tions and find out optimal values of the parameters, which
may be used in further steps for example optimization of
the towing process. Simulation results of the paraglider
launch process using a vehicle unreeling winch and sub-
sequent gliding under different wind conditions are com-
pared with real data.
Keywords: paraglider, gliding flight, towing process,
aerodynamics, simulation, modelling

1 Introduction
In the 1960s, a hype about paragliding started in Eu-
rope. The performance of gliders increased significantly
and the crafts were easier to control due to advanced de-
signs. This was a major step towards making the flight
safer (Currer, 2011). However, the development of mod-
ern paragliders, the ones we know today, needed a long
time. There are some competitions in different disciplines
as well, whereby aerial acrobatics like spiral dives or full
stalls are often performed (Whittall, 2010). Most pilots
drive to big mountains like the Alps to enjoy paragliding.

2 Basics

2.4.2 Pay-out Towing

Unreeling winch

Vehicle

Pilot

Towline

Suspension lines

Paraglider

Figure 5: Pay-out Towing [15]

Figure 5 shows a simple structure of an unrolling winch mounted on the back of a vehicle. Here, it is
important to mention that the car must drive faster than the pilot �ies at every time to unwound the
towline permanently. The force of the rope Frope has to be checked permanently and can be regulated
by a brake. At the start, a small rope force is used. It is raised smoothly until weight. If the force is
increased too quickly, the angle of attack α rises rapidly and could lead to a stall. At this point, the
canopy collapses and cannot generate the necessary lifting force FL anymore.

For a paid-out towage process, three people are needed. One operates the winch and controls the
rope force Frope. The second is the start leader. He supervises the ongoing action and leads the
communication. He is responsible for the safety and has to stop the towing in an emergency situation
to avoid serious injuries. The winch operator and the start observer interact with each other over small
walkie-talkies or special hand signs. But in most of the cases audio systems are more comfortable to
use and therefore gained widest acceptance. The third person is the pilot who �ies with the paraglider.

Advantages
An unreeling winch is used because it enables the increase of the towline length within �ying. This has
a few advantages related to the stationary winch. The �rst point is that a bigger altitude is reachable.
The higher the clip-out height is, the longer the time for the pilot is for searching for rising air called
thermal. The second point is that the energy consumption is approximately a tenth of a stationary
winch caused by the movement of the vehicle. A less powered motor with approximately 1 kW power is
su�cient. The speed di�erence between vehicle and pilot vvehicle−vGS,x is crucial for the performance
(see section 2.5). Consequently the bene�ts of an unreeling towards a normal stationary winch are
higher.

2.5 Electric Motor

At the power train of a pay-out towing process, an electric motor is utilised (see section 2.10). This
allows to drive the motor in two directions. The power of the winch Pwinch equals the winch force

Fwinch multiplied by the derivation of the rope length after the time
dlrope

dt
whereby svehicle(t), sx(t)

and h(t) depend on the time t (see Figure 6 or 7).

Pwinch = −Fwinch ·
dlrope

dt
= −Fwinch ·

d

dt

√
[svehicle(t)− sx(t)]2 + h(t)2

︸ ︷︷ ︸
lrope

(2.3)

6

Figure 1. Winch tow launch.

Potential energy or a start altitude is transformed into
kinetic energy to bridge distances as long as possible. This
process is called "gliding flight". But there is an alterna-
tive method for paragliding as well. The so called winch
tow launch can also be used in lowlands (see Figure 1).
With the help of an unreeling winch mounted on the back
of a vehicle the pilot is pulled into the air. Various param-
eters can be influenced during this process to reach the
best possible outcome. A simulation model of the towing
procedure can be helpful for optimisation of the process.

