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Abstract

Kriging model is a commonly interpolate
approximation method which is widely used in the
computer simulation in the past decade. The fitting
accuracy is one of the fundamental problems in the
research of kriging model, which can be summarized in
two aspects, the accurate estimation of model’s
parameters and approximate form selection of kriging
model. In order to solve the existed problems, an
improved parameter estimation method of kriging
model base on differential evolution (DE) algorithm is
set out in the present paper. Firstly, establish the
objective function of DE algorithm depends on the
estimation of the model’s accuracy, and get the
optimum solution of model’s parameters under the
initial condition. Then, a variety of regression function
and correlation function in kriging models are selected
to compare the fitting accuracy. Finally, the simulation
case for outer ballistic data on electromagnetic railgun
is examined to determine whether the improved
method has priority over traditional one in the
approximation accuracy.

Keywords: Kriging model, DE algorithm, approxi-
mation accuracy, EM railgun

1 Introduction

Kriging interpolation model, which is an optimal linear
unbiased estimate model, is a commonly spatial
interpolation model based on the geostatistical
variogram theory. In 1989, this theory is introduced to
the computer simulation field, and then gradually
become a frequently-used interpolation method, which
is used in a variety of applications including mechanics
engineering, structural optimization and sequential
experimental design (Volpi et al, 2015). The
approximation accuracy is one of the key problems of
current research which including how to effectively
estimate the kriging model’s parameters and select the
approximate form of model. These two aspects
determine the fitting accuracy, which is the significant
approach of model investigation.

A mounts of research is taken to solve the problems
of improving the model’s accuracy. Jay D. Martin
proposed an estimate method of model’s parameters by
using maximum likelihood estimate (MLE) and cross
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validation (CV) methods. The analysis results showed
that the MLE is prior to CV method, which are applied
in three different dimensional fitting problems (Martin
et al, 2005; Martin et al, 2004). Jack P.C. summarized
currently research achievements and pointed out that
the approximation accuracy is determined by the form
and parameters of correlation function (Kleijnen et al,
2009). Sgren N. Lophaven developed a matlab tool
DACE, which used to compute the kriging model
effectively. The model’s parameters are made easy
through DACE. Unfortunately, this tool need to limit
the minimum and maximum value of parameters, and
cannot find the optimal results, which determine the
narrow application fields of this method (Lophaven et
al, 2002; Lophaven et al, 2002). LIU Xiaolu considers
the model’s accuracy is not only determined by
parameters estimation, but also by the sampling points.
The improved general pattern search (IGPS) algorithm
was used to get these points. And a satellite orbit
parameter optimization problem is formulated, which
showed that kriging models based on global
approximations are more accurate than Analyzer.
However, this improved method is too complexity and
time-consuming and can’t applied in the engineering
(Hui et al, 2016; Huang et al, 2011; Liu et al, 2013).

Differential Evolution algorithm (DE) is a novel
swarm intelligence method to search for the optimal
result based on the cooperation and competition
between different individualities. The DE algorithm is
regarded as one of the best optimization method. Some
experiments over several numerical benchmarks show
that DE performs better than the Genetic algorithm
(GA) or the Particle Swarm Optimization (Steentjes et
al, 2016; Civicioglu et al, 2013). In order to improve
the DE’s performance and solve the problems such as
convergence speed and time-consuming, some
improved DE algorithm is proposed (Sharma et al,
2014; Padhye et al, 2015). Considering the robustness
and briefness, the DE method gradually gets more and
more concentration among pattern recognition,
nonlinear optimize control, mechanical engineering
and so on (Neri et al, 2010; Weber et al, 2010).

Considering current situation, how to establish a
more accuracy model effectively and quickly is the
main problem. Due to the disadvantage of existed
approaches, an improved DE based method to estimate
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kriging model’s parameters is presented in this paper.
DE algorithm is an outstanding method to search for
the global optimization parameters with high speed.
The approximate optimal parameters can be obtained
by this algorithm and be used to build an optimal
model. At the end of paper, an engineering example of
electromagnetic railgun exterior ballistic data is
examined to demonstrate the superiority of kriging
model based on DE algorithm.

