
Numerical Efficiency of Inverse Simulation Methods

applied to a Wheeled Rover

Thaleia Flessa Euan McGookin Douglas Thomson Kevin Worrall

Division of Aerospace Sciences, School of Engineering

University of Glasgow, UK, G12 8QQ

Abstract
A control method based on Inverse Simulation is

applied to a four wheel rover. The method calculates the

required inputs to achieve a desired, specified response;

a trajectory in this case. Inverse Simulation considers

the complete system dynamics to calculate the control

input using an iterative, numerical Newton – Raphson

scheme. Two methods for applying Inverse Simulation

are presented, one based on a Differentiation scheme

and one on Integration. The paper provides an insight

into how the scheme formulation and selected

parameters affect both methods’ performance when

applied to a rover. The selection of system outputs to

control, their effect on each scheme’s Jacobian, whether

it is square or over-determined and the best method to

factorize this Jacobian are investigated. The influence

of the discretisation step and the convergence tolerance

is also examined using two different sets for both

schemes and in conjunction with the type of Jacobian

used. The comparison is made in terms of the resulting

trajectory, the execution time, and the quality of the

calculated control input.

Keywords: inverse, simulation, control, navigation,
model based, numerical, wheeled vehicle, rover

1 Introduction

A novel method based on Inverse Simulation is used

for planetary rover guidance and control. Inverse

simulation uses a mathematical model that is

representative of the system and calculates the control

inputs necessary to produce the desired response. This

desired response is defined in terms of the system's

output variables and represents their time history.

Inverse Simulation is a model based, numerical,

iterative process where step changes in the various

controls are applied until the predicted response

matches the desired response (Thomson and Bradley,

2006). Applied to rover navigation, the desired response

is a specified, safe trajectory to a goal destination

(Worrall et al., 2015a; Worrall et al., 2015b). Inverse

Simulation is a novel way of addressing the issue of

given a specified, safe path, what are the required

control inputs for the rover to reach the destination goal

through this path. The method can be applied (a) in situ:

given a series of waypoints or a defined trajectory, the

rover can calculate the necessary control inputs or (b)

offline: operators define the trajectory, the control

inputs are calculated and then sent to the rover.

Applications for Inverse Simulation are

predominantly within the flight dynamics domain and

the application to rotorcraft flight control is a major

area. In these particular cases Inverse Simulation is used

to produce the required control signals for specific

flight manoeuvres (Hess and Gao, 1993; Murray-Smith,

2000; Thomson and Bradley, 2006) and (Avanzini et

al., 2013) also introduces a predictive element. The

method has also been applied to unmanned aerial

vehicles (Murray-Smith and McGookin, 2015) and

autonomous underwater vehicles (Murray-Smith et al.,

2008). Inverse Simulation has also been used as a

model validation method (Murray-Smith, 2000;

Thomson and Bradley, 2006). Previous research has

demonstrated the potential for Inverse Simulation as a

guidance and control method for wheeled rovers

(Worrall et al., 2015a; Worrall et al., 2015b).

Planetary rover navigation so far has been achieved

using a combination of non-, semi- and fully

autonomous methods (Bajracharya et al., 2008). The

NASA Mars Exploration Rovers (MER) use a

combination of three main driving modes with varying

degrees of autonomy. The first mode involves the rover

executing a sequence of commands to follow a defined

course of waypoints towards specific goal coordinates.

In this mode the rover only performs basic safety

checks (Biesiadecki et al., 2007). The second mode is

semi-autonomous navigation during which the rover is

given a set of waypoints towards specific goal

coordinates and uses its on-board capabilities for hazard

avoidance and for planning a path towards the goal. A

special case is when the rover drives towards an area

that is unknown to the operators (Biesiadecki et al.,

2007; Bajracharya et al., 2008). In this case the rover

has to choose the waypoints for a safe path towards the

goal and then drive along this path; this is fully

autonomous navigation. The third mode is visual
odometry: the rover uses images from the on-board

cameras to accurately estimate and update its position

EUROSIM 2016 & SIMS 2016

348DOI: 10.3384/ecp17142348 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

(Cheng et al., 2005; Biesiadecki et al., 2007). A similar

combination of these driving modes is used for the

Curiosity rover and autonomous navigation is used to

plot a safe path towards an area unknown to the

operators (Bakambu et al., 2012). The fully autonomous

and visual odometry modes are used when the rover

moves into areas that are not visible to the operators

(Cheng et al., 2005; Biesiadecki et al., 2007;

Bajracharya et al., 2008). The developers of the

ExoMars mission have addressed the issue of control,

navigation and autonomy by including an element of

autonomous control (Silva et al., 2013) and by

conducting field experiments (Woods et al., 2014).

Another issue is the computational complexity of the

algorithms that are running on-board. The MER and

Curiosity rovers use special space qualified and

radiation hardened microprocessors whose

computational capabilities have been exceeded by more

than two orders of magnitude by the average desktop

computer (Howard et al., 2012). Furthermore, the

navigation algorithms must also be tested using a wide

range of parameters, which is best done using

simulation (Madison et al., 2007).

The paper investigates the selection of outputs to

control and the parameters that affect the application

and execution time of Inverse Simulation to a four

wheeled rover. The control inputs are calculated from

Inverse Simulation, applied to the rover and the

resulting trajectory is compared with the desired.

2 Methodology of Inverse Simulation

Inverse Simulation has two main requirements: a

desired trajectory represented as a time history with an

appropriate time step and a model of the system. The

model’s inputs and outputs must be representative of

the inputs and outputs of the actual system. The desired

trajectory is described using the model’s outputs. There

are two main implementations of Inverse Simulation for

finding the control inputs given a desired output:

Differentiation (Hess and Gao, 1993; Murray-Smith,

2000; Thomson and Bradley, 2006; Murray-Smith and

McGookin, 2015) and Integration (Hess and Gao, 1993;

Thomson and Bradley, 2006; Avanzini et al., 2013;

Worrall et al., 2015a; Worrall et al., 2015b). The basic

framework for each is similar and uses a numerical

Newton – Raphson algorithm; what differs is the

method of convergence to the control signal. In

Differentiation, a numerical differentiation scheme is

used and the convergence is based on the system's state

and output equations. In Integration, a numerical

integration scheme is used and the convergence is based

on whether the system's output matches the desired. An

alternative approach to Inverse Simulation uses a

modified version of the Integration scheme and search

based optimisation (Lu et al., 2008).

2.1 Implementation

A general non-linear system is used where f∈Rm are the

state equations, g∈Rp are the output equations, u∈Rq is

the control input vector, x∈Rm is the state variable

vector and y∈Rp is the output vector. The desired output

to control is gd∈Rp.

