
Analysis of Optimal Diesel-electric Powertrain Transients
during a Tip-in Maneuver

Vaheed Nezhadali Lars Eriksson

Vehicular Systems Division, Electrical Engineering Department
Linköping University, SE-581 83 Linköping, Sweden {vaheed.nezhadali,lars.eriksson}@liu.se

Abstract
Optimal transients of a hybrid powertrain are calculated
with the aim to give a smooth and time efficient acceler-
ation. It is shown that there is a trade-off between time
and driveline oscillations where high oscillations can be
avoided by slightly longer acceleration time and proper
control of the electrical and diesel power sources. During
a low oscillation acceleration, there is still the possibility
to reduce the amount of total consumed electrical and fuel
energy. This is investigated by calculation of optimal con-
trols during acceleration for a fixed time while penalizing
the usage of energy in a low oscillation acceleration. The
balance between electrical and diesel energy usage during
the acceleration is also investigated. The results show that
to avoid extreme transients by optimal control, a multidi-
mensional formulation of the objective function including
different properties should be considered.
Keywords: numerical optimal control, acceleration, vehi-
cle jerk

Nomenclature
The nomenclature for the paper with subscripts and vari-
ables is given in Tables 1 and 2 respectively.

Table 1. Subscripts used for variables.

Index Description Index Description
im Intake manifold em Exhaust manifold
gen Generator wg Wastegate
e Engine a Air
ds Drive shaft v Vehicle

m f ,conv Fuel conversion m f Fuel mass
loss Losses tot Total
mech Mechanical tc Turbocharger

w Wheel gb Gearbox
f d Final drive resist Resistant forces
c Compressor ac Air into cylinder
0 Initial f Final
r Radius gs Genset

1 Introduction
Hybridization of powertrains opens up new opportunities
for faster and more efficient vehicle acceleration. With
an electric power source assisting a diesel engine, there
is an extra degree of freedom in powertrain control while

Table 2. Variables used in the paper.

Symbol Description Unit
x State variable -
u Control input -
θ Angle rad
t Time s
F Force N
R Gas constant N·m/kg·K
p Pressure Pa
T Temperature K
M Torque N·m
k Stiffness coefficient N·m/rad
b Damping coefficient N·m·s/rad
ω Rotational speed rad· s−2

α Rotational acceleration rad/s
β Road slope rad

m, ṁ Mass, Mass flow kg, kg/s
P Power W
E Energy J

um f , uwg, Pgen Control signals mg/cycle, -, W
J Inertia kg · m2

ρ Density kg · m−3

r Radius m
A Vehicle frontal area m2

BSR Blade speed ratio -
λ Air/fuel equivalence ratio -
φ Fuel/air equivalence ratio -
i Gear ratio -
η Efficiency -
Π Compression ratio -
c Constant coefficient -
ψ Electrical energy penalty coefficient -
δ Energy penalty coefficient -

(A/F)s Stoichiometric Air to fuel ratio -

the simultaneous control of the diesel and electric power
sources becomes more complex.

Tip-in maneuver is referred to the situation where the
driver suddenly asks for a fast vehicle acceleration by
pressing accelerator pedal. This is a highly demanding
and transient operation in a diesel-electric powertrain. The
controls during this period can be optimized with respect
to energy consumption or the operations time similar to
(Sivertsson and Eriksson, 2012b), (Sivertsson and Eriks-
son, 2012a) and (Sivertsson and Eriksson, 2015b). Passen-
ger comfort is also important when considering powertrain
transients and can be accounted for by taking the driveline
oscillations, referred to as Jerk, into account. The Jerk is
also important considering its effects on the life length of
driveline components, for more discussion see (Haj-Fraj
and Pfeiffer, 2001) and (Haj-Fraj and Pfeiffer, 2002). In
real world applications, not a single but all of these ob-
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jectives are of importance and therefore it is desirable to
obtain a compromise between these objectives by proper
control of the powertrain.

