
Simulation of Control Structures for Slug Flow in Riser
during Oil Production

Ole Magnus Brastein Roshan Sharma

Department of Electrical Engineering, IT, and Cybernetics, University College of Southeast Norway, Porsgrunn,
Norway, {ole.m.brastein, roshan.sharma}@usn.no

Abstract
The occurrence of slug flow is a common problem arising
in the oil well riser pipeline. To eliminate such slug flow,
various control structures along with state estimation are
designed and compared in this paper. Nonlinear model
based predictive scheme are compared with classical PI
controllers for three different control structures. One of
the control structure is based on controlling the mass of
the liquid in the riser pipeline, for which, an Unscented
Kalman Filter is designed to estimate the mass. The sim-
ulation results show that the model based controllers per-
form relatively better than the classical controllers. Al-
though computationally expensive, the control algorithm
used in this paper for model based control still makes it
real time implementable.
Keywords: slug flow, oil riser, model based control, PI
control, unscented Kalman filter

1 Introduction
In oil well riser pipelines with low-point angle, the liquid
column accumulated in the riser above the low point acts
as a virtual valve (see Figure 1), alternately blocking and
letting the gas produced from the reservoir to flow through
the riser. This is due to the hydrostatic pressure exerted at
the low point by the liquid column in the riser. The gas
produced from the reservoir at first starts to accumulate
below the low point. The pressure builds up and reaches
to a critical point where the built-up pressure exceeds the
hydrostatic pressure drop. This results in a rapid discharge
of the accumulated gas to the riser. This large gas bub-
ble/volume pushes up some of the liquid in the riser and
out from the choke valve. However, with time, the liquid
again starts to accumulate in the riser. The gas pressure
at the horizontal flowline starts to build up again and the
cycle repeats. This behavior of the fluid flow in the riser
is known as slug flow. It is an unstable multiphase flow
where oscillation in the production of oil from the reser-
voir occurs.

Formation of slug flow in oil well riser pipelines has
been studied by many other researchers. Various control
solutions to avoid the slug flow in oil wells along with
the development of mathematical model and controllabil-
ity analysis can be found at (Storkaas, 2005). Control of
riser base pressure for stabilizing the slug flow have been

studied by (Aamo et al., 2005; Dalsmo et al., 2005). A
simplified model based on first principles modeling for re-
producing slugging oscillations of a real oil well was de-
veloped by (Meglio et al., 2009). This model was later
used by (Meglio et al., 2012b) for designing control struc-
tures. Control strategies for slug control and tuning rules
was studied by (Godhavn et al., 2005). A nonlinear con-
troller using integrator backstepping approach was used
by (Kaasa et al., 2007) to stabilize unstable wells. A re-
view of recent advances in the suppression of the slug-
ging phenomenon by model-based control can be found at
(Meglio et al., 2012a). This article gives a clear presenta-
tion of the evaluation and comparison of the existing so-
lutions and proposes directions for improvement. A simi-
lar type of slugging phenomenon is also observed for gas-
lifted oil wells. Stabilization of gas-lift wells by feedback
control was studied by (Eikrem, 2006; Imsland, 2002). An
insight and understanding into how feedback control can
be used to avoid severe slugging, thereby bridging the gap
between control and petroleum engineering can be found
at (Havre and Dalsmo, 2002).

In this paper, three different control structures/strategies
are developed to stabilize the flow in the riser so that the
flow does not oscillate and becomes stable. In Section 2,
a brief description of the model that captures the slug flow
phenomenon in the riser is described. The model is simu-
lated to illustrate its capability of capturing the formation
of slug flow in the riser in Section 3. Implementation of an
Unscented Kalman Filter(UKF) for estimating the states
of the system is provided in Section 4. In Section 5, the
formulation of the three different control strategies is pre-
sented. The simulation results obtained from the model
based controller and the PI controller are clarified, com-
pared and discussed in Section 6. A possibility for the real
time implementation and the computational time required
by the model predictive controller (MPC) is discussed in
Section 7. A brief discussion on the maximum valve open-
ing that can be achieved before the flow becomes unstable
again is presented in Section 8. Finally, conclusions are
provided in Section 9.

2 Model for slug flow
A widely used mathematical model for representing the
slug flow in the oil well risers was developed by (Meglio
et al., 2012b) and this model has been used in the present
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Figure 1. Schematic of fluid transportation in the flow line and
riser.

work. Only a brief description of the model is presented
in this section and the details about the development of
the model can be found at (Meglio et al., 2012b). Let us
consider the low point of the riser at the place where the
virtual valve is located as shown in Figure 1.

