
Simulation of HTTP-based Services Over LTE for QoE Estimation 

Alessandro Vizzarri1     Fabrizio Davide2  
1Department of Enterprise Engineering, University of Rome Tor Vergata, Italy, 

alessandro.vizzarri@uniroma2.it  
2Department of Innovation and Information Engineering, Guglielmo Marconi University, Italy, 

f.davide@unimarconi.it

Abstract
Long Term Evolution (LTE) enables bandwidth

consuming HTTP applications as video streaming.
Mobile Network Operator (MNO) is committed to
guarantee acceptable levels of Quality of Service (QoS)
and Quality of Experience (QoE) perceived by the end
user. A correlation between the transport informations
with the application informations is an important
approach to be adopted by the MNO. This correlation is
more useful if a second entity, as the Over The Top
(OTT), cooperates for the content delivery process. In
the scientific literature different mathematical models
are used in order to correlate QoE to the QoS. This paper
aims at analyse them in case of of HTTP based Web
services as HTTP web browsing and HTTP video
streaming. Different scenarios are simulated using
OPNET simulation software tool. They can differ if the
service is fully managed by the MNO (MNO-managed
class) or if OTT cooperates with own content (OTT-
managed). This is the case of YouTube. Results are
analysed through regression k- means clustering
techniques.

Keywords:     LTE, QoS, QoE, over the top; YouTube;
video streaming; key performance indicators

1 Introduction
In the last years, telecommunication technologies are
enabling the delivery of bandwidth-consuming
applications as web browsing or video streaming of
several multimedia objects (Ericsson, 2008). The fourth
generation of mobile networks, known as Long Term
Evolution (LTE), is the first 3GPP cellular fully-IP
standard. LTE is the most advanced technology to
satisfy the increasing demand for mobile broadband
services. It is able to offer to end users a download data
rate up to 100 Mbps and an upload data rate up to 50
Mbps (3GPP, 2007). LTE is also characterized by a
flexible and interoperable fully-IP network architecture.
We have also a direct management of Quality of Service
(QoS) policies based on bearers and QoS Class
Identifier (QCI). These informations are managed by
Mobile Network Operators (MNOs) in order to
efficiently deliver acceptable service levels to the end-
users. QoS policies in LTE are mainly focused on

measurable parameters called Key Performance 
Indicators (KPIs), namely bandwidth, delay, jitter, 
packet loss rate, data rate, priority. These QoS native 
features are crucial for an efficient network management 
of both data and voice services. Here we introduce an 
exercise of correlating the Quality of Experience (QoE) 
as perceived by the end user to the QoS as measured by 
the MNO at the network level for the HTTP web 
browsing and video streaming applications. We will 
introduce some relevant study cases, grouped in either 
MNO-managed class or OTT-managed class. We will 
review related works in Section II and we propose our 
approach in Section III. Section IV describes the study 
cases and present results from extensive simulations. 
Section V presents the mathematical models for the data 
which well describe in our cases the QoE vs QoS 
correlation. A final discussion states the application 
range of the proposed approach and its future 
improvements. 