 , x f x,u y = g x,u

For the Differentiation method, (1) is discretised N

times over a time interval Τ, where dt is the

discretisation step. The unknowns in (2) are the states x

and the input u at ti. The known variables are the

desired output gd and the states, control and output from

the previous discretisation step ti-1. Then, the functions

F1 and F2 in (3) are defined to find the values of input u

and the states x for the given output gd. The system in

(3) is solved using the Newton - Raphson method to

update u and x until their values are such that F1 and F2

are both equal to zero within a certain tolerance. The

updated equations are in (4) and J is the Jacobian of the

system from (3).

1

1, ,

,

i i

i i i i

i i i

t t
t t dt t t

dt

t t t

x x
f x u

y g x u

1

1

2

,

,

i i

i i

i i d i

t t
t t

dt

t t t

x x
F f x u

F g x u g

 1 1 1 11

1 2 1 1

,

,

n n n n

i i

n n n n

t t

x x F x u
J

u u F x u

For the Integration approach the state and output

equations from (1) are again discretised and dt is the

discretisation step. The state equations are integrated at

ti. An error function between the current output and the

desired gd is defined in (6). Equation (6) is solved for u

using the Newton – Raphson method and the iterative

relationship in (7). Je is the Jacobian of the error

function fe or equivalently the Jacobian of the system

outputs when perturbing the inputs.

1

1

1,

i

i

t

i i i

t

i i i

t d t

t t t

x x x

y g x u

 1,i i it t t e df g x u g

 1

1 1 1 1 1 1, ,n i n e n n n nt

 eu u J x u f x u

2.2 Numerical Properties

Both implementations use a Jacobian and care must be

taken when trying to find its inverse or a suitable

EUROSIM 2016 & SIMS 2016

349DOI: 10.3384/ecp17142348 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

factorization. For the Differentiation method, from Eq.

(4) the dimension of the Jacobian J is [m+p]×[m+q].

For the Integration method from Eq. (7) the dimension

of the Jacobian Je is [p]×[q]. If there is an equal

number of inputs and outputs (p=q), then the Jacobian

is a square matrix. If however, the number of inputs and

outputs is not equal, then factorization methodologies

such as LU, QR or Cholesky decomposition or the

Moore–Penrose pseudoinverse (Strang, 2009; Davis,

2013), can be used. When there are more outputs than

inputs (p>q), this results in an over-determined system

and the pseudoinverse or factorization can be used. In

that case, the calculated outputs are a least-square fit to

the desired outputs and not necessarily a good one. For

this reason, systems where the number of inputs is equal

to or greater than the number of outputs are preferred

candidates (Hess and Gao, 1993; Murray-Smith, 2000;

Thomson and Bradley, 2006; Murray-Smith et al.,

2008).

Each approach has advantages and disadvantages,

which are usually identified as the following (Hess and

Gao, 1993; Murray-Smith, 2000; Thomson and Bradley,

2006; Lu et al., 2008): (a) The Integration method can

use any representative model of the system.

Differentiation requires both the states and the outputs

and any change in the model results in a reformulation

of the algorithm. Therefore, the Differentiation method

is more time consuming to set up and maintain, whereas

for Integration the model can be modified more easily,

(b) The Integration method has a convergence rate that

is up to an order of magnitude larger than that of the

Differentiation method but it is generally more stable;

what is gained in flexibility and stability, is lost in

computing time. The numerical properties of Inverse

Simulation have been examined mostly when the

method is applied to flight dynamics (Hess and Gao,

1993; Thomson and Bradley, 2006; Lu et al., 2008). It

was observed that there are oscillations in the response

of the uncontrolled states (constraint oscillations)

(Thomson and Bradley, 2006; Lu et al., 2008).

However, these oscillations depend more on the

dynamical properties of the system, its uncontrollable

states and zero dynamics as well as on the discretisation

step dt, rather than on the method used. They are also

significantly reduced when a larger dt is used (Lu et al.,

2008). Also from (Thomson and Bradley, 2006) it was

observed that there are low amplitude, high frequency

oscillations superimposed on the calculated control

input. These oscillations are due to several reasons

(Hess and Gao, 1993; Murray-Smith, 2000; Thomson

and Bradley, 2006; Lu et al., 2008): redundancy issues,

non-square Jacobian and multiple solutions, several

local minima of the error function from (4), (7). The

oscillations increase when the discretisation step dt is

too small, as it could excite the uncontrollable states

(Lu et al., 2008). Nonetheless, a relatively small dt can

have a positive effect because it captures the changes in

the system dynamics and this may reduce or even

remove them (Lu et al., 2008).

3 Rover Model and Trajectory

Generation

Inverse Simulation requires a mathematical model of

the system and a desired response, which is a trajectory.

First, a path to the destination is determined as a series

of waypoints. This information provides the desired

trajectory for the Inverse Simulation, which in turn

generates the required guidance commands (control

inputs) to follow the trajectory (Worrall et al., 2015a;

Worrall et al., 2015b).

3.1 Rover Model

The model of the rover has been presented in (Worrall,

2010; Worrall et al., 2015a; Worrall et al., 2015b) and

has been experimentally validated (Worrall, 2010). It is

briefly described here for clarity. Each side has two

wheels and the wheels at each side provide the same

torque input. The dynamics are described by (8), where

v is the state velocity vector (9) in the local body frame,

η is the velocity vector in the global frame and τ is the

input vector (10).

1

 t

M τ -C v v D v v - g ηv

η J η v

T

u v w p q rv

T

X Y Z K M Nτ

In (9) u, v, w are the surge, sway and heave velocities

and p, q, r are the roll, pitch and yaw rates respectively.

In (10) X is the surge, Y is the sway and Z is the heave

force, K is the roll, M is the pitch and N is the yaw

moment. X and N are controllable by two inputs: one

torque at each side. The remaining forces and moments

are the unmatched dynamics.

3.2 Trajectory Generation

The trajectory is represented as a series of waypoints,

each defined by an x-y coordinate with a common

origin. A path between each waypoint and the next is

calculated, with the robot stopping at each waypoint to

turn on the spot to achieve the desired orientation and

then move again.

The distance and time to travel between each

waypoint is calculated assuming a constant velocity

between stages with initial and final acceleration and

deceleration transients: the constant forward speed is

0.1ms-1, analogous to that of operating rovers, and the

rotational velocity is 0.1rads-1. At each waypoint a
check is made to determine if the rover is at the correct

angle for the next traversal forward. If not, then the

EUROSIM 2016 & SIMS 2016

350DOI: 10.3384/ecp17142348 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

rover is commanded to turn on the spot until the desired

angle is achieved. The path from one waypoint to the

next is defined by specifying the acceleration as a 7th

order polynomial function of time and is based on that

presented in (Thomson and Bradley, 2006; Worrall et

al., 2015a). A 7th order polynomial has the benefit of

producing smooth trajectory profiles with high order,

continuous derivatives. The output is the acceleration

time history, which is then integrated to provide the

velocities and the displacements. The result is a

continuous time history of acceleration, speed and

distance between each successive waypoint that fully

describes the rover’s position and orientation; namely

the elements of v, η.

