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Abstract
One the most important features of a Long Term

Evolution (LTE) system is the high transmission data
rate in downlink and in uplink. This is not sufficient for
a good Quality of Experience (QoE) perceived by the
end user. The Mobile Network Operator (MNO) has to
adopt appropriate techniques for an effective
management of the Quality of Service (QoS) not only
for bandwidth-consuming applications as video
streaming but also for voice application as Voice Over
LTE (VoLTE). These techniques can be based on the
QoE/QoS correlation especially in case of a 
delaysensitive application as VoLTE. This paper for-
mulates a method for the QoE estimation starting 
from QoS informations available at network 
level. Different scenarios are simulated using 
OPNET software tool. Results are statistically an-
alyzed using regression cluster analysis tech-
niques. Mathematical functions representing relation-
ship between QoE/QoS metrics are identified.

Keywords: LTE, QoS, QoE, VoLTE, key performance
indicators, regression, cluster

1 Introduction
Wireless telecommunication networks have enabled
broadband applications with very high throughput. With
the introduction of Long Term Evolution (LTE) the
download data rate can reach 100 Mbps, while the
upload data rate may be up to 50 Mbps (3GPP,2008).
The Quality of Service (QoS) have been so strongly
impacted by these new important capabilities that an
efficient management of the LTE network is needed in
order to guarantee acceptable levels of Quality of
Experience (QoE) to the end users. Together with data
applications, the voice application called Voice Over
LTE (VoLTE) is also to be carefully managed. This
implies the importance for the Mobile Network
Operator (MNO) to make a reliable QoE estimation.
MNOs need to integrate LTE native QoS features with
other techniques that consider the entire communication
chain. One approach is to correlate the QoS measured at
network level to the QoE perceived by end user. In the
scientific literature several mathematical models have
been defined.

This work is focused on the QoE estimation for 
VoLTE application on the basis of network QoS 
indicators, called Key Performance Indicators (KPIs). 
The paper presents in Sect. II an overview of the related 
work and the proposed approach for QoE/QOS 
correlation in Sect. III. In Sect. IV a simulation activity 
is detailed and the results are analyzed in the Sect. V. 
Sect. VI resumes the main conclusions. 

2 Related Works 
Reference (3GPP, 2008) introduces the end-to-end QoS 
reference architecture for LTE systems as standardized 
by ETSI together with the basic management functions. 
A. Vizzarri et alii in (Vizzarri, 2013) present a review of
most important papers on end-to-end QoS approach in
LTE networks. Horvath et alii in (Horvath, 2013)
present an innovative signalling protocol named LQSIG
for the resource reservation.

A first attempt for correlating quality informations of 
the LTE network to those of the application is made by 
S. Shen et alii in (Shen, 2011). They propose a
performance framework based on the mapping of the
Class of Service (CoS) to the QoS. Margoc et alii in
(Margoc, 2013) analyze QoS in LTE systems in order to
analyze the better performances for higher priority
services. Policies and strategies for priority service
allocation are left to operators. This is also confirmed by
Medbo et alii in (Medbo,2009), where different type of
data traffic over LTE network are analyzed, e.g. VoIP
and HTTP web browsing/video streaming.

In (Alreshoodi,2013) QoS/QoE correlation is studied 
assuming QoS as a source of disturb for QoE.  In 
(Alreshoodi,2013) fuzzy-logic approach is proposed for 
QoS/QoE mapping. In (Truong, 2012) the QoS/QoE 
mapping for IPTV service is made on the basis of the 
Mean Opinion Score (MOS) (intended as the QoE 
metric) delay, jitter and Packet Loss Rate (intended as 
the QoS metrics). A. Vizzarri in (Vizzarri, 2014) 
analyzes the impact of the voice codec on the end-to-end 
QoS for a VoLTE service. In [Vizzarri, 2014) A. 
Vizzarri studies the impact of the network congestion 
(in terms of link utilization) on end-to-end QoS for a 
VoLTE service. 
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3 Proposed Approach  

3.1 Methodology 
LTE system enables fully IP-based applications thanks 
to data transmitted through Packet Switching (PS) paths. 
That implies VoLTE to be treated as an IP-based 
application (3GPP, 2008). IP Multimedia Sub System 
(IMS) (3GPP, 2008) and Session Initiation Protocol 
(SIP) are integrated with LTE network nodes (IETF, 
2005).  