2 Related Works 
Several mathematical models are proposed for QoE vs 
QoS correlation (M. Alreshoodi, et al, 2013). (H.G. 
Msakni et alii, 2013) presents the concept of Quality of 
Service (QoS) and Quality of Experience (QoE) applied 
to video quality assessment. (A. Vizzarri et al, 2013) 
present a review of studies on QoS in LTE networks. 
The Quality assessment methodology are essentially 
three: subjective, objective and network-based. In the 
first category, some authors introduce Mean Opinion 
Score (MOS) as a synthetic indicator of QoE, while 
network KPIs are assumed as indicators of QoS (ITU-T, 
2003). (A. Vizzarri, 2014) analyzes the relationship 
between QoE in terms of MOS and QoS KPIs in case of 
Voice Over LTE (VoLTE) service. The objective 
assessment methodology focuses on the measurement of 
the signal as it would be perceived by an end user. 
Objective methods can be divided in three main groups: 
Full Reference (FR), Reduced Reference (RR) and No 
Reference (NR) (B. Wang et al, 2009). The FR method 
is based on the estimation of difference between the 
source video and the received video. The RR method 
analyzes a portion of informations extracted from the 
original video. The NR method predicts the video 
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quality of the received video without accessing to the 
source video. The network assessment methodology 
gives an estimation of QoE on the basis of several QoS 
KPIs measured at network level. Network KPIs are 
essentially delay, jitter and packet loss rate (M. Siller, et 
al, 2003). In (M. Alreshoodi, 2013) a fuzzy-logic 
approach is proposed. (T.H Truong, 2012) analyzes the 
relationship between QoE and QoS in case of IPTV 
applications. Well known papers propose to express the 
QoE/QoS correlation through statistical analysis. The 
regression models more frequently used are: logarithmic 
(Weber-Fechner Law), exponential (IQX Hypothesis) 
and polynomial (S. Khorsandroo et al, 2012), M. Fiedler  
et al, 2010). In (J.Urrea , 2015) a multivariate statistical 
analysis has revealed the factors that influence the 
quality of a video streaming service on a Multi-hop 
Wireless Network. Relationships between the QoE and 
the QoS metrics have been identified via Multivariable 
Linear Regression (MLR) modeling. This methodology 
has supported the selection of the relevant factors and 
the reduction of the model dimensionality. A k-means 
clustering process allowed the authors to identify some 
operation ranges in terms of quality that relate the 
performances to KPIs. 

3 Proposed Approach  

3.1 Methodology 
The methodology adopted for mapping QoE vs QoS in 
case of HTTP web browsing / video streaming is shown 
in Figure 1. It is to be remarked that we assume 
(coherently with some authors and differently from 
others): 

 QoE metrics as Page Response Time (PRT), Video 
Response Time (VRT); 

 QoS KPIs as end-to-end Delay (e2eDEL), Packet 
Loss Rate (PLR) and Throughput (THR). 
 

3.2 Network models  
The considered LTE network models are shown in 
Figure 2. The model is derived from LTE reference 
architecture and the related network nodes are the same 
as defined by 3GPP standard (3GPP, 2007), (3GPP, 
2009). HTTP Web/Video Server is the content server 
containing both HMTL web pages and videos to deliver.  

Depending on the owner of the contents to deliver 
(MNO or OTT), we distinguish for the sake of analysis 
two management cases for the HTTP web browsing and 
video streaming services: MNO-managed (class 1) and 
OTT-managed (class 2). In the first situation MNO is 
responsible for content ownership, service deliver and 
service transport. In the second situation MNO is only 
responsible for transport, while OTT is the content’s 
owner and cooperates with MNO for service delivery. 
The two classes are shown in Figure 2. 

 

 
Figure 1. Workflow adopted for QoE/QoS correlation. 

 
 
 

 

 
Figure 2. Workflow adopted for QoE/QoS correlation 
LTE service management classes: MNO-managed 
(uppermost), OTT-managed (lowermost). 

4 Simulation 
Network simulations have been performed using 
OPNET Modeler 17.5 PL6 software tool.   

4.1 OPNET Settings 
The User Equipment (UE) is modeled with -1 dBi 
Antenna Gain and -200 dBm receiver sensitivity. 
eNodeB bandwidth is 20 MHz with 3 antenna sectors; 
Frequency Division Duplexing (FDD) is the Duplex 
mode, antenna gain of 15 dBi. As transmission model 

EUROSIM 2016 & SIMS 2016

382DOI: 10.3384/ecp17142381       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



we chose a free space model. Evolved Packet System 
(EPS) bearer is characterized by a QCI equal to 6 (non-
Guaranteed Bit Rate) with an Allocation Retention 
Priority (ARP) equal to 6. Simulation period is 3 
minutes.  

4.2 Assumptions on users and networks 
On the end-user’s side we have made a number of 
reasonable assumptions, as shown in Figure 3. The user 
sends a first request for a web page in HTML format. 
After 2 seconds starting from a download of complete 
web page, user sends a second request for a short video 
with duration of 20 seconds and a size around 1 MB. 
The HTML page is composed of: text (180 KB); a figure 
as top banner (5 KB); 30 small images (7 KB each; 15 
large images (20 KB each); a large image (35 KB) as the 
initial video frame.  
 

 
 

Figure 3. End-user’s simulated activity. 