2 Theory of kriging model

Considering a simulation system, a set of m design
sites and the output response sites be expressed as

S=[s s,...5,]",5 e R"

Y =[Y; Yo Yul oY € R
Where s, ={s,,s,,..s,}and y; ={y, ¥, .Y, } i the ith
order in the experiments. The kriging model regards
the deterministic response y(x) for an n dimensional

)

input x € R" as a combination of a regression model and
a random function

y(x) = (x) B+z(x) @
Where, f(x)is a vector component of 1, x and the
other high order items, g is the regression coefficient,
z(x) is the random function, which is assumed to have

a zero mean and o variance. The covariance between n
dimensional inputs x; and x; be expressed as

Cov(z(x).2(x))=o"R(O.%.%) @)
Where, R(6,x,x;) is the correlation function with

specified parameters 6.
For the set S of design sites, a mx p design matrix F
is constructed with F; = f, (s;)
F=[f00), F () F (%) (4)
Furthermore, a correlation matrix R between the
design sites be defined as R; =R(6.s,.s, )

1919

R(6, sm,x)} (5)

The estimation value of output response y(x) is a
linear combination of response in the design sites

Q(X):/I(X)TY (6)

The kriging model regards §/(x) as an optimal

)=[R(6,5,%),R(6.5,,X),....

linear unbiased estimation of output response y(x) .

Then, the problem of kriging interpolation can be
transformed to an optimization problem

min E{)?(x)—/l(x)T Y}Z

The solution to the optimization problem above is
§(x)= 7 (x)B+1" ()R (Y -F3) ®)
Where, the least squares solution of parameter 3 is
p=(F'R'F) F'RY ©)
The Mean Square Error (MSE) of Q(x) is

o-eftre ez ST oo

3 Kriging model based on DE
algorithm

In this section, the improved method based on DE
algorithm is described in detail. Firstly, the basic
theory and operations are introduced to support the
application in the kriging model. Then, the second part
is to assess the kriging model’s performance, and lead
to an optimization problem. Finally, DE method is
applied to solve the optimization problem, and the
flowchart of DE based kriging model is used to show
the process.

3.1 Theory of DE algorithm

Differential Evolution (DE) is a well-known and
simple approach for global optimization, which
consists of three basic operations: mutation, crossover
and selection. The compute process of DE algorithm is
familiar with GA method and can be summarized in
the following steps:
® Initialization: set the algorithm’s parameters
including population members NP, variable number D,
mutagenic factor F and crossover probability CR, then
the initial population

{x;(0)Ix; <x,;(0)<x},i=12,..,NP,j=12..D|
can be generated by
% ;(0)=x; +rand(0,2) x(x’; = ) (11)

Where x;(0) is the jth variable among the ith
individuality in the Oth generation, x', and x; ; are the
upper and lower bound of x ; , respectively. The

variable rand(0,1) is the random number of uniform
distribution in the interval (0,1).

® Mutation: mutation is a basic operation in the DE
algorithm. Which is the largest difference compared
with the GA method. The mutation operation can be
described as

Vi (t+1) = x, (t)+Fx(x, (1)-x, (1)) (12)

Where, r,r,,1,,i are not equal with each other and
. e{l2,..,NP}, v (t+1)is the (t+1)th generation

. (7)  mutation individuality, x (t)is the ith individuality in
st. E(9(0)-2(x)¥)=0 :
the tth generation.
DOI: 10.3384/ecp17142356  Proceedings of the 9th EUROSIM & the 57th SIMS 357

September 12th-16th, 2016, Oulu, Finland



EUROSIM 2016 & SIMS 2016

® Crossover: for the given individuality x (t) , it’s
necessary to use the operation of crossover to generate
new experiment individuality u, (t) . The equation is

U (tal v, ; (t+1),rand(j)<CRor j=randn(i)

o (t+1)= '

i (t+D) X ; (t),rand(j)>CRor j= randn(i)
Where rand( j) €[0,1] is the random number of uniform
distribution, j is the jth variable of the individuality,
randn(i) € {1,2,..., D} .