The standard reference written by Janssen et al. (2013)
for paragliders and hang gliders provides guidelines about
different security measures to prevent hazard situations.
Consequently, it is an ideal guide for trainee pilots as well
as experienced gliders. Whittall (1995) introduced ba-
sic flying techniques and presented additional information
about equipment, weather and soaring. Over the years,
the aerodynamics and flight mechanics of paragliders im-
proved continuously and the fundamentals of fluid me-
chanics as well as the involved physical processes are
nowadays well understood (Oertel, 2005). A detailed de-
scription of the effective forces acting on the paraglider
and the pilot during a gliding flight can be visualised with
the help of a free body diagram (Voigt, 2003). This free
body diagram can be augmented in order to describe the
so-called towing process (see Figure 1), whereby the pi-
lot starts from the ground and is lifted into the air (Fahr,
1992). A polar curve, also named as Lilienthal Curve
(Karbstein, 1996), describes the ratio of sink velocity to
air speed in x-direction for a specific glider under different
operating conditions. It allows, as a decisive advantage, to
predict the glider’s performance (Currer, 2011).

In spite of all the improvements and understanding of
physical phenomenon and parameters, there is no com-
plete model available, which could be employed to sim-
ulate the dynamical behaviour of the system. The aim of
this contribution is to derive such a mathematical model.
It could be used to simulate the system behaviour in tow-
ing and gliding states. This could lead on one hand to
analyse the performance, safety and stability of paraglid-
ers and to optimise the towing process on the other hand.
This paper is organised as follows. A complete mathemat-
ical model of the system is derived in section 2. How this
model can be parametrised, is discussed in section 3. Sec-
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tion 4 presents some simulation results, while conclusions
and a brief outlook are given in section 5.

2 Modelling
In order to develop the model a simplified free body dia-
gram of the whole system is drawn in Figure 4. The mass
of the paraglider mg and the mass of the pilot Mp are as-
sumed to be connected to each other rigidly. The aim is to
derive differential equations describing translational and
rotational dynamics of the system. A coordinate system
"CS" is displayed next to the figures to define the positive
axes and angles.

2.1 Centre of Gravity
The centre of gravity G is the point at which the sum of
all torques due to gravitational forces equals zero. The two
torques involved are the torque due to the weight of the pi-
lot and the torque due to the weight of the paraglider. Con-
sequently, the distance lMG can be determined (see equa-
tion (2)). With this information, lGm is calculable with
the help of the length of the suspension lines lline as well
(equation (3)). The line length is known from the data
sheet provided by a paraglider manufacturer which is used
as a reference glider in the simulation.

Mp ·g · lMG = mg ·g · (lline− lMG) (1)

⇔ lMG =
mg · lline

Mp +mg
=

mg · lline

mt
(2)

lGm = lline− lMG (3)

2.2 Aerodynamic Forces
Aerodynamics deal with forces caused by air flow around
an object. Typical forces and angles of a paraglider in
static conditions are shown in Figure 2. The notational
symbols are explained in Table 1. The weight FW,t points

mt

·

· −β

α

FL
FW,t

vsink

vTAS,x

Angle of glide

Angle of attack

x

y

α, β, ϕ

CS

FD,t

~vTAS

1

Figure 2. Aerodynamic forces.

vertically downwards and is compensated by the total
aerodynamic force which is the resultant of the lift force
FL and the drag force FD,t . They are perpendicular to each
other whereby FL creates the lift to glide through the air.
The drag force FD,t is directed contrary to the direction of
movement. Drag is caused by friction between paraglider
and air and converts a part of the energy into losses. The

Table 1. Notations.

Symbol Description
FD,t Drag force
FL Lift force
FW,t Weight
TD,g Paraglider torque caused by

drag force
TD,p Pilot torque caused by drag

force
TL Torque caused by lift force
Tres Resultant torque clockwise
Tstart Start torque

half density of the air ρair
2 multiplied by the squared true air

velocity (vTAS)
2 yields the dynamic pressure pdynamic of

the air. The total drag force of a paraglider FD,t is equal to
the dynamic pressure pdynamic multiplied by the projected
area Apro ject and the drag coefficient cd,g of the paraglider
(Anderson, 2005).

FD,t = cd,g ·Apro ject ·
ρair

2
· (vTAS)

2

︸ ︷︷ ︸
pdynamic

(4)

Figure 2 displays how the total drag force FD,t , under the
assumption of static conditions, alternatively can be deter-
mined. It means that no acceleration force has an affect
on the system. The drag force FD,t equals the total weight
FW,t multiplied by the sine of the negative angle of glide
sin(−β ), which in turn is the sink velocity vsink divided by
the true air speed vTAS.