 
On the network side we have modeled the two network 
models. In the network model of the first class the LTE 
network topology follows the following criteria: 

 unique eNodeB and UE are located in the Rome 
area; 

 EPC and HTTP server, managed by MNO, are 
located in the Milan area; 

 Trunk link type is 1 Gbit/s. 
In the network model of the second class (OTT-

managed service), the LTE network topology is similar 
to the previous one but with some differences: 

 HTTP server is a YouTube Primary Cache Server 
located in the Milan area.  It is fully managed by 
You Tube, that plays the role of the OTT; 

 The distance between the EPC and the HTTP web 
server is 100 km; 

 An IP cloud is considered, with additive 0.5% 
Packet Discard Ratio and 50ms Packet Latency. 
That to take into account impairments due to 
interconnection between the networks of MNO and 
OTT. 

4.3 Scenarios 
Fifteen study cases, called scenarios, are simulated for 
each class. Table 1 counts 30 scenarios, fifteen cases per 
class. Scenarios for class 2 are marked with (*). 

Table 1. Scenario Configurations – both MNO and OTT 
Management. 

Scenario no. 

Features 

UE 
no. 

S1 External 
 Traffic 
Load 

Transmission  
bitrate over 
S1[bps] 

1,2,3, 
16(*),17(*),18(*) 

1 0%; 50%; 75% 
1,073,741,824; 
536,870,912; 
268,435,456 

4,5,6, 
19(*),20(*),21(*) 

5 0%; 50%; 75% 
1,073,741,824; 
536,870,912; 
268,435,456 

7,8,9, 
22(*),23(*),24 (*) 

10 0%; 50%; 75% 
1,073,741,824; 
536,870,912; 
268,435,456 

10,11,12, 
25 (*),26 (*),27 (*) 

30 0%; 50%; 75% 
1,073,741,824; 
536,870,912; 
268,435,456 

13,14,15, 
28 (*),29 (*),30 (*) 

50 0%; 50%; 75% 
1,073,741,824; 
536,870,912; 
268,435,456 

1,2,3, 
16(*),17(*),18(*) 

1 0%; 50%; 75% 
1,073,741,824; 
536,870,912; 
268,435,456 

4,5,6, 
19(*),20(*),21(*) 

5 0%; 50%; 75% 
1,073,741,824; 
536,870,912; 
268,435,456 

7,8,9, 
22(*),23(*),24 (*) 

10 0%; 50%; 75% 
1,073,741,824; 
536,870,912; 
268,435,456 

10,11,12, 
25 (*),26 (*),27 (*) 

30 0%; 50%; 75% 
1,073,741,824; 
536,870,912; 
268,435,456 

(*) Service managed by OTT 

4.4 Results 
Table 2 shows the results of simulations for the study 
cases. Results for class 2 are marked with (*). 

5 Linear Models Fit 
Multiple variable regression model is used for the 
identification of the relationship of QoE metrics Page 
Response Time (PRT), Video Response Time (VRT) 
with QoS KPIs, namely end-to-end Delay (DEL), 
Packet Loss Rate (PLR) and Throughput (THR). MNO-
managed and OTT-managed classes are separately 
analyzed. In order to assess the regression model, QoS 
KPIs are considered as variable predictors (independent 
variables), QoE is the corresponding response 
(dependent variable). Since the regression model with 
one variable predictor (one QoS KPI) and one response 
(QoE) gives unsatisfying scatter plot of residuals a 
Multivariate Linear Regression (MLR) model has been 
here applied. A generic MLR model is represented by 
 

iTHRPLRDELQoE  3210  (1) 

where β0, β1, β2,…, βn are the unknown regression 
coefficients and ℰi ~ (N,σ2) is the error of each observed 
response. QoE as the response (dependent variable) may 
be one PRT or VRT, while DEL, PLR, THR are the 
independent variables. 
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Table 2. Simulation Results. 

Scenar
io no. 