® Selection: the greedy strategy is applied in the DE
algorithm to search for the best individuality in a
population between u, (t) and x, (t), the operation can

be expressed as
U (t+1), f(u (t+1)) < Fx(t
()< D (D) < F(x (1)
X (1) f(u(t+1))= f(x (1))
After iterating the operations above for many times,
it is easy to get the optimal vector in the solving space,

which will be used in the optimization of kriging
model’s parameters in the next step.

(13)

(14)

3.2 Kriging interpolation based on DE
algorithm

In general, the quality of a model can be measured by
two aspects: 1) the accuracy of data in the design sites.
2) Accuracy in predicting the output response at the
estimating points. However, due to the unbiased
predictor of kriging model, which means the estimation
in the design sites is exactly, the first measurements
don’t need to consider in this work. And the second
aspect to calculate the accuracy at the estimating points
is very significant for kriging model.

For a simulation system, the input set of predictor is
assumed as P=[p, p,.. p]",p, e R" and the system
real output response and kriging predictor can be
expressed as

Yp =[yp1 ypz'" ypI ]T’ yi ERQ

s e e e o (15)
Yo=¥p ¥y, ¥, 1 0 R
The sum of squared prediction errors is
n _ 2
SS; = Z(yp. - yp)
i=1
a . _ % 2
=Z(yp. _yp) +Z(yp. _yp.) (16)
i=1 i=1
=SS, +SS,
The accuracy of kriging model is defined as
RZ =1-SS_/SS,;,R% >0 (17)

For the definition of kriging model accuracy,
R% €(0,1) , the value of R} determine the fitting

accuracy. In order to get a higher accuracy, the value of
RZ is as large as it can be. Furthermore, the sum of
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squared errors of prediction is a fixed value for a
specific set of predictors, which means the value of
SSg is as small as it can be. Thus, the model

assessment can be transformed to an optimization
problem

min IZ:‘(}A/,J —ypi)

st. §, =17 (p)B+1"(p)RM(Y-F5)

For a given form of correlation function, the key
factor that has a highest influence on the fitting
accuracy is the parameters’ estimation. From the
objective function above, it’s obvious that the kriging
model accuracy is related with the parameters g and R .

There are two methods to estimate the parameters,
which are maximum likelihood estimation (MLE) and
cross validation (CV). The MLE method was used in

this paper and estimation results of g and o is

2

(18)

B=(F'RF) FRY
~ 1 T (19)
o =—(y-Fp) R%(y-Fp)

It’s clearly that the parameters S and R are related
with the estimate value of 6={6,,6,,...6,} , which

transform the objective function’s optimization to
estimate the parameters ¢ . Two computational
problems often exist when estimating the parameters
using traditional method: 1) the maximum likelihood
estimate of the parameters may be multimodality and
hardly to find the optimal result. Therefore, the
selection of initial value of parameters has a strong
influence on the estimation result. 2) The method above
is very suitable for approximating low dimensional
model, and has a poor effect of high dimensional one.
Considering the robustness and practicability of DE
algorithm to solve nonlinear, non-differentiable, multi-
extremum and high dimensional problems, an improved
kriging model based on DE algorithm is proposed in
this paper.

3.3 Process of kriging Model based on DE
algorithm

The kriging model’s parameters 6 = {4,,6,,...,6, } are the

variable need to optimize which is determined by the
system input. Due to the optimization’s purpose is to
improve the model fitting accuracy, (11) is utilized to
act as the objective function of DE algorithm. The
process to optimize kriging model’s parameters is
presented as show in Figure 1, which can summarize in
three aspects:

® Setting DE algorithm parameters: set the objective
function with (18) to evaluate the efficiency of DE
algorithm. Depend on the research target and compute
scope, initialization the DE algorithm’s parameters and
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carry out the operation of crossover, mutation and
selection.