4 Application Results

A series of waypoints are first defined and then a

trajectory between them is generated as in Section 3. It

is assumed that these waypoints represent a safe,

feasible path. Inverse Simulation calculates the control

inputs for each trajectory. Then these inputs are applied

to the system and it is checked whether the resulting

trajectory matches the desired. The following test

trajectories were selected. The Long Distance test

(Figure 1, 400s) involves several pose changes and will

be used as a benchmark to show how the errors built up

over time and to compare the different parameters. The

Figure of Eight test (Figure 2, 175s) is used to

demonstrate a complex path with multiple, sharp turns

and how the method copes with successive pose

changes.

Figure 1. Long Distance. Figure 2. Figure of Eight.

The simulation parameters that need to be assigned

values are: discretisation step dt, convergence tolerance

tol, torque input initial estimate, maximum number of

iterations for the Newton-Raphson algorithm. For dt,
the timestep of the motors and the need to adequately

follow the system are taken into account (Worrall et al.,

2015a). The rover starts from rest (zero motor torque).

Here a very small value is set for the initial estimate.

The number of iterations is set to ensure convergence

without increasing the execution time.

The assessment criteria are the following: (a) mean

error and standard deviation between the actual and the

desired position x (integrated from u), (b) mean error

and standard deviation between the actual and the

desired heading angle θ (integrated from r), (c)
calculation time, an important measurement for any

control algorithm. The position and heading angle

represent the rover position in space and hence how

wells it follows the desired trajectory.

Table 1. Simulation Parameters.

Parameter Set 1 Set 2

dt (s) 0.01 0.05

tol 5×10-7 5×10-5

initial control

estimate (Nm)

2.5×10-7

maximum iterations 30

MATLAB version 2014b, 64 bit

hardware Core 2 Duo T9300, 2.50

GHz, 4 GB RAM

4.1 Selection of inputs, outputs and Jacobian

inversion.

The two controllable outputs are the surge X and the

yaw moment N. This is equivalent to controlling the

surge and yaw velocities and so the desired outputs are

ud, rd. There are two control inputs, one torque per side

(τleft, τright). For the Integration method, there are two

inputs and two outputs and so the size of the Jacobian

(Worrall et al., 2015a; Worrall et al., 2015b) in Eq. (7)

is 2x2. For the Differentiation method, it was observed

during the initial simulations that including as an

additional output to control the sway velocity v, the

overall results are significantly improved without

sacrificing greatly in execution time. There are three

desired outputs: ud, rd as before and vd, which is set to

zero. The sway velocity v is not matched dynamically to

the actuators of the system and therefore cannot be

directly controlled. It is however strongly coupled to u

and r (Worrall, 2010) and this interaction can provide

indirect control of sway and act as an additional

constraint. For the Jacobian, Eq. (4), only the

controllable states u, r and also v are taken into account

and so its size is 6x5. The remaining states for (4) are

estimated after convergence at each ti. This is an over-

determined system and to ensure that the solution is

always a least square solution a suitable factorization

method is used to find the pseudo-inverse of J and solve

(4). There are several methods to find the Jacobian

inverse. Table 2 shows the methods in MATLAB that

are examined (Davis, 2013). Each method from Table 2

is tested using the Long Distance test and the first set of

parameters.

Table 3 shows the results for the Differentiation

scheme. The backslash method fails because J is

(column) rank deficient; this is expected because the

outputs to control are u, v and r and v is strongly

coupled to u and r. Between pinv(J) and factorize(J),

the factorize command is superior in terms of errors and

is the one selected, at the expense of increased

execution time. The method used by factorize(J) is the

complete orthogonal decomposition, which is suitable

for rank deficient systems. Table 4 shows the results for

EUROSIM 2016 & SIMS 2016

351DOI: 10.3384/ecp17142348 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

the Integration scheme. The backslash method is the

best for the error and execution time and is the one

selected. Integration is slower, which is in line with

previous observations (Section 2.2).

Table 2. Inversion Methods.

Method Comments

inv()

- built-in function

Suitable only for square

systems of full rank, can be

very inaccurate.

pinv()

- built-in function

Suitable for non-square

systems, calculates the Moore–

Penrose pseudoinverse using

singular value decomposition

(SVD).

\

(backslash

operator)

- built-in function

Suitable for square or over

determined systems with full

column rank, fast, accurate.

Factorization cannot be reused.

Suggested MATLAB method.

FACTORIZE

(Davis, 2013)

- additional

package, acts as a

wrapper for the

built-in MATLAB

functions

Selects the most suitable

factorization method from LU

decomposition, Cholesky

decomposition, QR

decomposition, SVD (singular

value decomposition), COD

(complete orthogonal

decomposition). Suitable for

square, rank deficient and

over/under determined systems.

Table 3. Inversion: Differentiation (with sway), Long

Distance (set 1).

 \ pinv(J) factorize(J)

mean position x

error (m)

- 0.00247 0.00082

σ position error - 0.00211 0.00080

mean heading θ

error (rad)

- 0.00123 0.00053

σ heading error - 0.00076 0.00056

execution time (s) - 34.12 55.45

Table 4. Inversion: Integration (without sway), Long

Distance (set 1).

 \ inv(J) factorize(J)

mean position x

error (m)

0.00082 0.00082 0.00082

σ position error 0.00040 0.00040 0.00040

mean heading θ

error (rad)

0.00073 0.00073 0.00073

σ heading error 0.0013 0.0013 0.0013

execution time (s) 79.19 376.89 317.84

4.2 Scheme comparison

From Tables 3, 4 the main difference between the two

schemes is the calculation time. Differentiation

performs slightly better for the heading. Figure 3 shows

the control inputs generated for Differentiation and

Figure 4 for Integration.

Figure 3. Differentiation Control, Long Distance (set 1).

Figure 4. Integration Control, Long Distance (set 1).

The left side control is signified by the solid line and

the right side by the dashed line. The left and right

signals are symmetrical when the rover is moving

forward (e.g. at 100s), which is expected since each side

is controlled by one input. When the heading changes

there is a momentary spike in the input. The control

inputs from Integration are smoother, e.g. between 100

– 150s and at 250s in Figure 3 and 4. The oscillations

from Differentiation have a small magnitude and high

frequency and are due to the fact that the scheme uses

an over-determined system which may have multiple

solutions (Section 2.2).