Features Range [Min;Max] 
e2e 

Delay  
[s] 

PLR 
 [%] 

LTE  
THR  

[Mbps] 
PRT VRT 

1,2,3, 
16(*),17(*), 

18(*) 

[0.08; 
0.09]; 
[0.53; 
0.91]  

(*) 

[0.05; 
0.91]; 
[0.67; 
1.46] 

 (*) 

[3.20; 
3.30]; 
[0.50; 
0.80] 

 (*) 

[3.80; 
4.18]; 
[7.85; 
15.10] 

(*) 

[5.28; 
5.90]; 

[33.71; 
43.30] 

 (*) 

4,5,6, 
19(*),20(*), 

21(*) 

[0.08;  
0.09]; 
 [0.32; 
0.58]  

(*) 

[0.25; 
0.43]; 
[6.14; 
13.08] 

(*) 

[2.60; 
2.78 ]; 
[0.48; 
0.63]  

(*) 

[4.70; 
4.73]; 
[9.09; 
13.90] 

(*) 

[8.73; 
9.83]; 

[44.57; 
49.77] 

(*) 

7,8,9, 
22(*),23(*), 

24 (*) 

[0.08;  
0.09]; 
 [0.31; 
0.61] 

 (*) 

[0.18; 
0.57]; 

[12.19; 
21,82] 

(*) 

[1.88; 
2.03] ; 
[0.65; 
0.73] 

(*) 

[6.13; 
6.25]; 

[11,64; 
15,71] 

(*) 

[13.15; 
13.25]; 
[39.14; 
50.08] 

(*) 

10,11,12, 
25 (*),26 

(*), 
27 (*) 

[0.76; 
0.77]; 
[2.52; 
3.34]  

(*) 

[0.27; 
0.50]; 

[16,88; 
22,99] 

(*) 

[1.00; 
1.05]; 
[0.43; 
0.60]  

(*) 

[9.21; 
9.63]; 
[8.94; 
17.09] 

(*) 

[30.80; 
31.40]; 
[40.20; 
53.55] 

(*) 

13,14,15, 
28 (*),29 

(*), 
30 (*) 

[0.74; 
0.82]; 
[4.33; 
5.18] 

 (*) 

[11.34; 
13.35]; 
[25,31; 
38,56] 

(*) 

[0.57; 
0.59]; 
[0.53; 
0.70]  

(*) 

[10.66; 
12.41]; 
[7.31; 
11.52] 

(*) 

[50.98; 
52.95]; 
[41.03; 
53.96] 

(*) 

1,2,3, 
16(*),17(*), 

18(*) 

[0.08; 
0.09]; 
[0.53; 
0.91]  

(*) 

[0.05; 
0.91]; 
[0.67; 
1.46] 

 (*) 

[3.20; 
3.30]; 
[0.50; 
0.80] 

 (*) 

[3.80; 
4.18]; 
[7.85; 
15.10] 

(*) 

[5.28; 
5.90]; 

[33.71; 
43.30] 

 (*) 

4,5,6, 
19(*),20(*), 

21(*) 

[0.08;  
0.09]; 
 [0.32; 
0.58]  

(*) 

[0.25; 
0.43]; 
[6.14; 
13.08] 

(*) 

[2.60; 
2.78 ]; 
[0.48; 
0.63]  

(*) 

[4.70; 
4.73]; 
[9.09; 
13.90] 

(*) 

[8.73; 
9.83]; 

[44.57; 
49.77] 

(*) 

7,8,9, 
22(*),23(*), 

24 (*) 

[0.08;  
0.09]; 
 [0.31; 
0.61] 

 (*) 

[0.18; 
0.57]; 

[12.19; 
21,82] 

(*) 

[1.88; 
2.03] ; 
[0.65; 
0.73] 

(*) 

[6.13; 
6.25]; 

[11,64; 
15,71] 

(*) 

[13.15; 
13.25]; 
[39.14; 
50.08] 

(*) 

10,11,12, 
25 (*),26 

(*), 
27 (*) 

[0.76; 
0.77]; 
[2.52; 
3.34]  

(*) 

[0.27; 
0.50]; 

[16,88; 
22,99] 

(*) 

[1.00; 
1.05]; 
[0.43; 
0.60]  

(*) 

[9.21; 
9.63]; 
[8.94; 
17.09] 

(*) 

[30.80; 
31.40]; 
[40.20; 
53.55] 

(*) 

13,14,15, 
28 (*),29 

(*), 
30 (*) 

[0.74; 
0.82]; 
[4.33; 
5.18] 

 (*) 

[11.34; 
13.35]; 
[25,31; 
38,56] 

(*) 

[0.57; 
0.59]; 
[0.53; 
0.70]  

(*) 

[10.66; 
12.41]; 
[7.31; 
11.52] 

(*) 

[50.98; 
52.95]; 
[41.03; 
53.96] 

(*) 
(*) Service managed by OTT 

5.1 MNO-managed class 

5.1.1 PRT as the QoE Metric 

The estimated regression model is as in 

iTHR.

