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Abstract 
A control method based on Inverse Simulation is 

applied to a four wheel rover. The method calculates the 

required inputs to achieve a desired, specified response; 

a trajectory in this case. Inverse Simulation considers 

the complete system dynamics to calculate the control 

input using an iterative, numerical Newton – Raphson 

scheme. Two methods for applying Inverse Simulation 

are presented, one based on a Differentiation scheme 

and one on Integration. The paper provides an insight 

into how the scheme formulation and selected 

parameters affect both methods’ performance when 

applied to a rover. The selection of system outputs to 

control, their effect on each scheme’s Jacobian, whether 

it is square or over-determined and the best method to 

factorize this Jacobian are investigated. The influence 

of the discretisation step and the convergence tolerance 

is also examined using two different sets for both 

schemes and in conjunction with the type of Jacobian 

used. The comparison is made in terms of the resulting 

trajectory, the execution time, and the quality of the 

calculated control input. 

Keywords: inverse, simulation, control, navigation, 
model based, numerical, wheeled vehicle, rover 

1 Introduction 

A novel method based on Inverse Simulation is used 

for planetary rover guidance and control. Inverse 

simulation uses a mathematical model that is 

representative of the system and calculates the control 

inputs necessary to produce the desired response. This 

desired response is defined in terms of the system's 

output variables and represents their time history. 

Inverse Simulation is a model based, numerical, 

iterative process where step changes in the various 

controls are applied until the predicted response 

matches the desired response (Thomson and Bradley, 

2006). Applied to rover navigation, the desired response 

is a specified, safe trajectory to a goal destination 

(Worrall et al., 2015a; Worrall et al., 2015b). Inverse 

Simulation is a novel way of addressing the issue of 

given a specified, safe path, what are the required 

control inputs for the rover to reach the destination goal 

through this path. The method can be applied (a) in situ: 

given a series of waypoints or a defined trajectory, the 

rover can calculate the necessary control inputs or (b) 

offline: operators define the trajectory, the control 

inputs are calculated and then sent to the rover. 

Applications for Inverse Simulation are 

predominantly within the flight dynamics domain and 

the application to rotorcraft flight control is a major 

area. In these particular cases Inverse Simulation is used 

to produce the required control signals for specific 

flight manoeuvres (Hess and Gao, 1993; Murray-Smith, 

2000; Thomson and Bradley, 2006) and (Avanzini et 

al., 2013) also introduces a predictive element. The 

method has also been applied to unmanned aerial 

vehicles (Murray-Smith and McGookin, 2015) and 

autonomous underwater vehicles (Murray-Smith et al., 

2008). Inverse Simulation has also been used as a 

model validation method (Murray-Smith, 2000; 

Thomson and Bradley, 2006). Previous research has 

demonstrated the potential for Inverse Simulation as a 

guidance and control method for wheeled rovers 

(Worrall et al., 2015a; Worrall et al., 2015b). 

Planetary rover navigation so far has been achieved 

using a combination of non-, semi- and fully 

autonomous methods (Bajracharya et al., 2008). The 

NASA Mars Exploration Rovers (MER) use a 

combination of three main driving modes with varying 

degrees of autonomy. The first mode involves the rover 

executing a sequence of commands to follow a defined 

course of waypoints towards specific goal coordinates. 

In this mode the rover only performs basic safety 

checks (Biesiadecki et al., 2007). The second mode is 

semi-autonomous navigation during which the rover is 

given a set of waypoints towards specific goal 

coordinates and uses its on-board capabilities for hazard 

avoidance and for planning a path towards the goal. A 

special case is when the rover drives towards an area 

that is unknown to the operators (Biesiadecki et al., 

2007; Bajracharya et al., 2008). In this case the rover 

has to choose the waypoints for a safe path towards the 

goal and then drive along this path; this is fully 

autonomous navigation. The third mode is visual 
odometry: the rover uses images from the on-board 

cameras to accurately estimate and update its position 
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(Cheng et al., 2005; Biesiadecki et al., 2007). A similar 

combination of these driving modes is used for the 

Curiosity rover and autonomous navigation is used to 

plot a safe path towards an area unknown to the 

operators (Bakambu et al., 2012). The fully autonomous 

and visual odometry modes are used when the rover 

moves into areas that are not visible to the operators 

(Cheng et al., 2005; Biesiadecki et al., 2007; 

Bajracharya et al., 2008). The developers of the 

ExoMars mission have addressed the issue of control, 

navigation and autonomy by including an element of 

autonomous control (Silva et al., 2013) and by 

conducting field experiments (Woods et al., 2014). 