The contribution of this paper is the development of a
methodology for the calculation of efficient hybrid pow-
ertrain transients with the aim to obtain a compromise
between time-energy-Jerk objectives during a tip-in ma-
neuver. Numerical optimal control is used as an enabler
for this where first the extreme transients obtained by
improper objective function formulations are presented.
Then the trade-off between time-Jerk and Jerk-energy are
calculated. The problem is solved for different road slopes
representing various loading scenarios. The analysis is
extended by investigation of powertrain transients and
the balance between usage of diesel and electric energy
sources is analyzed.

2 Powertrain model
To enable optimal control problem (OCP) formulation,
a model for the powertrain and driveline components is
needed. The powertrain model representing a hybrid
bus is comprised of a diesel engine and an electric mo-
tor/generator working in parallel. The dynamics are de-
scribed by a mean value engine model (MVEM) and
a model for generator efficiency in a validated diesel-
electric powertrain (genset) model from (Sivertsson and
Eriksson, 2014). The powertrain dynamics are described
by four state variables as ωe(t), pim(t), pem(t) and ωtc(t).
Two additional states describe the dynamics of the drive-
shaft twist angle θds(t) and wheel speed ωw(t). The model
has three control inputs for injected fuel during each com-
bustion cycle um f (t), wastegate position uwg(t) and the the
electric power of motor/generator Pgen(t).

Dynamics of the four genset state variables are de-
scribed by the following differential equations:

dωe

dt
=

1
Jgs

(Mgs−Mgs,load) (1)

d pim

dt
=

RimTim

Vim
(ṁc− ṁac) (2)

d pem

dt
=

RemTem

Vem
(ṁac + ṁ f − ṁt − ṁwg) (3)

dωtc

dt
=

Ptηmech−Pc

ωtcJtc
(4)

The flexibilities in the driveline are lumped into one
single flexibility in the driveshaft according to (Petters-
son and Nielsen, 2000), and the torque transferred by the
driveshaft is described using the stiffness and damping co-
efficients as follows:

Mds = kds θds +bds
dθds

dt
(5)

dθds

dt
=

ωe

igb i f d
−ωw (6)

where (6) is used to describe the driveshaft deflection dy-
namics.

Considering rolling and aerodynamic resistances and
gravitational force, as well as constant gearbox and final
drive ratios, the wheel speed dynamics are calculated us-
ing Newton’s second law of motion as follows:

dωw

dt
=

Mds−Mresist

Jw +mvr2
w

(7)

Mresist = 0.5ρair ca Aω
2
wr3

w +mv grw(cr cos(α)+ sin(α))
(8)

The utilized electric and diesel energy are represented
by the following integral states:

Egen =
∫ t f

t0
Pgen dt (9)

Em f = qhv

∫ t f

t0
um f ωe ncyl

10−6

4π
dt (10)

When formulating OCPs, the oscillations in the rota-
tional speed of the transmission shaft is used to represent
the driveline oscillation. These oscillations are referred to
as Jerk that is defined as follows:

Jerk =
∫ t f

t0
α̇

2
tr dt (11)

αtr =
dωe

dt
1

igb
(12)

3 Problem formulation
In this section, first definition of the tip-in problem in
terms of boundary conditions and constraints is described
and then the objective function formulation for the OCPs
are presented.

3.1 Tip-in problem constraints
3.1.1 Boundary conditions for the tip-in problem

The tip-in starts from a stationary operating condition at
constant vehicle speed of 10 km/h and the final condition
is that the speed should reach 15 km/h. The states and con-
trol inputs should remain within the allowed limits during
the operation while the integral states and generator power
are assumed to be zero at the beginning. All these can be
summarized as:


ωw(t0) =

ωe(t0)
i f d×gb

= 10
rw

1
3.6 , ẋ(t0) = 0,

ωw(t f ) =
15
rw

1
3.6 ,

Egen(t0) = Em f (t0) = Pgen(t0) = 0,
umin ≤ u≤ umax, xmin ≤ x≤ xmax

(13)