Figure 1 shows the LTE logical architecture 
supporting VoLTE service includes VoLTE User 
Equipment (UE), Evolved Universal Terrestrial Radio 
Access Network (E-UTRAN), Evolved Packet Core 
(EPC) and IMS Core Network. 

 

Figure 1. Logical architecture for VoLTE service [3GPP 
TS 23.002]. 

 
As a fully IP-based application, VoLTE is delivered 

over the LTE in a best effort modality. That implies the 
Mobile Network Operator (MNO) has to manage in 
order to guarantee acceptable levels of both QoS 
measured at the network level and QoE perceived by the 
end user at the application level. QoE is usually 
represented by a subjective measure called Mean 
Opinion Score (MOS). MOS is a scalar variable that 
measures the degree of service acceptance by the end 
user on range from 1 (worst case) to 5 (best case) (ITU, 
2016). A MOS value equal to 5 is indicative of an 
Excellent Quality (imperceptible impairment), 4 of a 
Good Quality (perceptible but non annoying 
impairment), 3 of a Fair Quality (slightly annoying 
impairment), 2 of a Poor Quality (annoying impairment) 
and 1 of a Bad Quality (very annoying impairment).  
MOS value is derived from to R factor provided by ITU 
E-Model (ITU,2008) which takes in account several 
factors impacting the QoS, e.g. choose of voice codec, 
transmission delay, etc.  

KPIs measured at the network level are typically 
Delay (DEL), Jitter (JIT) and Packet Loss Rate (PLR) 
(Yu et alii, 2007). The delay is represented as the 
amount of time a packet sent by source (caller) takes to 
reach destination (callee). Jitter is the variation in the 
time between packets arriving, caused by network 
congestion or route changes. Negative effects of Delay 
and Jitter are represented by phenomena of voice 

echoes. A high value of PLR can produce overlapping 
of words with a strong negative impact on voice 
intelligibility.  

The present paper is mainly focused on the study and 
the identification of mathematical models for QoS/QoE 
correlation in different VoLTE realistic scenarios. 
Considered metrics are: 

 QoE metrics: MOS;  

 QoS KPIs: end-to-end Delay (e2eDEL), Jitter (JIT) 
and Packet Loss Rate (PLR). 

Correlation techniques here adopted by the authors 
are statistical regression and cluster analysis.   

3.2 Network models  
In order to build realistic scenarios for VoLTE, network 
impairments are included. They are modelled on the 
basis of two constraints: 

 Presence of mixed traffic: VoLTE application is 
delivered over LTE network together with HTTP 
web browsing application; 

 Presence errors on end-to-end transmission: they are 
modelled inserting an IP cloud which introduces 
both additive delay (0.1 seconds) and IP packet 
discard ratio (1%).   

On the basis of the VoLTE logical architecture shown 
in Figure 1, Figure 2 reports four different LTE network 
models, built in order to model realistic conditions for 
the VoLTE application and compute QoS and QoE 
metrics. 

  

    

Figure 2. Four LTE network models identified to model 
realistic conditions for for VoLTE application. From the 
upper leftmost to right: UE for VoLTE without IP cloud; 
two UEs for VoLTE and HTTP browsing without IP cloud;  
One UE for VoLTE with IP cloud; two UEs for VoLTE 
and HTTP browsing with IP cloud. 
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The first model is related to a classic VoLTE call 
between two LTE UEs: a caller (UE_1) and a callee 
(UE_2). It is the situation with a single LTE application 
(VoLTE) without any network impairment. The second 
model is related to a situation with two different services 
delivered over the same LTE network. VoLTE is the 
first application between UE_1 and UE_2; HTTP web 
browsing is the second one and it is performed by UE_3 
contacting an HTTP server. UE_1 (VoLTE caller) and 
UE_3 are attached to the same eNodeB (eNB_1). The 
third model is an extension of the first one. VoLTE 
application is affected by only the insertion of an IP 
cloud across the end-to-end transmission chain. The 
fourth model is an extension of the second one. Here 
VoLTE application is affected by both the presence of 
IP cloud and the presence of a second application 
(HTTP web browsing) performed by another user. 

