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Abstract
This paper continues the study, presented at the 8th
EUROSIM Congress on Modeling and Simulation and
devoted to creation of algorithm and simulation model
of network functioning, taking into account dynamic
characteristics of the network in condition of variable
relationship signal-to-noise. Simulation algorithm was
augmented for adequately representation of the state of
the real network i.e. possible changes of topology due
to the link failures and disabling individual nodes. It is
possible to expand the capabilities of the model
presented in the 8th Congress as a simulation model of
Information Flow on Transport Layer of Open System
Interconnection Model. The current version of the
model realizes input of the adjacency matrix describing
the network topology, the algorithm of the path search
by Dijkstra on the network level, and simulation of the
loss of connection. So the main goal of the new paper
is to bring the structure of the model to the structure of
the real network and to check the possibility of
transferring a given amount of information in
conditions of interference by means of evaluation of
coefficient of readiness for Data Communication
System.
Keywords: modeling, Monte-Carlo simulation, infor-
mation technologies, algorithm

1 Introduction
Modeling of the dynamic properties of the Data
Communication network is one of the urgent tasks in
the modern theory of communication. Processes of data
transmission have very high speed and the data transfer
equipment includes specialized devices that provide
perform the necessary calculations at speeds far
exceeding the speed of imitation of processes of data
transmission in modern software environments. At the
same time, quite often in practice there is a need to
evaluate the number of criteria of quality that are
related not only internal properties of hardware and
data transmission protocols but external integral
characteristics.

They are related to external characteristics of the ne
twork as a whole or its separate fragments. These

characteristics usually are interested for the creators of 
information systems. One of the main criteria of 
quality is the availability of Data Communication 
System (DCS). The other important criterion is the 
probability of message delivery in the presence of 
noise. These criteria help to check the properties of the 
fragment of network or the network as a whole and test 
its suitability for the solution of the problem of the 
transfer of large amounts of information at any given 
time. 

The throughput for different channels of network 
and communications centers and the procedures of 
changing network topology must be realized as part of 
the overall procedure of simulation of DCS for 
evaluating dataflow and network capacity in system as 
a whole. Thus the paper deals with a problem of 
construction of adequate simulation model of DCS 
taking into account dynamic processes in separate 
channels and nodes of system as a whole. Usually 
dynamic processes are emerged in form of various 
violations of the network topology, i.e. in node 
failures, in communication failures in the 
communication channels, in the packet loss and in the 
receiving an increased number of errors due to the 
increase of the level of interference in communication 
channels. A universal tool must be created for research 
and testing of various algorithms of network operation 
and for correction of new protocols at the stage of pre-
project inspection. 

The structure of paper is as follows. Introduction 
demonstrates some distinctive features of the statement 
of the problem. The section 2 is devoted to describing 
of a static variant of the simulation model. It contains 
brief analysis of results of imitation experiments. In the 
section 3 algorithm of simulation of DCS with variable 
topology and quick details about modeling computer’s 
program are described. The section 4 involves 
simulation results for checking proposed algorithm. 

For a formal definition of DCS designed for the 
transmission of big volume of information represented 
in a form of graph structure, we can use the definition 
in the form of a functional signed graph from (Shul’tsc, 
Kulba et al, 2011). A tuple of parametric functional 
graph <(X, E), V, W, U> is introduced. In this recording 
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G = (X, E) – directed graph, describing the structure of 
DCS, symbol V – a set of parameters of the vertices of 
the graph, where every vertex is according to node of 
network. Parameters of the vertices must define all 
characteristics of nodes necessary for modeling of DCS 
and evaluating its’ criteria of quality. For example, 
parameters define procedure of modeling host-router, 
involved in the selection of the direction of information 
transmission, or node – repeater designed only to 
enhance the signal to increase the communication 
distance. V = {Pnode(x), x Є X}, where Pnode(x) – a 
set of parameters of the vertex (node) x. Symbol U 
describes the parameter space, а W – weights of edges, 
simulating communication channels. Weights of edges 
can change during modeling, and finding the path for 
message transfer. 

The main directions of modeling of DCS in modern 
theory of communication involve three different 
approaches. 

First of all modeling of the propagation medium of 
the signal allows investigating new principles of design 
of equipment for communication. Mathematical and 
statistical models help to create estimates of main 
characteristics of communication technique for data 
transferring. They help to define requirements to new 
equipment. Such models are described in (Proakis, 
1995; Rappaport, 2002; Saleh, Valenzuela, 1987; 
Spencer, Rice et al, 1997) and they expand possibilities 
of designing of new DCS. 

Secondly the modeling of the functioning of DCS as 
complicate technical system opens new directions for 
optimization and improvement of existing 
constructions of DCS. A huge number of models are 
created over the years of development of the theory of 
communication. These include works (Foschini, 1996; 
Antonova, 2007), devoted to data transmission in 
condition of fading, and many other publications. For 
example, a set of works are the well-known (Irvine, 
Harle, 2001; Tanenbaum, 1996) and others. 