3.1.2 Path constraints during tip-in

The problem is solved for a hybrid bus where the max-
imum acceleration of 1 m/s2 according to the limits in
SORT (Standardised On-Road Test cycles (SORT), Last
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accessed April 2016) are used as the highest allowed ac-
celeration. The SORT standard is used in Europe to de-
sign on-road test cycles in order to measure fuel consump-
tion of buses. There are also constraints regarding the tur-
bocharger operation to avoid surge, and operational region
for the turbine blade speed ratio. The maximum engine
power is limited according to the maximum power curve
at different engine speeds and finally, the air to fuel ratio
should satisfy the smoke limit constraint λmin. There is
also a mechanical limit on how fast the wastegate can be
actuated and the rate of change in generator power. These
constraints are summarized as:


dωw
dt × rw < 1, Πc ≤Πc,surge,

BSRmin ≤ BSR(x,u)≤ BSRmax,
Pe(x,u)≤ Pe,max(x), ṁac

ṁ f
(A/F)s ≤ 1

λmin
,

|u̇wg| ≤ cwg, |Ṗgen|/ωe ≤ cgen

(14)

3.2 Optimal control problem formulation
In analysis of powertrain dynamics during tip-in, one ob-
jective is to calculate the minimum time transients of the
powertrain. For this, OCPs with objective function of the
following form are solved:

min
(x,u)

∫ t f

t0
dt (15)

The trade-off between minimum time and minimum
Jerk transients will be calculated by first calculating the
shortest time via solving the minimum time problem, and
then, minimizing the Jerk using a fixed t f . The time is then
increased step wise compared to the calculated minimum
time duration. The OCP formulation in this case looks as
follows:

min
(x,u)

∫ t f , f ix

t0
Jerk dt (16)

The energy from fuel and electrical sources during the
vehicle acceleration can be minimized solving for:

min
(x,u)

∫ t f , f ix

t0
(Em f +Egen)dt (17)

In (Nezhadali and Eriksson, 2016) it is discussed that
after minimizing the Jerk in a fixed time OCP, energy con-
sumption minimization is the next dimension that can be
analyzed for a low Jerk solution. This is done by calculat-
ing the Jerk optimal control transients including a penalty
δ on energy consumption while using a fixed time. The
penalty on the energy consumption is increased iteratively
and the problem is solved several times to obtain the trade-
off between Jerk and energy objectives. The objective
function formulation for this case is:

min
(x,u)

∫ t f , f ix

t0
Jerk+δ × (Em f +Egen)dt (18)

There is still another dimension to the optimization prob-
lem which is the balance between usage of diesel and
electrical energy during the acceleration. To investigate
how such balance affects the system transients, the energy
consumption is reformulated including a penalty ψ on the
electrical energy consumption. The objective function for-
mulation then looks as:

min
(x,u)

∫ t f , f ix

t0
Jerk+δ × (Em f +ψ×Egen)dt (19)

The problem in (19) is solved with various combinations
of δ and ψ penalties.

Finally, the different OCP formulations with the objec-
tive functions mentioned above become:

Objective function in (15) or (16) or (17) or (19)

subject to:
ẋ = f (x,u)

Constraints in (13) and (14)

3.3 Numerical solution of optimal control
problems

To solve the formulated OCP in the previous section, a
direct multiple shooting method using CasADi software
package (Andersson, 2013) is used. The dynamics in
each discretization interval are forward integrated using a
4 step Runge-Kutta integrator. After discretization of con-
straints, objective function and the dynamics, a nonlinear
programming problem (NLP) is formulated and solved us-
ing IPOPT (Wächter and Biegler, 2006) to obtain the op-
timal controls and corresponding state transients.

To ensure that the solutions are not affected by the num-
ber of discretization intervals, the problem is solved with
different values. It is seen that the transients remain un-
changed for intervals close to and more than 300 so this is
chosen as the number of discretization intervals.

4 Optimal control results
4.1 Extreme transients
To show the importance of finding a compromise between
time, Jerk, and energy objectives, the state and control
transients are first presented for extreme cases where only
one of these are considered in the optimization. These
transients are obtained by solving for (15), and (16) and
(17) the latter two with final time locked t f , f ix = 2 s.