FD,t = FW,t · sin(−β ) = FW,t ·
vsink

vTAS
(5)

Equating equation (4) with equation (5)

cd,g ·
ρair

2
·Apro ject · (vTAS)

2 = FW,t ·
vsink

vTAS
(6)

⇔ cd,g =
FW,t ·2

Apro ject ·ρair
· vsink

(vTAS)
3 (7)

The lift force FL follows the same rule as the drag force
(Anderson, 2005). The dynamic pressure pdynamic multi-
plied by the projected square Apro ject and the lift coeffi-
cient cl is equal to the lift force.

FL = cl ·Apro ject ·
ρair

2
· (vTAS)

2

︸ ︷︷ ︸
pdynamic

(8)

It is clear from Figure 2 that the lifting force FL equals the
total weight FW,t multiplied by the cosine of the negative
angle of glide cos(−β ) which is equal to the ratio of the
horizontal velocity vTAS,x and the true air speed vTAS.

FL = FW,t · cos(−β ) = FW,t ·
vTAS,x

vTAS
(9)
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Equating equation (8) with equation (9)

cl ·
ρair

2
·Apro ject · (vTAS)

2 = FW,t ·
vTAS,x

vTAS
(10)

⇔ cl =
FW,t ·2

Apro ject ·ρair
· vTAS,x

(vTAS)
3 (11)

2.3 Definition of Angles
The tangent of the glide angle β , located between hori-
zontal line and direction of movement vTAS (see Figure 3),
is calculated by the ratio of the air speed in y-direction to
the air speed in x-direction (equation (12)).

β = arctan
(

vTAS,y

vTAS,x

)
(12)

The angle of attack α is the angle at which the airflow
meets the wing (Currer, 2011) and is defined between the
chord line and the direction of flight (see Figure 3). This
angle influences the pendulum torque around the pitch
axis mandatorily and can be controlled by the pilot via the
brakes. The negative angle of glide −β equals the angle

mg

~vTAS

Chord line

Suspension
line to pilot

Horizontal line

Vertical line

−β

−β
α

−ϕ·

−ϕ
x

y

α, β, ϕ

CS

1

Figure 3. Definition of angles.

of attack α minus the angle of twist ϕ . Consequently, the
angle of attack α is the difference of the angle of twist ϕ

and the angle of glide β (see Figure 3).

−β = α−ϕ (13)
α = ϕ−β (14)

The negative angle of twist−ϕ can also be found between
the vertical line and the suspension line to the pilot. This
information helps to determine the lever arms needed for
the torque calculations (see section 2.4).

2.4 Lever Arms
As a next step the lever arms of the pendulum system have
to be determined. Figure 4 clarifies the relationship be-
tween the angles of a paraglider (section 2.3) and the cor-
responding lever arms (section 2.4). The distances lGm and
lMG result from the position of the gravity point G which

Mp

G

α

·

·

·

·

·FW,p wp

FD,p d p

d g

mg

FW,g

wg

FL

l

FD,g

−β

−β

α

α

α

-ϕ

-ϕ

-ϕ

x

y

α, β, ϕ

CS

~vTAS

~vTAS

l M
G

l G
m

1

Figure 4. Lever arms.

has been calculated before in section 2.1.

wg = lGm · sin(−ϕ) (15)
dg = lGm · cos(α) (16)

l = lGm · sin(α) (17)
dp = lMG · cos(α) (18)
wp = lMG · sin(−ϕ) (19)

With the help of the lever arms the torques around the
gravity point G can be determined (see section 2.6).

2.5 Catenary
If the pilot starts from the ground and is pulled into the air
with the help of the towline, the situation slightly changes.