The flowline and the riser are divided into three sepa-
rate volumes/parts: (i) Volume at the horizontal part of the
flowline where the incoming gas from the reservoir accu-
mulates, (ii) Volume of the vertical riser filled with liquid
only, and (iii) Volume of the vertical riser filled with gas
only. The model is based on the conservation principle
where the mass balance is applied to each of the three vol-
umes. The state variables are the mass of the gas accu-
mulated in the horizontal flowline (mg,ac), the mass of the
gas in the riser (mg,r) and the mass of the liquid in the riser
(mg,l). From the mass balances we obtain,

dmg,ac

dt
= (1−λ )wg,in−wg,vv, (1)

dmg,r

dt
= λwg,in +wg,vv−wg,out , (2)

dmg,l

dt
= wl,in−wl,out . (3)

Here, λ denotes the fraction of gas coming from the reser-
voir that directly flows to the riser, wg,in is the flow rate
of the gas entering the riser, wg,vv is the flow rate of the
gas through the virtual valve, wg,out is the flow rate of
the gas flowing out of the riser through the outlet choke
valve, wl,in is the flow rate of the liquid entering the riser
and wl,out is the flow rate of the liquid flowing out of the
riser through the outlet valve. The algebraic equations in-
volved in the models are listed below. These are taken
from (Meglio et al., 2012b) and the details about their de-
velopment is not provided in this paper.

wg,vv =Cg,vvmax
(
0,(Pg,ac−Pb,r)

)
(4)

Pg,ac =
mg,acRT
MVg,ac

(5)

Vg,r =Vr−
(
ml,r +ml,min

)
ρl

(6)

Pt,r =
mg,rRT
MVg,r

(7)

Pb,r = Pt,r +
(
ml,r +ml,min

) gsinθ

A
(8)

wout =Coutu
√

ρm (Pt,r−Ps) (9)

wl,out =
ml,r

ml,r +mg,r
wout ≈ wout (10)

wg,out =
mg,r

ml,r +mg,r
wout ≈

mg,r

ml,r
wout (11)

Here, Cg,vv is the valve constant for the virtual valve, Pg,ac
is pressure of the gas accumulated in the horizontal flow-
line (upstream the virtual valve), Pb,r is the pressure at the
bottom of the riser, Pt,r is the pressure at top of the riser,
Ps is the separator pressure, R is the ideal gas constant, T
is the temperature of the fluid in the riser, M is the molar
mass of the gas, Vg,ac is the volume of the horizontal flow-
line where the gas accumulates, Vr is the physical volume
of the riser, Vg,r is the volume of gas in the riser, ml,min is
the minimum amount of liquid present in the riser at all
times, ρl is the density of the liquid, θ is the mean inclina-
tion of the riser pipe, A is the cross section of the riser, Cout
is the valve constant for the outlet choke valve, u ∈ [0,1]
is the valve opening and wout is the total mass flow rate
flowing out of the riser through the outlet valve.

3 Simulation for slug flow
The model presented in Section 2 is simulated in MAT-
LAB to observe the occurrence of the slug flow in the riser
pipeline. The mass flow rate of the gas and the liquid flow-
ing into the well from the reservoir are considered to be
constant. With a nominal valve opening of 0.35 or 35%,
the fluid flow in the riser pipe i.e. the outflow from the
outlet valve exhibits a slug flow as shown in Figure 2.

The flow of the liquid from the outlet valve oscillates
with a time period of about 50 minutes. This is due to
the virtual valve that alternately blocks and lets the gas to
flow through the riser, thus producing a slug flow. The
pressure at the bottom and top of the riser oscillates and
this oscillating nature of the pressures in the riser actually
creates the slug flow. The average production of oil from
the field due to an unstable slug flow is lower than the
theoretical steady state (or equilibrium) production. Such
unstable slug flow should be controlled or stabilized.

In reality, the process operators choke the outlet valve
manually to stabilize the slug flow. The slug flow can be
stabilized by decreasing the opening of the output choke
valve. A stabilized slug flow results in a non-oscillating
pressure at the bottom of the riser. In Figure 3, the choke
valve opening is decreased from 45% to 15% in steps. As
can be seen from Figure 3, the pressure at the bottom of
the riser still keeps on oscillating when the valve opening
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Figure 2. Slug flow in the riser for u = 35%.

is reduced from 45% to 25%. At time 600 min, the outlet
valve opening is reduced to 15%. With this valve opening,
the pressure at the bottom of the riser is stabilized and this
results in a stabilized flow of the liquid through the out-
let valve. As the valve is slowly choked, at one point, the
flow is stabilized. This value of valve opening for which
the flow starts to stabilize is called the bifurcation point.
Above this point, the flow is unstable and below this point,
the flow is stable. From the openloop simulations, the
bifurcation point was found out to be around 20% valve
opening.