Another issue is the computational complexity of the 

algorithms that are running on-board. The MER and 

Curiosity rovers use special space qualified and 

radiation hardened microprocessors whose 

computational capabilities have been exceeded by more 

than two orders of magnitude by the average desktop 

computer (Howard et al., 2012). Furthermore, the 

navigation algorithms must also be tested using a wide 

range of parameters, which is best done using 

simulation (Madison et al., 2007). 

The paper investigates the selection of outputs to 

control and the parameters that affect the application 

and execution time of Inverse Simulation to a four 

wheeled rover. The control inputs are calculated from 

Inverse Simulation, applied to the rover and the 

resulting trajectory is compared with the desired. 

2 Methodology of Inverse Simulation 

Inverse Simulation has two main requirements: a 

desired trajectory represented as a time history with an 

appropriate time step and a model of the system. The 

model’s inputs and outputs must be representative of 

the inputs and outputs of the actual system. The desired 

trajectory is described using the model’s outputs. There 

are two main implementations of Inverse Simulation for 

finding the control inputs given a desired output: 

Differentiation (Hess and Gao, 1993; Murray-Smith, 

2000; Thomson and Bradley, 2006; Murray-Smith and 

McGookin, 2015) and Integration (Hess and Gao, 1993; 

Thomson and Bradley, 2006; Avanzini et al., 2013; 

Worrall et al., 2015a; Worrall et al., 2015b). The basic 

framework for each is similar and uses a numerical 

Newton – Raphson algorithm; what differs is the 

method of convergence to the control signal. In 

Differentiation, a numerical differentiation scheme is 

used and the convergence is based on the system's state 

and output equations. In Integration, a numerical 

integration scheme is used and the convergence is based 

on whether the system's output matches the desired. An 

alternative approach to Inverse Simulation uses a 

modified version of the Integration scheme and search 

based optimisation (Lu et al., 2008). 

2.1 Implementation 

A general non-linear system is used where f∈Rm are the 

state equations, g∈Rp are the output equations, u∈Rq is 

the control input vector, x∈Rm is the state variable 

vector and y∈Rp is the output vector. The desired output 

to control is gd∈Rp. 

    , x f x,u y = g x,u  

For the Differentiation method, (1) is discretised N 

times over a time interval Τ, where dt is the 

discretisation step. The unknowns in (2) are the states x 

and the input u at ti. The known variables are the 

desired output gd and the states, control and output from 

the previous discretisation step ti-1. Then, the functions 

F1 and F2 in (3) are defined to find the values of input u 

and the states x for the given output gd. The system in 

(3) is solved using the Newton - Raphson method to 

update u and x until their values are such that F1 and F2 

are both equal to zero within a certain tolerance. The 

updated equations are in (4) and J is the Jacobian of the 

system from (3). 
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For the Integration approach the state and output 

equations from (1) are again discretised and dt is the 

discretisation step. The state equations are integrated at 

ti. An error function between the current output and the 

desired gd is defined in (6). Equation (6) is solved for u 

using the Newton – Raphson method and the iterative 

relationship in (7). Je is the Jacobian of the error 

function fe or equivalently the Jacobian of the system 

outputs when perturbing the inputs. 
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2.2 Numerical Properties 

Both implementations use a Jacobian and care must be 

taken when trying to find its inverse or a suitable 

EUROSIM 2016 & SIMS 2016

349DOI: 10.3384/ecp17142348      Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



factorization. For the Differentiation method, from Eq. 

(4) the dimension of the Jacobian J is [m+p]×[m+q]. 

For the Integration method from Eq. (7) the dimension 

of the Jacobian Je is [p]×[q]. If there is an equal 

number of inputs and outputs (p=q), then the Jacobian 

is a square matrix. If however, the number of inputs and 

outputs is not equal, then factorization methodologies 

such as LU, QR or Cholesky decomposition or the 

Moore–Penrose pseudoinverse (Strang, 2009; Davis, 

2013), can be used. When there are more outputs than 

inputs (p>q), this results in an over-determined system 

and the pseudoinverse or factorization can be used. In 

that case, the calculated outputs are a least-square fit to 

the desired outputs and not necessarily a good one. For 

this reason, systems where the number of inputs is equal 

to or greater than the number of outputs are preferred 

candidates (Hess and Gao, 1993; Murray-Smith, 2000; 

Thomson and Bradley, 2006; Murray-Smith et al., 

2008). 