PLR.DEL..PRT




7491

619936823579
 (2) 

This MLR model provides a low Root Mean Squared 
Error (RMSE) value equal to 0.443, an R-squared value 
equal to 0.982 and an Adjusted R-Squared value equal 
to 0.97: i.e. quite a good fit. The overall p-value is 6.15e-
10. It allows us to reject the null hypothesis. Figure 4 
shows relevant statistical indicators for this model: the 

fit looks actually good, while residuals are well 
distributed and adequately symmetric.  

 

  

 
 

Figure 4. Statistical indicators for MLR of PRT in MNO-
managed class. From upper leftmost to right: plot for 
whole model vs samples; histograms of residuals; 
symmetry plot of residuals around their median; residuals 
vs fitted values. 

5.1.2 VRT as the QoE Metric 

The estimated regression model is as in 

THR.

PLR.DEL..VRT




6605

714856182422
 (3) 

This MLR model provides a low Root Mean Squared 
Error (RMSE) value equal to 0.802, an R-squared value 
equal to 0.998 and an Adjusted R-squared equal to 
0.986: i.e. quite a good fit. The overall p-value is 1.09e-
15. It allow us to reject the null hypothesis. Figure 5 
shows relevant statistical indicators for this model: the 
fit looks actually good, while residuals are well 
distributed and adequately symmetric.  

 

  

 
Figure 5. Statistical indicators for MLR of VRT in MNO-
managed class. From upper leftmost to right: plot for 
whole model vs samples; histograms of residuals; 
symmetry plot of residuals around their median; residuals 
vs fitted values. 
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5.1.3 Cluster Analysis for MNO-managed class 

Scenarios of the MNO-managed class, expressed in the 
5 dimensional feature space, consisting of two QoE 
metrics and four QoS KPIs, have been clustered in three 
clusters, thanks to the well-known k-means technique 
[15]. Separation between clusters is fair as shown by the 
plot on the first two principal components (Figure 6). 

 

 

Figure 6. Clustering of scenarios for the MNO-managed 
class in the joint space of QoE metrics and QoS KPIs. 
Plot is on the plane of the first two principal components. 

Meaning of the clusters is expressed in Table 3, 
which reports the position of the centroids of the three 
identified clusters in the 5-dim space.  The quality of this 
clustering is evident from the changes of QoE between 
centroids: the VRT has the worst performance in C1, 
improves of 4.5 dB for C2, and 14.9 dB for C3. Same 
holds for PRT, though with lower gains (1.6 and 7.2 dB). 
As a conclusion, clustering well depicts differences 
between the scenarios in the MNO-managed class. 

Table 3. Cluster Centroids generated by k-Means for 
MNO-managed Scenarios.  

Cluster 
Centroi
d Id. 

DEL 
[s] 

PLR 
[%] 

THR 
[Mbps] 

PRT  
[s] 

VRT  
[s] 

1 
0.772
4 

12.54 
% 

0.5783 
11.3
6 

52.05 

2 
0.764
1 

0.360
0 % 

1.025 
9.48
9 

31.01 

3 
0.083
3 

0.370
0 % 

2.650 
4.94
4 

9.339 

5.2 OTT-managed class 

5.2.1 PRT as the QoE Metric 

The estimated regression model is as in 

THR.

PLR.DEL..PRT




7966

001381303477
 (4) 

This MLR model is affected by an excess Root RMSE 
at 3.11 and an insufficient R-squared value at 0.13, 
while Adjusted R-Squared is meaningless (-0.08). The 
overall p-value is 0.591. Thus we don’t reject the null 
hypothesis. Let also remark that also the positive gain 
PRT/THR makes no sense. Figure 7 shows some 
evidences of the fact that the MLR model poorly 
describes the potential relationship QoE vs QoS in case 
of PRT. 