Thirdly special direction is devoted to different 
modern problems. At the moment models for 
describing of various indicators of quality of service 
(QoS) have been actively developed. For example, for 
the transfer of information via packets the set of basic 
criteria involve Bandwidth, Delay, Packet loss and 
Jitter. A significant number of modern publications 
including the Russian-speaking illuminate this 
direction. 

2 Algorithm of Simulation of Data 
Communication System 

2.1 Statement of Simulation Problem 
The problem of modeling the networks’ dynamic 
properties may be solved by means of imitation 
statistical model of DCS, proposed in (Antonova, 
2013; Antonova, Titov, 2011; Antonova, Kolutcsky, 

2015). DCS is represented as a set of channels and 
communication centers. Large centers for data 
gathering create a set of signal office centers. In 
common with channels for information transferring 
they create graphical image of network topology with 
variable structure. In the existing networks information 
may be transmitted in different directions. So almost 
every node can be both a starting and an end node in 
the procedure of message delivery to the addressee. 
This fact determines dynamic changes in the network. 

In order to simplify debugging and simulation 
procedures the assumption is introduced that data is 
transmitted in one direction from one initial vertex to 
the destination vertex in network fragment under 
consideration. This assumption simplifies the 
development of simulation algorithms, but it is a 
limitation in the development of a universal instrument 
for studying processes of transferring large amounts of 
data in DCS. However imitation statistical model will 
allow checking quality of data transferring by means of 
imitation experiments for dynamic stochastic DCS 
according to algorithm from (Antonova, 2013; 
Antonova, Titov, 2011; Antonova, Kolutcsky, 2015). 

The proposed statement of the problem for 
simulation of dynamical features of DCS is considered 
in detail in (Antonova, Titov, 2011). The first variant 
of a simulation model for the static mode of operation 
and single state of network topology is presented in 
flow chart of simulation algorithm in Figure 1. It does 
not use the possibilities of modern software tools and 
focused on the tedious procedure of the source data 
preparation for modeling. Symbol S represents the 
number of message. Symbol Sk is labeling maximal 
quantity of messages under simulation. 

Matrix MK(IJ) contains symbol 1 on position with 
number of row I (node with number I) and column 
with number J (channel with number J) if such channel 
exists in network topology. Symbol Jmax defines 
maximal quantity of channels, outgoing from current 
node with number I in accordance with network 
topology. Symbol Ik is maximal quantity of nodes. 

Symbol Jt is a number of channel selected in 
simulation procedure according to special criterion. 
This channel connects the current node with node I(Jt) 
in accordance with network topology. 

After start of algorithm the necessary input data is 
read from a file. The movement of the first message 
from the first node to next node according the topology 
of fragment of network under consideration begins 
with the scanning of outgoing channels. All outgoing 
channels are described in matrix MK(IJ). This matrix is 
continuously visible in the search of the outgoing path. 

Simulation for every outgoing channel is fulfilled 
for transfer time evaluation. The level of errors for 
given signal-to-noise ratio or for given imitation model 
of transfer process is also determined. The channel is 
selected to send a message when the cycle of viewing 
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for channels leaving the current vertex is over. 
Selection criteria may be different. 

 
Figure 1. Flow Chart of a static variant of the simulation 
model. 

 

After the end of the simulation of the transfer 
process new node is fixed. It will be that vertex of the 
graph in which the movement of the first message will 
stop. For new node all procedures for choice and 
simulation of the transfer process in the channel will be 
repeated. Thus the first message will continues the 
moving to final vertex of the graph. When message 
arrives in final vertex Ik, the number of message is 
tested. If transferring of information didn’t over the 
next message is selected. 

Further the moving of the following message will be 
simulated since first node and so on. At the end of list 
of messages when last message with number Sk will 
arrive in final node the availability coefficient will be 
calculated by means of definition of ratio of time of 
useful moving of messages along fragment of network 
to common time of simulation of the transfer process. 
This value is saved in special variables. 

This scheme will be supplemented with the outer 
loop managing random changes in network topology 
under conditions of noise in functioning of 
communication channels and nodes. Such model will 
reflect the variable structure of the computer network 
in the DCS, i.e. the possibility of link failure or the 
blocking nodes of a communication network, and 
subsequent recovery as a result of urgent repair. It will 
allow checking the impact of interference on the 
delivery time of messages in the network. This model 
allows to estimate the availability of the network and to 
provide additional opportunities for evaluation of the 
possibility of Big Data accumulation. 