Each approach has advantages and disadvantages, 

which are usually identified as the following (Hess and 

Gao, 1993; Murray-Smith, 2000; Thomson and Bradley, 

2006; Lu et al., 2008): (a) The Integration method can 

use any representative model of the system. 

Differentiation requires both the states and the outputs 

and any change in the model results in a reformulation 

of the algorithm. Therefore, the Differentiation method 

is more time consuming to set up and maintain, whereas 

for Integration the model can be modified more easily, 

(b) The Integration method has a convergence rate that 

is up to an order of magnitude larger than that of the 

Differentiation method but it is generally more stable; 

what is gained in flexibility and stability, is lost in 

computing time. The numerical properties of Inverse 

Simulation have been examined mostly when the 

method is applied to flight dynamics (Hess and Gao, 

1993; Thomson and Bradley, 2006; Lu et al., 2008). It 

was observed that there are oscillations in the response 

of the uncontrolled states (constraint oscillations) 

(Thomson and Bradley, 2006; Lu et al., 2008). 

However, these oscillations depend more on the 

dynamical properties of the system, its uncontrollable 

states and zero dynamics as well as on the discretisation 

step dt, rather than on the method used. They are also 

significantly reduced when a larger dt is used (Lu et al., 

2008). Also from (Thomson and Bradley, 2006) it was 

observed that there are low amplitude, high frequency 

oscillations superimposed on the calculated control 

input. These oscillations are due to several reasons 

(Hess and Gao, 1993; Murray-Smith, 2000; Thomson 

and Bradley, 2006; Lu et al., 2008): redundancy issues, 

non-square Jacobian and multiple solutions, several 

local minima of the error function from (4), (7). The 

oscillations increase when the discretisation step dt is 

too small, as it could excite the uncontrollable states 

(Lu et al., 2008). Nonetheless, a relatively small dt can 

have a positive effect because it captures the changes in 

the system dynamics and this may reduce or even 

remove them (Lu et al., 2008). 

3 Rover Model and Trajectory 

Generation 

Inverse Simulation requires a mathematical model of 

the system and a desired response, which is a trajectory. 

First, a path to the destination is determined as a series 

of waypoints. This information provides the desired 

trajectory for the Inverse Simulation, which in turn 

generates the required guidance commands (control 

inputs) to follow the trajectory (Worrall et al., 2015a; 

Worrall et al., 2015b). 

3.1 Rover Model 

The model of the rover has been presented in (Worrall, 

2010; Worrall et al., 2015a; Worrall et al., 2015b) and 

has been experimentally validated (Worrall, 2010). It is 

briefly described here for clarity. Each side has two 

wheels and the wheels at each side provide the same 

torque input. The dynamics are described by (8), where 

v is the state velocity vector (9) in the local body frame, 

η is the velocity vector in the global frame and τ is the 

input vector (10). 
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In (9) u, v, w are the surge, sway and heave velocities 

and p, q, r are the roll, pitch and yaw rates respectively. 

In (10) X is the surge, Y is the sway and Z is the heave 

force, K is the roll, M is the pitch and N is the yaw 

moment. X and N are controllable by two inputs: one 

torque at each side. The remaining forces and moments 

are the unmatched dynamics. 

3.2 Trajectory Generation 

The trajectory is represented as a series of waypoints, 

each defined by an x-y coordinate with a common 

origin. A path between each waypoint and the next is 

calculated, with the robot stopping at each waypoint to 

turn on the spot to achieve the desired orientation and 

then move again.  

The distance and time to travel between each 

waypoint is calculated assuming a constant velocity 

between stages with initial and final acceleration and 

deceleration transients: the constant forward speed is 

0.1ms-1, analogous to that of operating rovers, and the 

rotational velocity is 0.1rads-1. At each waypoint a 
check is made to determine if the rover is at the correct 

angle for the next traversal forward. If not, then the 
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rover is commanded to turn on the spot until the desired 

angle is achieved. The path from one waypoint to the 

next is defined by specifying the acceleration as a 7th 

order polynomial function of time and is based on that 

presented in (Thomson and Bradley, 2006; Worrall et 

al., 2015a). A 7th order polynomial has the benefit of 

producing smooth trajectory profiles with high order, 

continuous derivatives. The output is the acceleration 

time history, which is then integrated to provide the 

velocities and the displacements. The result is a 

continuous time history of acceleration, speed and 

distance between each successive waypoint that fully 

describes the rover’s position and orientation; namely 

the elements of v, η. 