Mp

G

Rope

FW,r

vvehicle

vGS,x ∆s

hFr

δ
-δ′

Fw

-κ

·

mg

Z

sx, vx

h, vy

δ, κ

CS

1

Figure 5. Catenary.
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The weight FW,r of the rope causes a sag and results
in a curved line, which directly affects the rope angles δ

and κ (see Figure 5). The angles δ and κ are calculated
recursively with the help of the catenary. The pilot starts
from the ground and thus, the angle κ is at the beginning
of the towing process zero (κinitial = 0◦). The catenary can
be approximated by the following equation (Dankert and
Dankert, 2009)

y(x) =C2 · x2 +C1 · x+C0 (20)

where
C2 =

0.5 ·q0

Fw · cos(−κ)
. (21)

The unknown parameters C0 and C1 are determined with
the help of Figure 5. The height of the catenary at the
position x = 0 equals

y(0m) =C0 = h (22)

and at the position x = ∆s

y(∆s) =C2 ·∆s2 +C1 ·∆s+C0 = 0 (23)

⇔C1 =
−C0

∆s
−C2 ·∆s. (24)

Consequently the parameters C1 and C2 are defined. With
the parameters C0,C1 and C2 the rope angles δ and κ can
be calculated. By differentiating equation (20) with re-
spect to x results

dy(x)
dx

= 2 ·C2 · x+C1. (25)

Figure 5 also displays the derivation at the position x = 0

dy(x)
dx

∣∣∣∣
x=0

=C1 = tan(δ ′) (26)

with δ ′ = δ − π

2
follows

δ = tan−1(C1)+
π

2
(27)

as well as at the position x = ∆s

dy(x)
dx

∣∣∣∣
x=∆s

= 2 ·C2 ·∆s+C1 = tan(−κ) (28)

⇔ κ =− tan(2 ·C2 ·∆s+C1). (29)

By balancing the forces in x-direction (see Figure 5) re-
sults the rope force Fr which is needed for the following
section 2.6.

Fr = Fw ·
cos(−κ)

sin(δ )
(30)

Until an altitude of 50 metres the constant winch force Fw
is reduced to prevent large angles of attack α which could
otherwise lead to dangerous flying situations. Safety is
very important and gets top priority.

Mp

G

Fr

FW,p

FD,p

mg

FW,g

FLFD,g

Fa,x

Fa,y
TaTdamp

~vTAS

~vTAS

−β

−β

α

-ϕ

-ϕ

δ

·
x

y

α, β, ϕ, ω, κ

CS

Figure 6. Balance of forces whilst towing.

2.6 Equations of Motion
Figure 6 displays the flight system whilst towing. For a
gliding flight the rope force Frope is zero. The algebraic
sum of all forces in x-direction is zero. The acceleration
force in x-direction equals the total mass mt multiplied
by the time derivative of the ground speed in x-direction
v̇GS,x.

mt · v̇GS,x =−FD,g · cos(−β )−FD,p · cos(−β ) (31)
+FL · sin(−β )+Fr · sin(δ )

Balancing the forces in y-direction results in the following
differential equation.

mt · v̇GS,y =−FW,p−FW,g +FD,g · sin(−β ) (32)
+FD,p · sin(−β )+FL · cos(−β )

−Fr · cos(δ )

The algebraic sum of all torques around the gravity point
G is zero. The lever arms have already been calculated
in section 2.4 and are now used in equation (33). The
accelerating torque around the gravity point G equals the
total moment of inertia It multiplied by the time derivative
of the angular velocity ω̇ .

It · ω̇ =+FW,p ·wp−FW,g ·wg−FD,p ·dp (33)
+FD,g ·dg−FL · l−Tdamp

The damping torque Tdamp caused by the movement of the
paraglider in the air equals the damping coefficient d mul-
tiplied by the angular velocity ω .

Tdamp = d ·ω (34)
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2.7 Velocities
The true air speed vTAS is crucial to calculate the aerody-
namic forces. It is the velocity of the airflow in relation
to the aerofoil. In addition, the ground speed vGS can be
calculated with the true airspeed and the wind speed (Cur-
rer, 2011). The true air speed in x-direction vTAS,x is equal
to the ground speed in x-direction vGS,x minus the head-
wind speed vwind,x (equation (35)). The true air speed in
y-direction vTAS,y is equivalent to the ground speed in y-
direction vGS,y minus the upwind speed vwind,y (equation
(36)).

vTAS,x = vGS,x− vwind,x (35)
vTAS,y = vGS,y− vwind,y (36)

2.8 Self Stabilisation

3 Modelling and Identi�cation

3.8 Self Stabilisation

During a �ight, the paraglider is sometimes exposed to turbulence conditions. The wind situation
between the ground and at �ight altitude is often di�erent. Turbulences could be for example suddenly
appear due to contrary wind. Important to mention in this context is that the position of the gravity
point G is determined by equation (3.7) which is described in detail in section 3.2. Consequently, the
torques caused by the weights cancel each other out if the paraglider starts to swing. This is the reason
why the weights FW,paraglider and FW,pilot are not drawn in Figure 3.12.