Table 5 shows the results for the Long Distance test,

set 2: dt is increased and so is the convergence

tolerance. The execution time is significantly reduced,

and Integration is now faster than Differentiation.

Integration performs slightly better in terms of the

EUROSIM 2016 & SIMS 2016

352DOI: 10.3384/ecp17142348 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

position error and Differentiation is better for the

heading error. Compared with Tables 3, 4, the standard

deviation of both the position and the heading error is

larger; the rover has some sharper deviations from the

desired position and heading. Figure 5 shows the

calculated control input from Differentiation. By

increasing the dt to 0.05s, the high frequency, low

amplitude oscillations in the control input decrease

significantly.

Table 5. Long Distance (set 2).

 Differentiation

(with sway)

Integration

(without sway)

mean position x

error (m)

0.00468 0.00450

σ position error 0.00314 0.00196

mean heading θ

error (rad)

0.00276 0.00736

σ heading error 0.00262 0.00700

execution time (s) 12.19 8.72

Figure 5. Differentiation Control, Long Distance (set 2).

Table 6 shows the results for the Figure of Eight test.

Both methods perform similarly but Differentiation is

faster and slightly better for the standard deviation of

the heading error.

Figure 6 and 7 show the errors of u, v and r after the

Newton–Raphson algorithm for Eq. (3) and (6) has

converged at each ti. The desired value of v is set to zero

and the desired values of u and r are the same for both

methods. For Differentiation, the error in r deviates

about 10-16 rad/s from zero, whereas for Integration it

deviates about 10-4 rad/s from zero. The v error deviates

10-7 m/s from zero and the u error deviates 10-8 m/s

from zero for Differentiation. For Integration, the v

error deviates 10-4 m/s and the u error 10-5 m/s from

zero. At Figure 7, when the heading changes there is a

spike in the errors. At Figure 6, the much smaller errors

are due to v used as an additional output. This effect is
particularly evident when comparing the errors in r.

Table 6. Figure of Eight (set 1).

 Differentiation

(with sway)

Integration

(without sway)

mean position x

error (m)

0.00034 0.00060

σ position error 0.00036 0.00048

mean heading θ

error (rad)

0.00202 0.00203

σ heading error 0.09501 0.11632

execution time (s) 25.94 40.45

Figure 6. Differentiation NR Errors Fig of Eight (set 1).

Figure 7. Integration NR Errors Fig. of Eight (set 1).

From Tables 3 - 6, Integration exhibits bigger errors

for the heading angle. When the dt and the tolerance are

small enough or when there are no abrupt orientation

changes, this is negligible. As dt and the tolerance

increase and the trajectory requires sharp heading

changes, this difference becomes more important. This

can be seen in the failure of Integration for the Figure of

Eight test using parameter set 2. The errors in r are not

corrected, the calculated control in (7) increases and the

condition number of Je by 22.5s (total time 175s) is

infinite; the Jacobian is ill-conditioned and cannot be

factorized.

EUROSIM 2016 & SIMS 2016

353DOI: 10.3384/ecp17142348 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

4.3 Effect of sway velocity

To reduce the error in r and conversely in θ, the sway

velocity v is used as an additional output for Integration.

Then, Je in Eq. (7) has a size of 3x2: three outputs (u, v,

r), two inputs and the factorize command is used. Table

7 shows the results for the Figure of Eight test, set 2.

Both methods produce similar results, however

Integration is slower and still has a larger error and

standard deviation for the heading. Nonetheless, the

usage of v has here a positive effect and enables

Integration to converge. When using v in Integration for

the Long Distance test, set 2, the execution time

increases to 29.71s compared to 8.72s (Table 5) without

any error improvements. For the Long Distance test, set

1 (Table 4), the time is greatly increased to 791.99s.

Table 7. Figure of Eight Test (set 2).

 Differentiation

(with sway)

Integration

(with sway)

mean position x

error (m)

0.00384 0.00332

σ position error 0.00259 0.00231

mean heading θ

error (rad)

0.01047 0.02298

σ heading error 0.00259 0.27941

execution time (s) 5.30 20.71

Table 8. Differentiation: Long Distance (set 1).

 Differentiation

(with sway)

Differentiation

(without sway)

mean position x

error (m)

0.00082s 0.002404

σ position error 0.00080 0.001960

mean heading θ

error (rad)

0.00053 0.003154

σ heading error 0.00056 0.002864

execution time (s) 55.45 56.26

Table 8 shows the Differentiation results for the

Long Distance test (set 1) with and without using v.

Without v, J in (4) is square (4x4). The errors increase

by two orders of magnitude and the execution time is

almost the same: the method converges slower and with

larger errors. Compared with Integration (Table 4), the

inclusion of v has a greater effect on Differentiation.

This confirms previous results, that Integration is more

stable. Here, Differentiation performs slightly better but

requires an over-determined system and specialized

handling.

5 Conclusions

The selection of outputs to control, their effect on the

size of the Jacobian and the best factorization method

were examined. A square Jacobian is used for

Integration and an over-determined for Differentiation.

The schemes were compared for varying dt and

convergence tolerance. A small dt results in high

frequency, low amplitude oscillations in the control

input from Differentiation. To remove these, the dt was

increased. The effect of sway velocity v, which is

strongly coupled with u, r but not directly controlled,

was examined. For Differentiation, using v as an output

is beneficial from the start. Integration performed well

for both parameter sets for the Long Distance test

without v. For the Figure of Eight test for a dt of 0.05s

and tolerance 5×10-5, including v was necessary. It is

worth noting that this test is not a realistic trajectory and

is used to test the method’s limits. A dt of 0.01s and a

tolerance of 5×10-7 produce the best results, with

increased calculation time. For simplicity and overall

stability, the Integration scheme is more appropriate.

For decreased execution time, Differentiation is

preferred, at the expense of slightly larger position

errors and an over-determined system. In all cases, the

control inputs from Inverse Simulation where within

operational limits.

Acknowledgments

Research supported by grant EPSRC/1369575 from the

UK Engineering and Physical Sciences Research

Council (EPSRC).

References

G. Avanzini, D. G. Thomson, and A. Torasso. Model
Predictive Control Architecture for Rotorcraft Inverse
Simulation. Journal of Guidance, Control, and
Dynamics, 36(1), 207–217, 2013. doi:10.2514/1.56563.

M. Bajracharya, M. W. Maimone, and D. Helmick.
Autonomy for Mars Rovers: Past, Present, and Future.
Computer, 41(12), 44–50, 2008. doi:
10.1109/MC.2008.479.

J. N. Bakambu, C. Langley, G. Pushpanathan, W. J.
MacLean, and R. Mukherji. Field trial results of
planetary rover visual motion estimation in Mars
analogue terrain. Journal of Field Robotics, 29(3), 413–
425, 2012. doi: 10.1002/rob.21409.