2.2 The first results of modeling 
The first variant of modeling program was realized by 
means of Pl-language and ES 1045 computer. It 
allowed evaluating transmission characteristics of the 
information flow for static mode of operation of the 
network under interference. This model did not take 
into account the variable structure of the network under 
real conditions of information transferring but was 
used in imitation experiments for testing and 
evaluating networks characteristics in noise conditions 
(Antonova, 1996; Antonova, 1999; and Antonova, 
2007).  

3 Simulation of Data Communication 
System with Variable Topology 

The considered variant of simulation model of DCS 
was raw realization of proposed simulation algorithm 
by means of C++ language and personal computer. It 
created the basis for detailed implementation of the 
model reproducing the dynamic structure of data 
transferring network (Antonova, 2013; Antonova, 
Titov, 2011; Antonova, Kolutcsky, 2015). The flow 
chart of a new simulation algorithm is shown in Figure 
2. Additional symbol Nt in this figure defines the 
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number of variant of network topology under 
consideration in simulation procedure. New variant of 
topology may be appearing only for new message. It 
limited models possibilities but it was necessary for 
testing simulation algorithm. New topology may 
involves the channel interference, the communication 
gap between individual nodes and the shutdown of the 
node, reducing noise, the restoration of the link 
between nodes, the repair of nodes. 

A new variant of the simulation model is 
implemented in the environment of Microsoft Visual 
Studio 13. The developed algorithm simulates the 
process of transferring messages within the network 
fragment which is represented as oriented weighted 
graph. The vertices of the graph, i.e. the network 
nodes, simulated work of the packet switches via the 
TCP/IP Protocol with realization of procedures of 
determining the optimum route of messages 
transmission. 

Edges of the graph simulate the communication 
channels with a certain bandwidth determined by the 
current value of the ratio signal-to-noise. In input data 
for simulation model the network graph is interpreted 
as the adjacency matrix, each element of which records 
the presence or absence of communication between 
nodes in network. 

For adaptation to possible changes in the real 
network such as communication gap, a node failure, 
and addition of the node with specified links, an 
adjacency matrix reflecting the network topology 
duplicates the matrix allowing for program user to 
dynamically track the topology changes in the process 
of simulation program functioning. 

Weights of connections between network nodes are 
defined by the relative time of messages’ delivery 
between nodes according to the ratio, which varies 
with the changes in noise power: 

ܶ =  (1)  ,ܥ/1
where C – throughput capacity of communication 

lines that are installed dynamically from the known 
ratio of the C. Shannon: 

)PPlog(FC ShS 1 , (2) 
where F - is the bandwidth of the communication 

line, SP  – signal power, ShP  - noise power. 
A minimal message delivery time is selected as a 

criterion for choice an optimal route for messages 
transmission between the start and end nodes of the 
network in the simulation model. 

Messages are transferred between the specified fixed 
network nodes (start and end nodes). At each vertex for 
determination the channel for transmission the optimal 
route to the destination node is searched and for 
transmission the first link of the found route is selected. 

For the next point of the route the optimal route to 
the destination network node is searched again and so 
on until the end node will be reached. Finding of the 

optimal route based on the algorithm, which is used 
famous Dijkstra's algorithm.  

Each message from the stream in the process of the 
simulation model functioning appears in the window 
indicating the route to the destination node and the 
relative time of motion. 

The following objects are defined in proposed 
algorithm: the array of distances between vertices; 
active vertex; dynamic list of available vertices from 
the active vertex (the list of visited vertices). The 
dimension of the array of distances corresponds to the 
rank of the adjacency matrix. Each element of the 
distances array is a structure. It includes the distance 
from the initial vertex to the vertex corresponding to 
the element of the array with current number (the 
initial distance is infinity) and the list of vertices 
making the route from the initial vertex to the 
considered vertex from the array (at the initial moment 
the list is empty). 

The active vertex is special variable. It contains 
number of the adjacency matrix row when the search 
algorithm fulfills definition of outgoing channels. The 
list of visited vertices is dynamical array. According 
algorithm vertices connected with active vertex are 
added in that list and visited vertices are deleted. At the 
beginning of the algorithm initial node is an active 
vertex. The list of vertices making the route for first 
element of the array of distances will contain initial 
node and the array of distances from initial node will 
contain zero. The optimal route search procedure 
involves following stages: the adjacency matrix row 
associated with active vertex is examined; adjacent 
vertices are defined and added in the end of the list of 
visited vertices. The node having visited vertices is 
deleted from the top of the list. The node, which 
became the first in the list, converts to active vertex. 
The distance from initial vertex to vertex associated 
with active vertex is defined. If it is less than distance 
fixed in the array of distances early, than both distance 
and route in the array of distances are corrected. 