From Figure 3, we can observe that the flow can be sta-
bilized by remaining below the bifurcation point in the sta-
ble region. Usually, the bifurcation point corresponds to a
low valve opening. With a lower valve opening, the flow
rate of the oil produced from the well is also low which
is economically not beneficial. Thus, it is of interest to
investigate whether the flow can be stabilized by opening
the valve in the unstable zone (i.e. by remaining above
the bifurcation point) through the use of different control
strategies.

4 State estimation
One of the control structure that is explained in detail in
Section 5 utilizes the information about the mass of the
liquid (which is a state variable) in the riser pipeline. This
and the remaining two states of the process cannot be di-
rectly measured and hence should be estimated. For this,
an Unscented Kalman Filter (UKF) that directly utilizes
the nonlinear model of the process is implemented. De-
tails of the UKF is not the main focus of this paper and
interested readers are advised to follow (Simon, 2006). In
this work, standard algorithm for UKF available at (Si-
mon, 2006) is implemented in MATLAB.

In addition, it is assumed that the pressures at the bot-
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Figure 3. Variation of pressure at the bottom of the riser with
valve opening.
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Figure 4. Estimated states by UKF.

tom and top of the riser pipe are measured and available.
Figure 4 shows the estimated states of the system and Fig-
ure 5 shows the estimated pressures at the bottom and top
of the riser pipeline. The estimated states and the esti-
mated measurements are then used by the control struc-
tures for stabilizing the flow.

5 Control strategies
For regulating the slug flow in the riser pipeline, three dif-
ferent control strategies/structures were developed.

- The first control structure stabilizes the slug flow by
controlling the pressure at the bottom of the riser i.e.
by controlling Pb,r to a set point.

- The second control structure stabilizes the slug flow by
controlling the pressure drop in the riser i.e. by control-
ling4P = (Pb,r−Pt,r) to a set point.

- The third control structure stabilizes the slug flow by
controlling the total mass of the liquid in the riser i.e.
by controlling ml,r to a setpoint.
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Each of these control strategies were implemented as
a model based controller using model predictive control
(MPC) scheme as well as using a standard Proportional-
Integral (PI) control scheme.

5.1 Model predictive control
For designing a nonlinear model predictive controller,
consider the following nonlinear objective function,

min
4uc

f (4uc) =
Np

∑
k=1

(
XXk−XX re f

k

)T
Pk

(
XXk−XX re f

k

)
+

Nc

∑
k=1

(4uk)
T Rk (4uk)

(12)

Here, XXk is the variable to be controlled and XX re f
k is

its reference value depending on the choice of the con-
trol structure. XXk = Pb,r for control structure 1, XXk =
4P = (Pb,r−Pt,r) for control structure 2 and XXk = ml,r
for control structure 3. Np is the prediction horizon length
and Nc is the control horizon length. Pk is the weighting
factor for the set point error and Rk is the weighting factor
for the control deviation. 4uk = uk− uk−1 is the rate of
change of control action.

The choke valve opening should be between 0 and 1,
i.e. the constraint in the control input is,

0≤ uk ≤ 1 (13)

In practice, the choke valves are opened in smaller
steps, and larger abrupt changes in its opening is usually
avoided. Consider that the choke valve can be opened or
closed by only 0.5% per second i.e.

−0.5%≤4uk ≤ 0.5% (14)

(13) and (14) together with the model of the process form
the constraints for the optimization problem. Moreover, in
order to improve the speed of computation without loosing
any control dynamics, the prediction horizon was grouped
into four groups.
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Figure 6. Pressure at the bottom of the riser with control struc-
ture 1.

5.2 PI control
A standard expression for the PI controller in the deviation
form can be written as,

4uk = Kp

(
1+

dt
2Ti

)
ek−Kp

(
1− dt

2Ti

)
ek−1, (15)

with
ek = XX re f

k −XXk, (16)

corresponding to the three control structures respectively.
The conditions fulfilling (13) and (14) were implemented
together with (15) and (16). Here, Kp is the proportional
gain of the controller, Ti is the integral time constant and
dt is the sampling time taken to be 5 seconds.

6 Simulation results and discussion
6.1 Control structure I
The set point for the pressure at the bottom of the riser was
chosen to be 168 bar. Figure 6 and Figure 7 show the sim-
ulation results both with the model predictive controller
and with the PI controller. Each controller was turned on
between the time interval of 200 and 400 minutes. Both
controllers were able to stabilize the outflow (see Figure
7) however, the performance of the model predictive con-
troller was better than the PI controller. Small oscillations
of the pressure at the bottom of the riser and in the choke
valve opening were seen with the PI controller. However
with MPC, such small oscillations were completely elim-
inated.

From the openloop simulations it is known that the bi-
furcation point of the valve opening is around 20%. How-
ever, with this control structure, the valve remains opened
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Figure 8. Pressure at the bottom of the riser with control struc-
ture 2.

at around 48% which is in the unstable region of the valve
opening. This clearly indicates that it is possible to stabi-
lize the flow flowing in the riser pipeline while still stay-
ing at the unstable region of the valve opening. This is an
added benefit with respect to the operation of the process:
the more the valve opening, the more is the amount of oil
flowing out of the well (economically more beneficial).