4 Application Results 

A series of waypoints are first defined and then a 

trajectory between them is generated as in Section 3. It 

is assumed that these waypoints represent a safe, 

feasible path. Inverse Simulation calculates the control 

inputs for each trajectory. Then these inputs are applied 

to the system and it is checked whether the resulting 

trajectory matches the desired. The following test 

trajectories were selected. The Long Distance test 

(Figure 1, 400s) involves several pose changes and will 

be used as a benchmark to show how the errors built up 

over time and to compare the different parameters. The 

Figure of Eight test (Figure 2, 175s) is used to 

demonstrate a complex path with multiple, sharp turns 

and how the method copes with successive pose 

changes. 

  

Figure 1. Long Distance. Figure 2. Figure of Eight. 

The simulation parameters that need to be assigned 

values are: discretisation step dt, convergence tolerance 

tol, torque input initial estimate, maximum number of 

iterations for the Newton-Raphson algorithm. For dt, 
the timestep of the motors and the need to adequately 

follow the system are taken into account (Worrall et al., 

2015a). The rover starts from rest (zero motor torque). 

Here a very small value is set for the initial estimate. 

The number of iterations is set to ensure convergence 

without increasing the execution time. 

The assessment criteria are the following: (a) mean 

error and standard deviation between the actual and the 

desired position x (integrated from u), (b) mean error 

and standard deviation between the actual and the 

desired heading angle θ (integrated from r), (c) 
calculation time, an important measurement for any 

control algorithm. The position and heading angle 

represent the rover position in space and hence how 

wells it follows the desired trajectory.  

Table 1. Simulation Parameters. 

Parameter Set 1 Set 2 

dt (s) 0.01 0.05 

tol 5×10-7 5×10-5 

initial control 

estimate (Nm) 

2.5×10-7 

maximum iterations 30 

MATLAB version 2014b, 64 bit 

hardware Core 2 Duo T9300, 2.50 

GHz, 4 GB RAM 

4.1 Selection of inputs, outputs and Jacobian 

inversion. 

The two controllable outputs are the surge X and the 

yaw moment N. This is equivalent to controlling the 

surge and yaw velocities and so the desired outputs are 

ud, rd. There are two control inputs, one torque per side 

(τleft, τright). For the Integration method, there are two 

inputs and two outputs and so the size of the Jacobian 

(Worrall et al., 2015a; Worrall et al., 2015b) in Eq. (7) 

is 2x2. For the Differentiation method, it was observed 

during the initial simulations that including as an 

additional output to control the sway velocity v, the 

overall results are significantly improved without 

sacrificing greatly in execution time. There are three 

desired outputs: ud, rd as before and vd, which is set to 

zero. The sway velocity v is not matched dynamically to 

the actuators of the system and therefore cannot be 

directly controlled. It is however strongly coupled to u 

and r (Worrall, 2010) and this interaction can provide 

indirect control of sway and act as an additional 

constraint. For the Jacobian, Eq. (4), only the 

controllable states u, r and also v are taken into account 

and so its size is 6x5. The remaining states for (4) are 

estimated after convergence at each ti. This is an over-

determined system and to ensure that the solution is 

always a least square solution a suitable factorization 

method is used to find the pseudo-inverse of J and solve 

(4). There are several methods to find the Jacobian 

inverse. Table 2 shows the methods in MATLAB that 

are examined (Davis, 2013). Each method from Table 2 

is tested using the Long Distance test and the first set of 

parameters.  

Table 3 shows the results for the Differentiation 

scheme. The backslash method fails because J is 

(column) rank deficient; this is expected because the 

outputs to control are u, v and r and v is strongly 

coupled to u and r. Between pinv(J) and factorize(J), 

the factorize command is superior in terms of errors and 

is the one selected, at the expense of increased 

execution time. The method used by factorize(J) is the 

complete orthogonal decomposition, which is suitable 

for rank deficient systems. Table 4 shows the results for 
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the Integration scheme. The backslash method is the 

best for the error and execution time and is the one 

selected. Integration is slower, which is in line with 

previous observations (Section 2.2). 

Table 2. Inversion Methods. 