J. J. Biesiadecki, P. C. Leger, and M. W. Maimone.
Tradeoffs between Directed and Autonomous Driving
on the Mars Exploration Rovers. The International
Journal of Robotics Research, 26(1), 91–104, 2007.
doi: 10.1177/0278364907073777.

Y. Cheng, M. W. Maimone, and L. Matthies. Visual
Odometry on the Mars Exploration Rovers. In 2005
IEEE International Conference on Systems, Man and
Cybernetics, Waikoloa, HI, USA, pages 903–910, 2005.
doi: 10.1109/ICSMC.2005.1571261.

T. A. Davis. Algorithm 930: FACTORIZE: An Object-
Oriented Linear System Solver for MATLAB. ACM
Transactions on Mathematical Software, 39(4), 1–18,
2013. doi: 2491491.2491498.

EUROSIM 2016 & SIMS 2016

354DOI: 10.3384/ecp17142348 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

R. A. Hess and C. Gao. A Generalized Algorithm for
Inverse Simulation Applied to Helicopter Maneuvering
Flight. Journal of the American Helicopter Society,
38(4), 3–15, 1993. doi: 10.2514/3.20732.

T. M. Howard, A. Morfopoulos, J. Morrison, Y. Kuwata,
C. Villalpando, L. Matthies, and M. McHenry. Enabling
continuous planetary rover navigation through FPGA
stereo and visual odometry. In 2012 IEEE Aerospace
Conference, Big Sky, MT, USA, pages 1–9, 2012. doi:
10.1109/AERO.2012.6187041.

L. Lu, D. J. Murray-Smith, and D. G. Thomson. Issues of
numerical accuracy and stability in inverse simulation.
Simulation Modelling Practice and Theory, 16(9),
1350–1364, 2008. doi: 10.1016/j.simpat.2008.07.003.

R. Madison, A. Jain, C. Lim, and M. W. Maimone.
Performance characterization of a rover navigation
algorithm using large-scale simulation. Scientific
Programming, 15(2), 95–105, 2007. doi:
10.1155/2007/638280.

D. J. Murray-Smith. The inverse simulation approach: a
focused review of methods and applications.
Mathematics and Computers in Simulation, 53(4–6),
239–247, 2000. doi: 10.1016/S0378-4754(00)00210-X.

D. J. Murray-Smith, L. Lu, and E. W. McGookin.
Applications of inverse simulation to a nonlinear model
of an underwater vehicle. In Summer Simulation Multi-
Conference 2008 - Grand Challenges in Modelling and
Simulation, Edinburgh, Scotland, 2008.

D. J. Murray-Smith and E. W. McGookin. A case study
involving continuous system methods of inverse
simulation for an unmanned aerial vehicle application.
Proceedings of the Institution of Mechanical Engineers,
Part G: Journal of Aerospace Engineering, 229(14),
2700–2717, 2015. doi: 10.1177/0954410015586842.

N. Silva, R. Lancaster, and J. Clemmet. ExoMars Rover
Vehicle Mobility Functional Architecture and Key
Design Drivers. In 12th Symposium on Advanced Space
Technologies in Robotics and Automation (ASTRA),
Noordwijk, The Netherlands, 2013.

G. Strang. Introduction to Linear Algebra. Wellesley-
Cambridge Press, Wellesley MA, 4th ed. 2009.

D. G. Thomson and R. Bradley. Inverse simulation as a tool
for flight dynamics research - Principles and
applications. Progress in Aerospace Sciences, 42(3),
174–210, 2006. doi: 10.1016/j.paerosci.2006.07.002.

M. Woods, E. Tidey, B. Van Pham, L. Simon, R. Mukherji,
B. Maddison, G. Cross, A. Kisdi, W. Tubby, G.
Visentin, and G. Chong. Seeker-Autonomous Long-
range Rover Navigation for Remote Exploration.
Journal of Field Robotics, 31(6), 940–968, 2014. doi:
10.1002/rob.21528.

K. J. Worrall, D. G. Thomson, E. W. McGookin, and T.
Flessa. Autonomous Planetary Rover Control using
Inverse Simulation. In 13th Symposium on Advanced
Space Technologies in Robotics and Automation
(ASTRA 2015), Noordwijk, The Netherlands, 2015a.

K. J. Worrall. Guidance and search algorithms for mobile
robots: application and analysis within the context of
urban search and rescue. PhD Thesis, University of
Glasgow.

K. J. Worrall, D. G. Thomson, and E. W. McGookin.
Application of Inverse Simulation to a wheeled mobile
robot. In 2015 6th International Conference on
Automation, Robotics and Applications (ICARA),
Queenstown, New Zealand, pages 155–160, 2015b. doi:
10.1109/ICARA.2015.7081140.

EUROSIM 2016 & SIMS 2016

355DOI: 10.3384/ecp17142348 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	Introduction
	Calculation formulas
	Calculation of Intra-Ocular Lens for Non-Normal Eyes

	Back ground of studies
	Artificial Neural Network
	Real data
	Collected Data
	Specification of Patients Data Selected for Collection
	Specification of Preprocessing Parameters

	Results
	Objective
	ANN training
	ANN settings
	Results

	Conclusion
	Future work
	Introduction
	Homeostasis, Disturbance Rejection and Set Point Tracking
	Controller Motifs

	Results
	Dynamic Properties of Controller Motifs
	Tuning of Individual Controllers

	Conclusions
	Introduction
	Modelling the pharmacokinetics of propofol
	The 3-compartmental model
	Effect-site concentration model
	Model parameters

	Model verification
	Simulation results
	Propofol inflow
	Plasmatic concentration
	Effect-site concentration
	Evaluation of the predictive quality of the model

	Conclusion
	Introduction
	Modular Model Predictive Control Concept
	Building Setup
	Modular Predictive Control Concept

	Energy Supply Level - ESS - Models
	Linear Models
	Hybrid Models

	Model Predictive Controllers
	Objective Function
	LMPC
	MI-MPC

	Simulation Results
	Simulation Setup
	Demonstration of MPCC Performance
	Comparison between MPCC and RBC

	Conclusion
	Introduction
	Data Properties
	Macro Money Systems in QEs
	Behavior in QE1=(2008m11,2010m06)
	Behavior in QE2+=(2010m11,2012m08)
	Behavior in QE3=(2012m09,2014m10)

	Transmission Path of Housing Price from Reserve to Economic Activity
	Decomposition of M2 into Transaction and Precautionary Money Demands in (1975m10, 2016m03)
	Estimation of Precautionary Money Demand
	The Role of Business Condition u(t)=napm-50 in Transmission Mechanism of QEMP during QE1, QE2+ and QE3