6.2 Control structure II
For control structure II, the set point for the pressure dif-
ference between the bottom and the top of the riser was
taken to be 161 bar. Figure 8 and Figure 9 show the sim-
ulation results both with the model based controller and
with the PI controller. Both control schemes were able
to stabilize the slug flow. The simulation results show
that the bottom hole pressure can be indirectly stabilized
by controlling the pressure drop over the riser. How-
ever, the model based controller outperforms the PI con-
troller. High frequency oscillations in the valve opening
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Figure 9. Stabilization of outflow with control structure 2.

(and in the flow through the choke valve) were observed at
the beginning of the control action with the PI controller,
while such oscillations were completely suppressed by the
model predictive controller. The control scheme utilizes
the estimated values calculated by the UKF. If the con-
troller uses the measurement of the pressures directly for
the calculation of control actions, the dynamics become
even more oscillatory (with higher frequency oscillations).
Therefore for this control structure, proper tuning of the
UKF is very essential. Compared to control structure 1,
more weight (10 times more) was put to the measure-
ment noise covariance matrix during the implementation
of UKF.

6.3 Control structure III
With this control structure, the mass of the liquid in the
riser was controlled to a set point of 3800 kg. Since the
mass of the liquid in the riser has a significant and a direct
effect on the pressure at the bottom of the riser, control-
ling it allows the bottom hole pressure to be controlled in-
directly. Figure 10 and Figure 11 show the simulation re-
sults. It is very clear that for this control structure, the PI
controller does not stabilize the flow properly. The model
predictive controller outperforms the PI controller. Al-
though the amplitude of the oscillation for the pressure at
the bottom of the riser was lowered with the PI controller
(which is better than without any control at all), but at the
same time the frequency of the oscillation was increased.
The valve openings oscillated periodically and the flow
of the fluid through it oscillated with a more higher fre-
quency than before (without any control). However, with
the model predictive controller, the control action was su-
perior without any oscillations. The flow of fluid out of
the riser and the pressure at the bottom of the riser were
very stable.

7 Computational time for MPC
Model predictive controller is a computationally heavy al-
gorithm. At each iteration, a constrained nonlinear op-
timization problem is solved. In this work, a prediction
horizon of 30 samples with a sampling time of 5 sec
which equals to 150 sec was used. The control inputs
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were grouped into four groups. Thus, instead of optimiz-
ing 30 unknowns at each iteration, only 4 unknowns are
optimized. This significantly reduces the computational
time without deteriorating the control action. For all the
three control structures, each iteration could be solved in
less than a second, and for the chosen sampling interval,
this means that the algorithm can be easily implemented
for real time application. For an illustration, the compu-
tational time required by the MPC algorithm for control
structure 2 is shown in Figure 12. A normal computer
with 2.50 Ghz processor and 4 GB RAM was used for the
simulations.

8 Maximum valve opening
The choice of the setpoint(s) for all the three control struc-
tures were arbitrary and can be freely chosen. However,
the choice of the setpoint influences the ability of the con-
troller to stabilize the flow. To illustrate this, consider the
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Figure 12. Computational time required by the model predictive
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Figure 13. Maximum valve opening for stable flow with control
structure 1.

first control structure. Lowering the value of the setpoint
for the pressure at the bottom of the well corresponds to a
higher valve opening and hence more flow of oil through
the outlet choke valve as shown in Figure 13. With re-
spect to the production of oil, it is economically beneficial
to have the outlet valve open as much as possible. In Fig-
ure 13, as the setpoint was decreased from 170 bar to 167
bar, the valve opening was increased from 35% to 65%
(maximum opening that marks the boundary between the
stable and the unstable flow). As the setpoint was further
decreased to 166 bar after 400 min, the pressure started to
oscillate and the flow became unstable again, even though
the controller was still turned on.

The presence of a maximum valve opening before the
flow again becomes unstable was also seen with the other
two control structures but have not been shown in this pa-
per to save space.
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9 Conclusions
From this research work, it was observed that the model
predictive control schemes outperform the standard PI
controllers for stabilizing the slug flow in oil well riser.
The differences are not so significant for the first two con-
trol strategies. However, for the third control strategy, the
control actions are superior with the model based control.
Nonlinear MPC with Unscented Kalman filter can be im-
plemented for real time control of the slug flow in riser.
Among the three control structures, with the model pre-
dictive control, all the control structures were equally able
to stabilize the flow. It is difficult to conclude which of
these control structure is the best with the model predictive
control. However, with the PI controllers, the first control
strategy stabilized the flow better than the remaining two
control structures.
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