Method Comments 

inv() 

- built-in function 

Suitable only for square 

systems of full rank, can be 

very inaccurate.  

pinv() 

- built-in function 

Suitable for non-square 

systems, calculates the Moore–

Penrose pseudoinverse using 

singular value decomposition 

(SVD). 

\ 

(backslash 

operator)  

- built-in function 

Suitable for square or over 

determined systems with full 

column rank, fast, accurate. 

Factorization cannot be reused. 

Suggested MATLAB method. 

FACTORIZE 

(Davis, 2013) 

- additional 

package, acts as a 

wrapper for the 

built-in MATLAB 

functions 

Selects the most suitable 

factorization method from LU 

decomposition, Cholesky 

decomposition, QR 

decomposition, SVD (singular 

value decomposition), COD 

(complete orthogonal 

decomposition). Suitable for 

square, rank deficient and 

over/under determined systems. 

Table 3. Inversion: Differentiation (with sway), Long 

Distance (set 1). 

 \ pinv(J) factorize(J) 

mean position x 

error (m) 

- 0.00247 0.00082 

σ position error  - 0.00211 0.00080 

mean heading θ 

error (rad) 

- 0.00123 0.00053 

σ heading error - 0.00076 0.00056 

execution time (s) - 34.12 55.45 

Table 4. Inversion: Integration (without sway), Long 

Distance (set 1). 

 \ inv(J) factorize(J) 

mean position x 

error (m) 

0.00082 0.00082 0.00082 

σ position error  0.00040 0.00040 0.00040 

mean heading θ 

error (rad) 

0.00073 0.00073 0.00073 

σ heading error 0.0013 0.0013 0.0013 

execution time (s) 79.19 376.89 317.84 

4.2 Scheme comparison 

From Tables 3, 4 the main difference between the two 

schemes is the calculation time. Differentiation 

performs slightly better for the heading. Figure 3 shows 

the control inputs generated for Differentiation and 

Figure 4 for Integration.  

 

Figure 3. Differentiation Control, Long Distance (set 1). 

 

Figure 4. Integration Control, Long Distance (set 1). 

The left side control is signified by the solid line and 

the right side by the dashed line. The left and right 

signals are symmetrical when the rover is moving 

forward (e.g. at 100s), which is expected since each side 

is controlled by one input. When the heading changes 

there is a momentary spike in the input. The control 

inputs from Integration are smoother, e.g. between 100 

– 150s and at 250s in Figure 3 and 4. The oscillations 

from Differentiation have a small magnitude and high 

frequency and are due to the fact that the scheme uses 

an over-determined system which may have multiple 

solutions (Section 2.2). 

Table 5 shows the results for the Long Distance test, 

set 2: dt is increased and so is the convergence 

tolerance. The execution time is significantly reduced, 

and Integration is now faster than Differentiation. 

Integration performs slightly better in terms of the 
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position error and Differentiation is better for the 

heading error. Compared with Tables 3, 4, the standard 

deviation of both the position and the heading error is 

larger; the rover has some sharper deviations from the 

desired position and heading. Figure 5 shows the 

calculated control input from Differentiation. By 

increasing the dt to 0.05s, the high frequency, low 

amplitude oscillations in the control input decrease 

significantly. 

Table 5. Long Distance (set 2). 

 Differentiation  

(with sway) 

Integration  

(without sway) 

mean position x 

error (m) 

0.00468 0.00450 

σ position error  0.00314 0.00196 

mean heading θ 

error (rad) 

0.00276 0.00736 

σ heading error 0.00262 0.00700 

execution time (s) 12.19 8.72 

 

Figure 5. Differentiation Control, Long Distance (set 2). 

Table 6 shows the results for the Figure of Eight test. 

Both methods perform similarly but Differentiation is 

faster and slightly better for the standard deviation of 

the heading error.  

Figure 6 and 7 show the errors of u, v and r after the 

Newton–Raphson algorithm for Eq. (3) and (6) has 

converged at each ti. The desired value of v is set to zero 

and the desired values of u and r are the same for both 

methods. For Differentiation, the error in r deviates 

about 10-16 rad/s from zero, whereas for Integration it 

deviates about 10-4 rad/s from zero. The v error deviates 

10-7 m/s from zero and the u error deviates 10-8 m/s 

from zero for Differentiation. For Integration, the v 

error deviates 10-4 m/s and the u error 10-5 m/s from 

zero. At Figure 7, when the heading changes there is a 

spike in the errors. At Figure 6, the much smaller errors 

are due to v used as an additional output. This effect is 
particularly evident when comparing the errors in r. 