® Data preprocessing: generally, the establishment of
kriging model is based on the assumption that the
system’s input and output data satisfy the normal
distribution N (0,1) . So it’s significant to verify and
normalize data’s normalization before constructing the

kriging model. As stated in Sec. Il, the system input
samples and output response can be expressed as

S=[s S,...5,]",5 € R"
Y=[Y; Yoo Yl o Y; € RE

For simple, data normalization can be described as
follows:

(20)

l=(si-5,) 0y, i=12m,

o} :(yhj —E)/ayvj,jzl,Z,...,q
Where, s and y,; is the mean of ith input and jth
output variable, respectively; o, and o, is the mean

(21)

variance of ith input and jth output variable,
respectively. The calculate equation is

§=J/mZSu’ Tﬁ]/mZy:,j
i=1 i=1

i(sij _g){ oy, =\/m

After normalization, the mean and variance of the
input and output data are 0 and 1, respectively.

® Model computation and optimization: select the
specific kriging model including type of correlation
function and form of regression function, and then
optimize the kriging model’s parameters based on DE
algorithm, which is stated in Sec. Il. As shown in
Figure 1, the improved method can be divided into two
aspects: the DE algorithm global search and kriging
model establishment.

From the process above, it’s obvious that the DE
algorithm is very suitable for the kriging model’s
optimization. With the DE method, the best parameters
can be gained to establish an optimal kriging model.

Initial of DE
Alogrithm

(22)

Calculate Objective Update Operation
P Function
,
,
/
/
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Reach End
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Figure 1. Flow chart of the kriging based on DE method.
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4 An engineering example

To demonstrate the validity of kriging model based on
DE algorithm, EM railgun exterior ballistic simulation
data is taken for example. Due to the complexity of
railgun ballistic, the flight range of projectile suffers
from a variety of factors, which have a different degree
of effect, and coupled with each other. Thus, during the
research of projectile’s performance, it’s crucial to
study the relation between projectile’s flight range and
a set of factors. The linear regression model is the
ordinary method to solve this problem. However, the
different factors may interaction with each other, and
hardly to draw an expression with the projectile’s range.
Furthermore, the classic regression is the maximum
likelihood estimation of sampling points and hardly to
solve the problem of multivariable and multimodality.
Thus, the kriging model based on DE algorithm is used
to establish the model between range and factors.

In this paper, six separate factors including
projectile mass, launch velocity, launch angle,
deflection angle, wind velocity in x and z direction, are
considered in the paper to establish the relationship
with flight range using kriging model. Meanwhile, DE
algorithm was utilized to optimize the kriging model’s
parameters and get a higher accuracy.

4.1 Setting DE algorithm parameters

In order to improve the efficiency of DE algorithm and
speed up the algorithm convergence, the parameters of
DE algorithm set as follows:

The size of population is 30. Mutagenic factor is 0.5,
and crossover probability factor is 0.7. Considering the
optimal parameters set 6={6,6,,...6,} represent

weight of each dimension, it’s important to restrict the
span of 6,,i =1,2...,n. In general, the range of @ is set

as[0.1d;,,10.0d,,, ], where d_ and d represents the

minimum and maximum distance of ith input
parameter sets, respectively.

4.2 Data preprocessing

Before establishing the kriging model, it’s obvious to
preprocess the flight range data. The normalization
verification result is demonstrated in Figure 2 and 3,
which including two graphs: the left and right one is
the bar graph of flight range and result of normality test,
respectively. As the verify result show, the disperse
position of range data coincide with the standard
normalization reference line. Furthermore, it’s
necessary to take the range data with normalization
operation, which is obtained from (12) and (13). Thus,
the railgun data meets the requirement of kriging
model construction after preprocessing.

359
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4.3 Model computation and optimization

After accomplishing the data preprocessing, the last
step is to compare the model accuracy by two aspects:
1) the approximation accuracy of kriging model based
on DE algorithm and ordinary one, 2) the accuracy of
different forms of correlation function and regression
function f (x). In order to demonstrate the superiority

of improved method, three types of correlation function
and five forms of regression function f (x) is adapted

in the DE method in this paper. The types of
correlation function consist of Exp, Gauss and Linear
and the forms of regression function are summarized in
Table 1.

18

Frequency

Flight range/m x 10°

Figure 2. Histogram of the range data.

Normal Probability Plot

0.997

0.90 ﬁt/ il

0.25 ";;

Probability

15 2 25 3 3.5 4 4.5
Range X 105

Figure 3. Normalized test result.