Mp

mg

G

~vTAS

~vTAS

·

· ·

FD,p

dp

FL

l

FD,g

dg

−β

−β

α

1

Figure 28.1: Normal Flight Situation

x

y

α, β

CS

1

Mp

FD,p

mg

l

dg

G

−β

·

·

·

dp

FLFD,g

α

−β

Wind

Tstart

Tres

1

~vT AS

~vT AS

Figure 28.2: In�uence of Wind

Figure 3.12: Self Stabilisation

Figure 3.12 displays the forces and lever arms of a self-stabilizing paraglider and is split into two
separate parts to make the situation more clearly. The �rst one on the left side illustrates in black a
�standard� �ight situation (Figure 28.1) and the second one on the right side displays the reaction of
the system to suddenly appearing of turbulences in red colour (Figure 28.2). The headwind produces
a counter-clockwise torque around the gravity point G which leads to a swinging system. In the
beginning the angle of attack α increases. This a�ects lift and drag coe�cients which are getting
larger (see section 3.3). As a result, FL and FD,paraglider are also getting larger and dparaglider and
dpilot shorter (see section 3.5). The value of FD,pilot does not change. The only increased lever arm
is l . Consequently, TL is bigger than before. This causes a self-aligning moment Tres which tries to
compensate the start torque because ∆TL >> ∆TD,pilot. Due to this, the paraglider stabilises on its
own and the pilot often does not have to intervene. The returning back to the start position is caused
by the damping moment Tdamp which acts against the de�ection. Table 3.9 displays the torques which
occur at the self stabilisation process of a paraglider.

Consideration of torques related to the gravity point G

FL > FL and l > l⇒
y
TL >>

y
TL

FD,paraglider > FD,paraglider and dparaglider < dparaglider ⇒
x
TD,paraglider

≈
x
TD,paraglider

FD,pilot > FD,pilot and dpilot < dpilot ⇒
y
TD,pilot

≈
y
TD,pilot

27

Figure 7. Self stabilisation.

A paraglider is sometimes exposed to turbulence condi-
tions during a flight for example a sudden appearance of
contrary wind (see Figure 7). The wind situation at higher
altitudes is often different from the situation at ground. It
is important to mention in this context that the torques due
to weights cancel each other out if the paragliding sys-
tem starts to swing (see equation (1)). Consequently, the
weights FW,g and FW,p are not drawn in Figure 7. It dis-
plays a "standard" flight situation on the left and the re-
action of the system due to headwind on the right side.
This wind causes a counterclockwise torque Tstart , which
leads to an increase the angle of attack α . This affects lift
and drag coefficients which are getting larger (see Figure
8). As a result, FL and FD,g are also getting larger and
the lever arms dg and dp shorter (see section 2.4). The
only increased lever arm is l, which leads to an increase
of TL. This causes a self-aligning moment Tres trying to
compensate the start torque. Consequently, the paraglider
stabilises on its own and the pilot often does not have to
intervene.

2.9 Complete Model
Now we summarize our discussion of previous sections
and write the complete model of the system. The dynam-
ics of six state variables of the system can be described by

the following state equations.

ṡx = vx (37)

v̇x =
1

mt
· [−FD,g · cos(−β )−FD,p · cos(−β ) (38)

+FL · sin(−β )+Fr · sin(δ )]
ṡy = vy (39)

v̇y =
1

mt
· [−FW,p−FW,g +FD,g · sin(−β ) (40)

+FD,p · sin(−β )+FL · cos(−β )−Fr · cos(δ )]
ϕ̇ = ω (41)

ω̇ =
1
It
· [+FW,p ·wp−FW,g ·wg−FD,p ·dp (42)

+FD,g ·dg−FL · l−d ·ω]

With

FL = cl ·Apro ject ·
ρair

2
· (vTAS)

2 (43)

FD,g = cd,g ·Apro ject ·
ρair

2
· (vTAS)