	Conclusion
	Introduction
	Mathematical Model
	Model Parameters and Geometry
	Results and Discussions
	Conclusions
	Introduction
	Field Excitation Control
	Capability Curve
	Classical Control

	Concept and Formulation of MPC
	MPC as Excitation Control
	Modeling and Control Workflow

	Tuning the MPC Controller
	Time Response
	Open Circuit Conditions

	First-swing Angle Stability Enhancement
	Long-term Voltage Stability Enhancement
	Steady-state Voltage Stability
	Power System Simulator
	LTVS Simulations

	Discussion
	Conclusion
	Introduction
	Grid impedance model
	Impedance-based instability studies
	Practical implementation
	Conclusion
	Aknowledgements
	Introduction
	Literature Review
	Circulating Fluidized Bed Boilers
	Characteristics of RDF
	Agglomeration

	Methodology
	Description of Model
	Mass and Energy Balances
	Hydrodynamics

	Results and Discussion
	Validation
	Agglomerate Prediction

	Conclusion
	Introduction
	Theory
	Stability of Grid-Connected System
	Maximum-Length Binary Sequence

	Implementation in dSPACE
	System Setup
	Experiment

	Conclusions
	Introduction
	Governing Equation for Flow Modeling
	KP Numerical Scheme
	Simulation of the River Flow
	Results and Discussion
	Simulation Results
	Simulation Results for Numerical Stability Analysis

	Conclusion
	Introduction
	Air preparation process
	Fuzzy identification
	Takagi-Sugeno fuzzy model
	Fuzzy clustering

	Data collection
	Structure selection
	Input and output variables
	Representation of the systems' dynamics
	Fuzzy models granularity

	Fuzzy clustering and model validation
	Comments on resulting model performance

	Control experiments
	PID control
	Supervisory logic

	Conclusions
	Introduction
	First step - DES model
	Second Step - Portfolio optimization

	Stochastic DES model through markovian properties
	Product-Form Networks - Convolution algorithm
	Marginal probability
	Mean response time

	Load-haulage cycle
	DES model: Load-haulage system
	Project portfolio formulation
	Conclusion
	Introduction
	Overview of the Method
	Computing the Encounter Probabilities
	Example

	State Transition Matrix
	Projectile with a Single Sensor Fuzed Submunition
	Example
	Projectile with Two Sensor Fuzed Submunitions

	Failure Probability of the System
	Conclusion
	Hydro-pneumatic Accumulator
	Recent Research
	Purpose of This Study

	Logical Structure of Simulation Model
	Physics of Piston Type Hydro-Pneumatic Accumulator
	Nitrogen gas
	Mechanical Structure
	Hydraulic Fluid

	Conceptual Model

	Mathematical Model
	Equations for Nitrogen Gas
	Equations for Piston
	Equations for Friction
	Equations for Hydraulic Fluid
	Equations for Orifice

	Modelling in MATLAB/Simulink
	Calibration and Validation of the Simulation Model
	Testing Setup
	Laboratory Tests
	Validation

	Conclusion
	Introduction
	Contributions
	Setup for the analysis
	Experimental data
	Compressor Map
	Compressor Isentropic Efficiency
	Corrected Mass Flow
	Data Treatment

	 Pressure Losses in Gas Stand
	Pressure Loss in Straight Pipe
	Friction Factor - Laminar Flow
	Friction Factor - Turbulent Flow
	Pressure Loss In Bend
	Pressure Loss in Inlet Nozzle and Outlet Diffuser
	Adjust Measured Data
	Calculate New Compressor Efficiency

	Effect of pressure losses on measured compressor efficiency
	Compressor and Pipes Dimensions
	Case 1: Straight Pipes
	Case 2: Pipes with Diffuser and Nozzle
	Case 3: Pipes with Diffuser, Nozzle and Bend

	Summary and Discussion
	Future Work
	Conclusion
	Introduction
	Traffic Regulation: Stage selection
	Signal Control Schemes
	Pre-timed network control
	Max-Pressure Practical (MPract)

	Modelling and Simulation Overview
	An event-driven approach
	PointQ design

	Case Study-Data description
	From theory to applications
	System Stability
	Trajectory Delay Measurement
	Queue Delay Measurement
	Varying Traffic Conditions

	 PointQ versus AIMSUN Network Performance
	Evolution of phase (137,154)
	Evolution of phase (254,237)

	Conclusion
	Introduction
	Background
	MVB and Master Transfer
	Multifunction Vehicle Bus
	Mastership Transfer

	Model Checking with temporal logic

	System Modelling
	Bus Administrator Modelling
	basic data structure
	finite state machine of Bus Administrator

	Communication and Timing Modelling
	communication mechanism of BusAdmin
	timing mechanism

	Property Modelling
	Property Classification
	safety property
	liveness property

	Live sequence charts
	Observer Automata modelling

	Experiments
	Conclusion
	Introduction
	Experimental data
	Modeling
	Compressor
	Turbine
	EGR Blowers
	Auxiliary Blower
	Exhaust Back Pressure
	Combustion Species and Thermodynamic Parameters

	Parameterization Procedure
	Complete stationary parameterization
	Dynamic estimation

	Model Validation
	Conclusions
	Nomenclature
	Introduction
	Fundamentals
	Safe Active Learning
	The high pressure fuel supply system

	Design and Implementation
	Training of the hyperparameters
	The discriminative model
	The risk function
	The path to the next sample
	The algorithm

	Evaluation
	Evaluation in simulation
	Evaluation at a test vehicle

	Conclusion
	Introduction
	Modelling
	Centre of Gravity
	Aerodynamic Forces
	Definition of Angles
	Lever Arms
	Catenary
	Equations of Motion
	Velocities
	Self Stabilisation
	Complete Model

	Model Parameters
	Simulation Results
	Gliding Flight
	Towing Process

	Conclusions
	Introduction
	Context
	Compton scattering tomography (CST)

	Modelling of the new CST modality
	Proposed setup by back-scattering
	Direct problem : Image formation
	The half-space Radon transform (HRT)
	Image formation

	Inverse problem : Object Reconstruction
	Inversion of the HRT
	Filtered back-projection

	Simulation of the new CST modality
	Energy resolution of the detector
	Spatial discretization
	Window functions

	Conclusion and perspectives
	Introduction
	Powertrain model
	Problem formulation
	Tip-in problem constraints
	Boundary conditions for the tip-in problem
	Path constraints during tip-in

	Optimal control problem formulation
	Numerical solution of optimal control problems

	Optimal control results
	Extreme transients
	Compromise between time, Jerk and energy
	Jerk-Energy trade-off
	Efficient state and control transients

	Conclusions
	An Improved Kriging Model Based on Differential Evolution
	1 Introduction
	2 Theory of kriging model
	3 Kriging model based on DE algorithm
	3.1 Theory of DE algorithm
	3.2 Kriging interpolation based on DE algorithm
	3.3 Process of kriging Model based on DE algorithm