The min T transients, illustrated in Figure 1, are very
oscillatory at the beginning for all controls and such con-
trol strategy would have severe negative impacts on the
passenger comfort as well as the life length of genset and
driveline components. For the bus to be able to smoothly
continue its movement after reaching the final speed, the
twist angle in the driveshaft should match the required
torque and acceleration at wheels. In min T transients, due
to the high deflection in the driveshaft, the vehicle speed
even at the end of the acceleration is still increasing at a

EUROSIM 2016 & SIMS 2016

343DOI: 10.3384/ecp17142341       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



high rate. A transition from this high acceleration to a low
acceleration would be undesirable in terms of passenger
comfort standards.

The minimum energy transients are less oscillatory but
diesel engine power is not used for vehicle propulsion and
all required power is provided only by the electric motor.
The very low engine speed at the end of the minimum en-
ergy transients, increases the risk of engine stall when the
diesel engine is going to take over the power production
after the acceleration which makes the controls less appli-
cable in real world applications.

For min Jerk transients, the undesirable non-smooth
speed transition at the end time is similar to the min T
case. The controls are less oscillatory compared to the
min T case, but the bang-bang looking controls are what
the manufacturers are less willing to implement because
of the issues with component wear and durability accom-
panied with such control strategies.

Considering the mentioned drawbacks, these solutions
are considered extreme and less applicable for control de-
sign in real world applications. In the following sections,
the transients obtained by the suggested methodology for
finding proper compromise between time-energy-Jerk ob-
jectives are presented and analyzed.

4.2 Compromise between time, Jerk and en-
ergy

Figure 2 shows the trade-off between time and Jerk objec-
tives calculated by solving (16) as stated in Section 3.2 for
three different road slopes. The Jerk in min T solution,
calculated by solving (15), is extensively larger and there-
fore it is not included in the trade-offs. However, the Jerks
in Figure 2 are normalized with respect to the largest Jerk
belonging to the min T solution of the 0 degree slope case
which is referred to as Jerkmax. It is seen that the Jerk can
be significantly decreased compared to the min T solution
for all road slopes. It is desirable to have small Jerk during
operation, specifically in a city bus application. Therefore,
a duration of 2 [s] where the Jerk approach near zero val-
ues for all road slopes is chosen as the fixed time duration
for which the energy-Jerk trade-off is calculated.

4.3 Jerk-Energy trade-off
To investigate the energy balance during the genset op-
eration, different energy components and fuel conversion
efficiency are defined as follows:

Etot = Em f +Egen (20)
Eloss = Em f +Ee (21)

Ee =
∫ t f

t0
Meωe dt (22)

ηm f ,conv =
Ee

Em f
(23)

where Ee represents the net energy from the diesel en-
gine which is used for acceleration, and Eloss represents
the losses such as engine friction and pumping work.
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Figure 1. Optimal state and control transients for the extreme
cases during acceleration (Etot = Em f +Egen).
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Figure 2. Trade-off between Jerk and time objectives.

To obtain the trade-off between Jerk and energy for dif-
ferent road slopes, (19) is solved while increasing δ and
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ψ . The results for the three road slopes are presented in
Figure 3. Reminding that the purpose of applying energy
penalties is to avoid “extreme” low Jerk transients, a point
with slightly increased Jerk on the trade-offs is chosen as
a “candidate” case for which the energy balance is pre-
sented in Figure 4. Independent of what power is required
for acceleration, the total required energy shows a decreas-
ing trend when the penalty δ is increased. Also, when the
penalty ψ is increased, meaning that the usage of electri-
cal energy becomes more costly in the (19), more power is
delivered by the diesel engine which has a low efficiency
and therefore the total required energy for vehicle accel-
eration increases. As seen in Figure 4, for larger ψ val-
ues, less electrical energy is used and when total required
energy for acceleration is low, the 0 degree case, diesel
engine power is even used to produce electrical energy in
addition to vehicle acceleration.

In case of the 0 degree slope, the required energy for the
ψ = 0 remains unchanged for all δ values. This is because
this operating condition requires smaller amount of energy
compared to other cases while ψ = 0 in (19) implies that
it does not have any cost to use electrical energy. Low effi-
ciency of the diesel engine compared to the generator and
the cheapness of electrical energy makes it optimal to per-
form the acceleration using only the electrical energy with
no regard to the penalty δ on total energy consumption.
This can be verified comparing the ψ = 0 energy balance
for the three road slopes in Figure 4.