Table 6. Figure of Eight (set 1). 

 Differentiation  

(with sway) 

Integration  

(without sway) 

mean position x 

error (m) 

0.00034 0.00060 

σ position error  0.00036 0.00048 

mean heading θ 

error (rad) 

0.00202 0.00203 

σ heading error 0.09501 0.11632 

execution time (s) 25.94 40.45 

 

 

Figure 6. Differentiation NR Errors Fig of Eight (set 1). 

 

Figure 7. Integration NR Errors Fig. of Eight (set 1). 

From Tables 3 - 6, Integration exhibits bigger errors 

for the heading angle. When the dt and the tolerance are 

small enough or when there are no abrupt orientation 

changes, this is negligible. As dt and the tolerance 

increase and the trajectory requires sharp heading 

changes, this difference becomes more important. This 

can be seen in the failure of Integration for the Figure of 

Eight test using parameter set 2. The errors in r are not 

corrected, the calculated control in (7) increases and the 

condition number of Je by 22.5s (total time 175s) is 

infinite; the Jacobian is ill-conditioned and cannot be 

factorized. 
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4.3 Effect of sway velocity 

To reduce the error in r and conversely in θ, the sway 

velocity v is used as an additional output for Integration. 

Then, Je in Eq. (7) has a size of 3x2: three outputs (u, v, 

r), two inputs and the factorize command is used. Table 

7 shows the results for the Figure of Eight test, set 2. 

Both methods produce similar results, however 

Integration is slower and still has a larger error and 

standard deviation for the heading. Nonetheless, the 

usage of v has here a positive effect and enables 

Integration to converge. When using v in Integration for 

the Long Distance test, set 2, the execution time 

increases to 29.71s compared to 8.72s (Table 5) without 

any error improvements. For the Long Distance test, set 

1 (Table 4), the time is greatly increased to 791.99s.  

Table 7. Figure of Eight Test (set 2). 

 Differentiation  

(with sway) 

Integration  

(with sway) 

mean position x 

error (m) 

0.00384 0.00332 

σ position error  0.00259 0.00231 

mean heading θ 

error (rad) 

0.01047 0.02298 

σ heading error 0.00259 0.27941 

execution time (s) 5.30 20.71 

Table 8. Differentiation: Long Distance (set 1). 

 Differentiation 

(with sway) 

Differentiation  

(without sway) 

mean position x 

error (m) 

0.00082s 0.002404 

σ position error  0.00080 0.001960 

mean heading θ 

error (rad) 

0.00053 0.003154

σ heading error 0.00056 0.002864

execution time (s) 55.45 56.26

Table 8 shows the Differentiation results for the

Long Distance test (set 1) with and without using v.

Without v, J in (4) is square (4x4). The errors increase

by two orders of magnitude and the execution time is

almost the same: the method converges slower and with

larger errors. Compared with Integration (Table 4), the

inclusion of v has a greater effect on Differentiation.

This confirms previous results, that Integration is more

stable. Here, Differentiation performs slightly better but

requires an over-determined system and specialized

handling.

5 Conclusions

The selection of outputs to control, their effect on the

size of the Jacobian and the best factorization method

were examined. A square Jacobian is used for

Integration and an over-determined for Differentiation.

The schemes were compared for varying dt and 

convergence tolerance. A small dt results in high 

frequency, low amplitude oscillations in the control 

input from Differentiation. To remove these, the dt was 

increased. The effect of sway velocity v, which is 

strongly coupled with u, r but not directly controlled, 

was examined. For Differentiation, using v as an output 

is beneficial from the start. Integration performed well 

for both parameter sets for the Long Distance test 

without v. For the Figure of Eight test for a dt of 0.05s 

and tolerance 5×10-5, including v was necessary. It is 

worth noting that this test is not a realistic trajectory and 

is used to test the method’s limits. A dt of 0.01s and a 

tolerance of 5×10-7 produce the best results, with 

increased calculation time. For simplicity and overall 

stability, the Integration scheme is more appropriate. 

For decreased execution time, Differentiation is 

preferred, at the expense of slightly larger position 

errors and an over-determined system. In all cases, the 

control inputs from Inverse Simulation where within 

operational limits. 
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