2 (44)

FD,p = cd,p ·Apilot ·
ρair

2
· (vTAS)

2 (45)

FW,g = mg ·g and FW,p = Mp ·g (46)

FD,p = cd,p ·Apro ject ·
ρair

2
· (vTAS)

2 (47)

vTAS,x = vGS,x− vwind,x (48)
vTAS,y = vGS,y− vwind,y (49)

β = arctan
(

vTAS,y

vTAS,x

)
(50)

α = ϕ−β (51)

δ = tan−1(C1)+
π

2
(52)

3 Model Parameters
In this section we want to summarize important parame-
ters used in this model. Values of some of the parame-
ters are provided by the manufacturer or calculated ana-
lytically. Other parameters are tuned experimentally, for
instant the damping coefficient d, to get a good image of
the reality.

ρair = 1.27
kg
m3 mg = 6 kg

Mp = 100 kg lline = 6.97 m
Apro jected = 24.26 m2 Apilot = 1.0 m2

lMG = 0.395 m lGm = 6.575 m

d = 10000
Nms
rad

cd,p = 0.33

The aerodynamic coefficients cl and cd,g are assumed to
be functions of the angle of attack α . These dependencies
are shown in Figure 8 graphically.
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4 Simulation Results
The model is implemented in Matlab/Simulink. Two dif-
ferent flight situations are simulated. The first one is a
gliding flight, where the pilot begins to fly at a certain
height. The second one extends the first model by a winch
launch to enable the pilot to gain altitude.

4.1 Gliding Flight
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Figure 9. Gliding flight.

The three plots seen on Figure 9 show the translational
motion of the system over the time. The angle of glide β

is constant during the whole flight. With a start height h of
500 metres, a flight distance in x-direction sx of 1930 m
is reached on the expense of a 230 m loss in altitude.
The third plot illustrates the dynamics of the twist angle
ϕ with a settling time of about 30 s. The deviation be-
tween the simulated and measured results may be due to
different wind situations. The wind affects the system be-
haviour significantly (see Figure 10). At the beginning,
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Figure 10. Gliding flight with wind impact.

the pilot glides down and is slowly reducing altitude. Sub-
sequently, the pilot enters an updraft region (first black
square) and, as a result, the pilot gains altitude and rises
up to 450 m (second black square), where the helpful wind
stops. The pilot glides down to the third black square,
where headwind prevails. Consequently, the ground speed
vGS reduces and the angle of glide β increases. Therefore,
height is lost more quickly than before and, as a result,
the travelled flight distance sx gets shorter. At a height of
150 m (fourth black square), the headwind levels off and
the paraglider flies again with trim speed. The reaction
of the twist angle ϕ in relation to the changing conditions
is displayed on the right side of Figure 10. If the ground
speed vGS changes due to the impact of the wind, the angle
of twist ϕ is disturbed from its steady-state value and af-
ter short time it is settled again. The disturbance caused by
horizontal wind is stronger than the vertical wind, because
headwind or tailwind directly creates a torque around the
gravity point G and deflects the system from the rest posi-
tion.

4.2 Towing Process
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Figure 11. Towing process.

EUROSIM 2016 & SIMS 2016

332DOI: 10.3384/ecp17142327       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



The first diagram of Figure 11 shows the travelled dis-
tance of the paraglider in x-direction sx over the time. It
is easy to recognize that the movement is linear due to the
constant slope of the graph. The second plot shows the
height h, whereas the transient response of the twist angle
ϕ is drawn in the last diagram of Figure 11. A comparison
of measured and simulated results reveals that the simula-
tion model provides a fair reflection of the reality.

5 Conclusions
A simulation model for a paraglider is derived and imple-
mented in Matlab/Simulink. The parameters are adjusted
in order to simulate the behaviour of a certain paraglider.
With the help of the model two different flight situations,
i.e. gliding flight and towing process, are simulated. Sim-
ulation results are compared with data of a real flight. The
model provides a good approximation of the dynamical
behaviour of the real system. It allows to compare dif-
ferent parameter settings, determine their influence on the
system as well as to optimise the towing process. How-
ever, as already mentioned, paragliding is under constant
change and this model has to be adjusted accordingly.
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