	4 An engineering example
	4.1 Setting DE algorithm parameters
	4.2 Data preprocessing
	4.3 Model computation and optimization

	5 Conclusion
	Introduction
	Model for slug flow
	Simulation for slug flow
	State estimation
	Control strategies
	Model predictive control
	PI control

	Simulation results and discussion
	Control structure I
	Control structure II
	Control structure III

	Computational time for MPC
	Maximum valve opening
	Conclusion
	Introduction
	Description of the loading bridge
	Modelling with Modelica
	Package of mechanical components Mechanics
	Package of causal components Blocks
	Structure and components of the overall model
	Model of the loading bridge
	World
	Cart
	Pendulum
	Drive

	Controller in Matlab Simulink environment
	Experiments
	Open loop experiments
	Closed loop experiments

	Conclusion
	Introduction
	MMT - Mathematics, Modelling and Tools
	Structure of MMT
	Usage of MMT

	Maple T.A. - Maple Testing and Assessment
	Structure MTA
	Usage MTA
	Mathapps
	MTA - Moodle Connector

	Case Study
	Conclusion
	Outlook
	Introduction
	Signal processing
	DFT and derivatives
	lp-norms and MIT-indices
	Nadaraya-Watson nonparametric regression

	Measurements and gearbox properties
	Load haul dumper front axle
	Water power station gearboxes

	Calculations from the LHD measurements
	Calculations from the WPS measurements
	Conclusion
	Introduction
	Preliminaries
	Problem Statement
	Vector Smoothing Splines

	Trajectory Planning
	Trajectory between Two Lines
	Centerline and Intermediate Time Instants
	Smoothing Spline Trajectory

	Numerical Examples
	Path with Piecewise Linear Boundaries
	Path in Obstacle Avoidance Problem

	Concluding Remarks
	Introduction
	Literature Review
	Dynamic multi-workstation model based on electrical components

	Simulation Model with a PI Controller
	Test and Results
	Final Remarks
	Introduction
	Related Work
	Methodology
	DataSet

	Semantic Identification Through Multiple Classifiers
	Global Feature Extraction through Wavelet Decomposition
	Deep Learning of Neural Network

	Image Retrieval
	Performance Analysis
	Conclusion
	Motivation
	Related work
	Data set and pre-processing
	Defining the curvature of a steel plate
	Experiment
	Discussion
	Conclusion
	Introduction
	New Evolutionary Computation
	Island model parallel distributed in NN-DEGA
	Self-adaptive using Neural Network
	Reconstruction of differential vector
	Elite strategy

	Numerical Experiments
	Benchmark Functions
	Experiment Results
	Comparison for Robustness

	Conclusion
	Introduction
	Classical RF Prediction
	Fuzzy Clustering Prediction
	Analysis
	Conclusion
	Introduction
	Dynamic Artificial Neural Network
	Back Propagation Through Time (BPTT)
	Real Time Recurrent Learning (RTRL)
	Extended Kalman Filter Learning (EKF)

	Experimental Set-up
	Results
	Simulation Study
	Experimental Study

	Conclusion
	Introduction
	Overview of Toolbox
	DANN Main
	Uploading data set
	Division of data set
	Validation check
	Bias
	Learning algorithm
	Learning parameters
	Past inputs and outputs
	Additional parameters

	Parameter Tuning
	Plot Menu
	Performance plot
	Regression plot
	Prediction plot
	Parameter plot
	Error plot

	Additional information
	Installing the MATLAB DANN toolbox

	Case Studies
	Case I: BPTT learning algorithm for flow measurement
	Case II: EKF learning algorithm for temperature measurement
	Case III: RTRL learning algorithm for mortality prediction

	Conclusion
	Modeling and Simulation of Train Networks Using Max-Plus Algebra
	1. Introduction
	2. Max-plus algebra
	3. Scheduled max-plus linear systems
	4. Timetable stability
	4.1 Delay sensitivity analysis
	4.2 Dynamic Delay Propagation
	4.3 Recovery Matrix

	5. Conclusion
	Introduction
	Construction of DBN metamodels
	Utilization of DBN metamodels
	Example analysis - simulated operation of air base
	Conclusion
	Introduction
	Metastable liquids

	Model for two phase flow and phase transition
	The van der Waals equation of state

	Solver
	Stiff pressure relaxation
	Stiff thermodynamic relaxation

	Experiments
	Simulation set-up
	Results and discussion
	Conclusion
	Introduction
	ParModelica
	Previous Research on PDEs in Modelica
	Partial Differential Equations (PDE)
	Explicit Form

	Numerics
	Discretisation
	Runge-Kutta with Variable Step Length

	General-Purpose Computing on Graphics Processing Units (GPGPU)
	PDEs in Modelica
	Algorithmic Modelica and ParModelica
	Solver Framework
	User Defined State Derivative and Settings
	Types Used by the Solver
	Solvers

	Use Case — Heat in Plane
	Poor Insulation and Constant Temperature
	Constant Temperature Depending on Location

	Performance Measurement
	Pros & Cons of Solver Written in Modelica
	Conclusions
	Blood Flow in the Abdominal Aorta Post 'Chimney' Endovascular Aneurysm Repair
	1 Introduction
	2 Methodology
	2.1 Governing Equations
	2.2 Anatomical Model
	2.3 Numerical Model
	2.4 Numerical Discretization

	3 Results
	3.1 Validation
	3.2 Flow Patterns
	3.3 Flow Regime

	4 Discussion and Conclusions
	Introduction
	Spin-Image Algorithm
	The Proposed Parallel Spin-Images Algorithm
	Results and Analysis
	Platform Specification
	Experimental Data
	Results

	Conclusions and future work
	Introduction
	Overview of Python API
	Goal
	Installing the OMPython Extension
	Status
	Description of the API
	Python Class and Constructor
	Utility Routines, Converting Modelica FMU
	Getting and Setting Information
	Operating on Python Object: Simulation, Optimization
	Operating on Python Object: Linearization

	Use of API for Model Analysis
	Case Study: Simple Tank Filled with Liquid
	Model Summary
	Modelica Encoding of Model
	Use of Python API
	Basic Simulation of Model
	Parameter Sensitivity/Monte Carlo Simulation

	Discussion and Conclusions
	Introduction
	Related Work
	Virtual Testing of Open embedded Systems
	Simulator Coupling for Network Simulation
	Network Fault Injection Testing
	Case Study
	Conclusions and future work
	Validation Method for Hardware-in-the-Loop Simulation Models
	1 Introduction
	2 Validation Methods
	2.1 Open-Loop Operation
	2.2 Independent Closed-Loop Operation
	2.3 Compensated Closed-Loop Operation