The algorithm ends when the list of visited vertices 
is over. The criterion for the optimal route search is 
value of the message delivery time. The optimal route 
is defined with using matrix contained values reverse 
of throughput of networks channels. These values are 
created automatically in procedure of algorithm 
realization. The relationship 

)PPlog(Tp ShS 11 ,  
 

(3) 

defines value of each existing connection. 
Value Tp is formed by means of simulation of the 

signal-to-noise relationship. Different distribution laws 
known from the results of statistical studies of DCS 
may be used for describing the signal-to-noise 
relationship. The average value of the signal-to-noise 
relationship is chosen equal to 100. The system timer 
controls changes in topology. It is the lack of 
simulation model. 
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Figure 2. Flow Chart of a dynamic variant of the 
simulation model.  

Every message from information stream appears in 
the window of simulation model. The route to final 
node and time of motion are demonstrated in window. 
All modeling events are fixed in track of events 
according to order of their receipt. 

All changes to the network structure dynamically 
adjusted in the adjacency matrix. Because of calls to 
the adjacency matrix are happen from different threads 
in a model the mutual exclusion of these flows is 
organized. To do this a synchronization object "mutex" 
is used. This object is installed in a special signaling 
state if not busy by any thread. This object at any point 
in time can only hold one thread that prevents 
simultaneous access to a shared resource. 

4 Results of Simulation Experiments 
Initial network topology is selected in the form shown 
in the Figure 3. The adjacency matrix M describing this 
network fragment will sets by user of program in 
special Windows Forms with the use of element of 
control Data Grid View. 
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Weights of connections are established dynamically 
in the process of the functioning of simulation model. 
According to simulation algorithm experiment consists 
in transmission of message flow from the initial vertex 
of the network fragment to a final vertex of the 
network fragment. Channel interference, the link 
failure and disabling individual nodes are considered. 

 
Figure 3. Scheme of a fragment of the communication 
network. 

Results of simulation experiment are shown in Table 
I. The transmission of 30 messages in condition of 
change relationship signal-to-noise, the link failures 
and disabling individual nodes are considered. Table 1 
contains results from Windows Forms: number of 
message (first column); time of message transmission 
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(second column); the order of the passage of nodes
from network fragment (third column); delivery
information about messages (fourth column). Because
of a long period of disconnection in the network
fragment is simulated, the last three messages are not
delivered.

5 Conclusions
A series of simulation results is only a checking of
proposed algorithm. It needs in quality programming
and extensive testing in terms of the input variable
factors reflecting the structure of real networks. Big
volume of initial input data are needed for creation of
detailed and adequate estimates of performance and
availability of DCS, but this problem is much easier
then the problem of creating models of dynamic
network for data transfer. The instruments for control
of information flow in real network involve the repair
of failed channels, addition of new channels, increasing
of velocity of data transmission and extension of
channel bandwidth by means of installation of new
equipment and others. Further improvement of the
model consists in the development of the structure of
the program modules for simulation of different types
of communication channels, support modules and the
control program, taking into account the received
results. Once the application package has been
validated, the adequate results of simulation may
forecast a situation in functioning of equipment of
communication network under conditions of large load.

Table 1. Simulation results.

Message 
Characteristics of the motion

Time Route Path of events
1 1.015790 0 1 4 7 10 Start                   End
2 1.226979 0 1 4 7 10 Start                  End
3 1.101203 0 2 5 8 10 Start Channel 8-10 End
4 1.212878 0 3 6 9 10 Start                     End
5 1.218719 0 3 5 7 10 Start  Node 6      End
6 1.197147 0 2 5 7 10 Start                 End
7 0.992137 0 1 4 7 10 Start Channel 3-5 End
8 1.211201 0 1 5 7 10 Start                 End
9 0.998856 0 1 5 7 10 Start                  End
10 1.128747 0 1 5 7 10 Start  Node 9      End
11 1.116496 0 1 4 7 10 Start Channel 1-5 End
12 1.170238 0 2 5 7 10 Start                  End
13 1.124116 0 1 4 7 10 Start                  End
14 1.362350 0 1 4 7 10 Start                  End
15 1.245929 0 2 5 7 10 Start  Channel 0-2  End
16 1.391276 0 1 4 7 10 Start    Node 2    End
17 1.212394 0 1 4 7 10 Start                  End
18 1.364307 0 1 4 7 10 Start                   End
19 1.302780 0 1 4 7 10 Start  Channel 5-8 End
20 1.294338 0 1 4 7 10 Start                  End
21 1.138025 0 1 4 7 10 Start                  End
22 1.382752 0 1 4 7 10 Start                  End
23 1.097262 0 1 4 7 10 Start Channel 5-7 End
24 1.273273 0 1 4 7 10 Start                  End
25 1.382320 0 1 4 7 10 Start                    End
26 1.104619 0 1 4 7 10 Start Channel 1-4  End
27   Start A message is lost
28   Start A message is lost
29   Start A message is lost
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