 
 

 
Figure 7. Statistical indicators for MLR of PRT in OTT-
managed class. From upper leftmost to right: plot for 
whole model vs samples; histograms of residuals; 
symmetry plot of residuals around their median; residuals 
vs fitted values. 

5.2.2 VRT as the QoE Metric 

The estimated regression model is as in 
 

THR.

PLR.DEL..VRT




7250

463220037873
 (5) 

 
However, the MLR model is even worse than (4) 

(RMSE=10.2 and Adjusted R-Squared=0.14). The 
overall p-value of 0.211 makes the null hypothesis really 
likely. Figure 8 shows some evidences of the fact that 
the MLR model poorly describes the potential 
relationship QoE vs QoS in case of VRT. 
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Figure 8. Statistical indicators for MLR of VRT in OTT-
managed class. From upperleftmost to right: plot for 
whole model vs samples; histograms of residuals; 
symmetry plot of residuals around their median; residuals 
vs fitted values. 

5.2.3 Cluster Analysis for OTT-managed class 

The statistical indicators in the OTT-managed class do 
not allow to take the fit as trusted. It means that a linear 
relationship between QoE KPIs and QoS metrics cannot 
really be ascertained. Cluster analysis can gives some 
more insight on relationships between scenarios of the 
OTT-Managed class, represented in the 5 dimensional 
feature space, consisting of two QoE metrics and three 
QoS KPIs. Figure 9 plots two clusters identified thanks 
to the k-means algorithm [15] on the plane identified by 
the first two principal components. 

 

 

Figure 9. Identified clusters for the OTT-managed class 
including jointly both PRT and VRT as QoE metrics. 

Separation between the two clusters is fair as per 
Figure 9. Though meaning of this separation is quite 
different as for the MNO-managed class. Table 4 reports 
the position of the centroids of the three identified 
clusters in the 5-dim space. It is straightforward noting 
that the two cluster centers are different as to the QoS 
KPIs, while they are nearly undistinguishable as for the 
QoE KPIs. Therefore, clustering reveals under a 
different perspective that QoE KPIs are not predictable 
starting from the QoS metrics.  

Table 4. Cluster Centroids generated by k-Means for 
MNO-managed Scenarios.  

Clu
ster 
Cen
troi
d Id. 

DEL 
[s] 

PLR 
[%] 

THR 
[Mbps] 

PRT  
[s] 

VRT  
[s] 

1 0.5026 8.610 0.6473 12.09 41.58 

2 3.829 24.84 0.5720 11.89 41.45 

6 Discussion and Final Remarks 
The procedure of QoE metrics estimation out of QoS 
KPIs measured at network level is a consolidated 
process, and still a due attempt, regardless the 
complexity of networks and service architectures. Here 
we attempted for LTE networks the estimation of QOE 
vs QoS mapping thanks to MLR technique, with two 
distinct classes of scenarios. Our approach worked well 
as long as the MNO has been able to perform an end-to-
end management of the service delivered to the end user 
(MNO-managed class). It is possible to give a reliable 
estimation of QoE out of the QoS due to the MNO. This 
case may represent an incentive for OTT, who is 
supposed to have the ownership of contents, to 
cooperate with the MNO within the service delivery 
process. In the OTT-managed class the MNO loses the 
end-to-end control and the MLR technique turns out to 
give unsatisfactory results. In our understanding this is 
due to the fact that there is no-one with a full end-to-end 
management of the HTTP service.  

Our results bring us to two key considerations. First, 
regression models are suitable for QoE vs QoS mapping 
if the QoS KPIs measured by MNO are the only factors 
that determine QoE. Second, if other factors out of the 
MNO’s control affects the service delivery process (as 
the IP cloud considered in this work), the identification 
of the QoE vs QoS mapping comes to an unsatisfactory 
end. 

A future step is to determine for the OTT-Managed 
class the minimal Service Level Agreement (SLA) of IP 
cloud that assures the existence of a QoE vs QoS (on the 
MNO side) mapping.  This enables the OTT to negotiate 
with the MNO consistent QoS KPIs for the intended 
QoS metrics.  Next steps regard how to assure that 
reliable mappings can be utilized on both sides, MNO 
and OTT, to deliver a quality-safe service to the end-
user, within a sustainable business model. Impact of the 
QoE vs QoS mapping on costs and economic measures 
has to take part in the analysis 
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