	3 Related Work
	3.1 Example Circuit
	3.2 Simulation Models

	4 Simulation Results
	4.1 Models with Different Switching Delays
	4.2 Discrete-Time Models
	4.3 Fixed-Point Models

	5 Conclusion
	Introduction
	Control Engineering: The Teacher's Challenge
	New Curriculum For Teaching Automatic Control
	Luma Activity
	Conclusion
	Introduction
	The Activated Sludge Process
	Mass balances and expression for the sludge age
	The settler

	ASP with ideal settler model
	Steady-state solutions
	Substrate input-output relationship for constant sludge age

	ASP with DZC settler model
	Steady-state solutions
	Substrate input-output relation for constant sludge age

	An approximation for S* given 0
	Numerical example
	Theorem 1
	Theorem 2

	Conclusions
	Introduction
	Materials and Methods
	Gaussian Mixture Models
	GMM based fault detection criteria

	Case Study: Monitoring a Secondary Settler
	Results
	Discussions
	Conclusions
	Introduction
	Industrial Process Description
	SIAAP Waste water and sewage Sludge Treatment Process
	Incineration Process
	The Furnace
	The Heat Exchanger

	Identification Process Overview
	Sludge Incineration sub-models: Input-output interaction.
	Identification Strategy

	Validation Methods
	Absolute Criteria
	Relative reference-model criteria

	Results and Discussions
	Relative Reference-Model Criteria Results

	Conclusion
	1 Introduction
	2 Modelling
	2.1 Basic Process Components
	2.2 Boiler Evaporator Loop
	2.3 Test Model

	3 Simulation Tests
	3.1 Comparison of Numerical Solvers
	3.2 Effects of Initial State and Parameters

	4 Conclusions
	Introduction
	TCP-100 solar field description
	Mathematical modeling of TCP-100 solar field
	 Optical and geometric efficiencies
	Characteristics of the heat transfer fluid
	Thermal losses

	Simulations
	Conclusion
	Introduction
	Description of a Basic Gas Turbine Model
	Compressor
	Combustion Chamber
	Turbine Module

	Computational Causality And Conditions for Numerical Convergence
	First Principles Compression and Expansion Maps
	Compression Case
	Expansion Case

	Simulation Results
	Conclusion
	Appendix
	Introduction
	Modelling methodology, libraries and tools
	Plant Description
	Innovative aspects
	OTSG topology

	Device modelling
	Re-used components
	Custom component models
	Separator
	Feedwater heater
	Deaerator
	MS fluid model

	Plant modelling
	OTSG model
	Turbine model
	Feedwater preheaters train
	Plant control system
	Complete plant model

	Simulation objectives - methodology
	Simulation performance
	Conclusion
	Introduction
	Formal Problem Statement and SVM
	SVM by Set-Valued Training Data
	A Modification of the AdaBoost
	Imprecise Updating Weights of Robots
	Conclusion
	Introduction
	Methodology
	Power grid connection
	Electrolyser
	Interim gas storages
	Methanation
	MEA CO2 capture
	CH4 compression

	Control sequences
	CH4 compression
	Start-up
	Power grid connection
	Methanation reactor
	Electrolysers
	Interim gas storages
	CH4 compression

	Shutdown
	Methanation reactor
	CH4 compression
	Interim gas storages
	Electrolysers

	Results
	Conclusion and future work
	Acknowledgment
	Introduction
	Mathematical Model
	Assumptions
	Development of Model
	Material Balance
	Energy Balance
	Heat Exchanger

	Simulation Results and Discussion
	Simulation Results
	Comparison with Previous Work

	Conclusions
	1 Introduction
	2 Herding behavior of rhinos
	2.1 A synoptic model of space use
	2.2 Population size updating model

	3 Rhino herd (RH) algorithm
	3.1 Synoptic model
	3.2 Population size updating model
	3.3 RH algorithm

	4 Simulation results
	5 Discussions and conclusions
	Acknowledgements
	References

	Introduction
	Structure and Kinematics of the Double-Spiral Mobile Robot
	Structure
	Forward kinematics
	Gripper positions
	COG

	NESM
	Numerical Case Study
	Conditions and methods
	Results

	Discussion
	Conclusion
	Introduction
	Data analysis
	Nonlinear scaling
	Interactions
	Uncertainty
	Natural language

	Recursive analysis
	Scaling
	Interactions
	Fuzzy logic
	Smart adaptive systems

	Temporal analysis
	Trend indices
	Fluctuations
	Changes of operating conditions

	Conclusion
	Introduction
	MOEA/D
	Algorithm
	Focused Issue

	Proposed Method: Chain-Reaction Initial Solution Arrangement
	Aim and Concept
	Method

	Experimental Settings
	Results and Discussion
	Search Performance at Final Generation
	Search Performance over Generations

	Conclusions
	Introduction
	Modeling demand-side management
	Markets
	Actors
	Other elements

	Controlling consumption
	Optimizing scheduling
	Controlling (via) frequency

	Discussion and conclusions
	Introduction
	Components and Parameters of Musical Expression
	Learning Support System of Musical Representation
	Generation of Example of Musical Expression
	Construction of Kansei Space
	Image Estimation
	Parameter Values Estimation using Fuzzy Inference
	Interactive Modification of Musical Expression

	Comparison of Parameter of Musical Expression
	Advice for Parameter of Musical Expression

	Range of Learner's Musical Expression on Kansei Space
	Estimation of Range of Musical Expression
	Advice about Impression

	Experiment
	Results and Discussions

	Conclusion
	Introduction
	Formulating the GA Optimization
	The Problem Encoding
	The Objective Function (Fitness)
	Selecting The GA Operators
	Tuning the GA Parameters

	FPGA Implementation
	GA's HDL Entities
	Fitness
	Selection
	Crossover
	Mutation
	Generating Pseudo Random Sequences
	Replacement

	Performance Evaluation
	Functional Verification
	Fitness
	Selection
	Replacement
	Crossover
	Mutation
	LFSRs
	Comparator

	Integrating GA into the SoC
	Interfacing GA with the HPS
	Controlling GA from the Linux host

	Conclusion and Future Work
	Introduction
	Related Work
	Earthmoving Simulator
	Workspace Subdivision with Scoop Area
	High Point and Zero Contour Methods
	Simulation Results and Discussion
	Conclusion and Future Work
	Introduction
	SDNized Wireless LAN Testbed
	 Central Manager
	 Aggregator and Transport Network
	 Network Edge
	 Android Measurement Application
	Experiment Automation

	Mobility Management - A Use-Case Scenario Implementation
	Mobility Handling in Developed Testbed
	Logging
	Running the Experiment
	Parsing and aggregating results

	Conclusion