The first time diesel power is used for acceleration in
the 0 degree slope is at ψ ≈ 2.05. At this operating con-
dition, a sudden decrease in Etot takes place according to
Figure 4. Moving from the first point on the ψ = 2.05
to the second point of the curve in Figure 3, the increase
in δ makes the contribution from the energy term larger
than the Jerk term in (19). As a result, a higher efficiency
in energy consumption is favored. Since usage of the fuel
energy accompanies high losses, achieving higher total ef-
ficiency is facilitated by altering the contribution of en-
ergy sources from very low electrical energy usage, sim-
ilar to ψ = 2.08 in the 0 degree slope of Figure 4, into
nearly equal contribution from the electrical and fuel en-
ergy sources, in ψ = 2.05.

Considering the fuel conversion efficiencies presented
in Table 3, the efficiency is lower at low loads correspond-
ing to the 0 degree slope and when electrical energy is
cheaper to use (smaller ψ values). Other than this, an ef-
ficiency close to 40 % is maintained at different loading
conditions.

Table 3. Fuel conversion efficiency.

road slope ψ 0 2.05 2.08 2.5 4
0 [deg] ηm f ,conv[%] -16.6 34.7 39.9 40.6 40.3

road slope ψ 0 2.02 2.05 2.2 4
4 [deg] ηm f ,conv [%] 28.74 38.02 40.16 40.86 40.13

road slope ψ 0 2.1 2.2 2.5 4
8 [deg] ηm f ,conv [%] 39.6 40.94 41.08 40.59 39.43
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Figure 3. The trade-off between Jerk and energy with different
energy penalties and road slopes.
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Figure 4. Energy balance for the candidate points in Figure 3.

4.4 Efficient state and control transients
The efficient state and control transients for the candidate
points of the 0 degree slope case in Figure 3 are presented
in Figure 5.
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Figure 5. Optimal state and control transients during tip-in cal-
culated for the candidate points in Figure 3.

According to the figures, as the cost for using electrical
energy increases (larger ψ), the diesel engine transients
are largely changed. for example comparing the ψ = 0
and ψ = 4 cases, when ψ = 0 fuel is cut-off, diesel engine
power is not used and only electrical power accelerates the
vehicle. But for ψ = 4, not only usage of the costly electri-
cal energy is avoided but also parts of diesel engine power
is used to store electrical energy at the end of the accel-
eration. Increasing the fuel conversion efficiency in the
diesel engine operation is the main priority here and for
that, fuel injection is selected such that the engine operates
at the smoke limit delivering as large power as possible.
This is similar to the discussion in (Sivertsson and Eriks-

son, 2015a) and (Sivertsson and Eriksson, 2015b) stating
that the smoke limit dictates the solution during large parts
of the transients. After an initial high power production
which has facilitated fast vehicle acceleration, the waste-
gate which has been kept closed until this point, is opened
at ca 1.7 [s] to lower the pumping work losses. Vehicle
acceleration is reduced and less power from the engine is
required to meet the final speed constraint. Instead, the
engine power is used to build up electrical energy.

Considering the points mentioned about the extreme
transients such as oscillatory controls or large accelera-
tion at the end time, according to Figure 5, the transients
for the ψ ≈ 2.05 can be an example of improved control
strategy with simple control transients and smooth vehicle
speed transients at end time.

5 Conclusions
Optimal control of a diesel-electric powertrain during a
tip-in acceleration is analyzed while importance of proper
objective function formulation is highlighted. The ex-
treme transients resulting from minimization of only jerk
or time or energy are presented and the drawbacks in terms
of oscillatory control signals are discussed. It is shown
that by calculation of the trade-off between time and Jerk,
low Jerk transients can be obtained. By applying penalties
on energy consumptions in the Jerk minimization problem
and solving for various fuel and electric energy weights in
the objective function formulation, energy efficient tran-
sients are obtained. The calculated transients using this
approach are presented which are simpler and more in-
sightful for control design in real world applications. At
the same time, the proposed controls maintain low Jerk
and energy consumption compared to the extreme cases.
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