Given the different types of correlation function and
forms of regression function in the kriging model, the
DE algorithm is used to search for the optimization of
kriging model’s parameters. The sum error data of DE
based kriging model and traditional one are listed in
Table 2 and 3. In order to have an intuitive grasp of
these two methods, a histogram of kriging model error
is showed in the Figure 4, where the left and right bar is
the improved method and traditional one, respectively.
In the Figure 4, the horizontal and longitudinal
ordinates of histogram represent the forms of f (x)and
sum of approximation error. The three colors indicate
three type of correlation function Exp, Gauss and
Linear. At the aspect of DE algorithm convergence
speed, the kriging model which consists of the fourth

DOI: 10.3384/ecp17142356

form of regression function and Gauss correlation
function is examined to reveal the iteration process in

Figure 5.

Table 1. Forms of the regression function f (x).

Indication | Forms of f(x)

1 1

2 (1%, %0 X, |

3 [1,xl,xz,...,xn,xf,xlxz,x1x3...,xnz]

4 (1% % X X X, X

5 [1 X0 X 1eve Xy Xy X0 X Xgey Xy X, |
Table 2. Sum errors of kriging model based On DE.

Indication EXP GAUSS LIN

1 5.58e4 4.99¢4 4.46e4

2 3.065e4 1.99%e4 2.52e4

3 1.86e4 5.75e3 1.59%4

4 1.38e4 6.52e3 1.06e4

5 3.51e4 2.23e4 3.2e4
Table 3. Sum errors of traditonal kriging model.

Indication EXP GAUSS LIN

1 9.77e4 1.08e5 2.34e5

2 3.11e4 2.53e4 3.43e4

3 1.93e4 1.2e4 3.29%4

4 1.47e4 8.49%e3 2.72¢e4

5 3.77e4 3.21e4 4.05e4

Proceedings of the 9th EUROSIM & the 57th SIMS

As show in Figure 4, the kriging model based on DE
algorithm is prior to the traditional one in the model’s
accuracy. For the different types of correlation function,
the Gauss model has a significant advantage than the
other models. Meanwhile, the fourth type of regression
function has the highest accuracy in the five forms of
regression function. So it’s essential to compare
different forms of regression function to select the
highest accuracy one.

a5 x 10° Tradtional Kriging model =
) [ Jocauss

[ tinear

« 10°Kriging model based on DE
25

15 15[

0.5 0.5

Figure 4. Histogram of the kriging model error.

Owing to the accuracy of kriging model has a slight
relation with complexity of regression function. Figure
5 also prove the high speed of DE algorithm
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convergence, it’s obvious that the approach could find
the optimization result quickly and effectively. Thus,
the kriging model based on DE algorithm improves the
approximate on accuracy and has a valuable application
in engineering.

x 10"
24

. * mean value
2.2 + optimal value
2 ]

.

18
16
1.4

12

value of objective function

1

. *
08 st

0.6
0

num of iteration

Figure 5. Iteration process of the DE optimization.

5 Conclusions

The parameters estimation and approximate form
selection to obtain a higher accuracy model is a basic
existed problem in the research of kriging interpolation.
In the traditional method, the model parameters
selection always depends on users. In order to solve the
problem and get an optimal model, an improved kriging
model based on DE algorithm to approximate
simulation model was presented in this article. The
research of kriging model proves that correlation
function’s parameters have a strong influence on the
fitting accuracy. Then the DE algorithm establishes the
objective function by fitting accuracy to optimize the
kriging model’s parameters. The EM railgun exterior
ballistic data was taken for instance to demonstrate the
priority of improved method. Three forms of correlation
function and five types of regression model are used to
compare the approximation accuracy of kriging model
based on DE algorithm with traditional one. The
simulation results show that the kriging model based on
DE algorithm has the higher accuracy, and a fine
prospect of engineering application.

There is a need for more research on the improved
method. Although the DE algorithm perform well in
kriging model, it’s essential to have deep research of the
DE parameters such as population members NP,
variable number D and mutagenic factor F, which
determine the search efficiency. So the future work can
be concentrated on parameters selection strategy to
obtain a higher speed.
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