 

4 Simulation 
All scenarios are simulated using the LTE network 
model provided by OPNET 17.5 PL6. 

4.1 OPNET Settings 
Both the antenna gain equal to -1 dBi and the receiver 
sensitivity to -200 dBm characterize the UE. eNodeB 
transmission mode is FDD Duplex Mode. Link type 
among LTE network nodes is PPP D3: the data rate is 
44.736 Mbps. Voice codec is GSM EFR with one voice 
frame per packet. EPS bearer has a QoS Class Identifier 
(QCI) equal to 1 (GBR) and an Allocation and Retention 
Priority (ARP) equal to 1. Through the HTTP 
application, UE_3 can download 1 KB web page, n. 5 
medium images with dimension up to 2 KB and two 
short videos with dimension up to 350 KB. The 
simulation period is equal to 3 minutes for all scenarios. 
The simulation area is a typical campus area (100 Km2). 

4.2 Assumptions on users and networks 
According to the four network models defined in the 
Sect. III, we identified 48 scenarios to be simulated.  

The scenario set includes two tunable parameters: 

 S1 link capacity: starting form 100% 
(corresponding to 1,073,741,824 bps), the link 
capacity is decreased to 75%, 50% and 30%;   

 eNodeB Bandwidth: 5 MHz, 10 MHZ, 20 MHz. 
 
Table 1 reports scenarios grouped in four subsets, and 

their parameters. 

4.3 Results 
Table 2 gives a view of simulation results per 
homogeneous groups of scenarios, in terms of related 
QoS metrics and QoE metric. As a first remark, MOS is 
acceptable for the first two subsets (fair quality), and too 
low for the third (poor quality) and fourth (bad quality) 
subsets. 

Table 1. Scenario Configurations. 

Sub
set  
No. 

Scen
ario  
No. 

LTE  
Servi
ce  
Type 

S1  
Link  
Capa
city 
 [%] 

eNB  
Band
[MHz
] 

Impairment
s  
due to IP 
Cloud 

Pack
et 
Disc
ard 
Ratio  
[%] 

Pac
ket 
Lat
enc
y 
[s] 

1 1-12 VoLTE 
100; 

75; 50; 
30 

5; 10; 
20 

Not 
present 

Not 
prese

nt 

2 13-24 

VoLTE 
+ 

HTTP 
Browsi

ng 

100; 
75; 50; 

30 

5; 10; 
20 

Not 
present 

Not 
prese

nt 

3 25-36 
VoLTE 

+ IP 
Cloud 

100; 
75; 50; 

30 

5; 10; 
20 

1 0.1 

4 37-48 

VoLTE 
+ 

HTTP 
Browsi
ng + IP 
Cloud 

100; 
75; 50; 

30 

5; 10; 
20 

1 0.1 

 
 

Table 2. Simulation Results. 

Sub
set 
No. 

Scen
ario 
No. 

QoS  
Metrics 

QoE 
Metrics 

Delay  
[s] 

Jitter  
[s] 

PLR  
[%] 

MOS 

1 1-12 
 [0.11;  
0.12] 

[0.06; 
0.11] 

[0.21; 
0.53] 

[3.46; 
3.70] 

2 13-24 
[0.12;  
0.13] 

[0.09; 
0.13] 

[1.16; 
1.37] 

[2.90; 
3.50] 

3 25-36 
[0.19;  
0.21] 

[0.15; 
0.19] 

[7.40; 
8.85] 

[2.26; 
2.50] 

4 37-48 
[0.26;  
0.27] 

[0.21; 
0.27] 

[21.60; 
26.06] 

[1.45; 
1.70] 

 
 

5 Statistical Analysis  

5.1 Single Variable Non Linear Regression 
Model 

A generic regression model is representable as 
 

i)x(fY   (1) 

 
where Y is the response (dependent variable) to the 
predictor x (independent variable), with ℰi ~ (N,σi

2) the 
error for each observation. The relationship function 
f(x) can be linear or not. Based on available dataset the 
model of choice for regression is non-linear, and 
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specifically exponential (Alreshoodi, 2013). In case of 
MOS as response and a KPI as predictor, (1) becomes 

 
 

c)QoS*b(exp*aQoE   (2) 

 
where a and b are numerical coefficients. QoS may be 
Delay, Jitter and PLR in turn. 

 

5.1.1 MOS vs DEL fitting. 

In case of fitting between MOS and Delay, the 
regression model is   

 

783813319613 .)DEL*.(exp*.MOS   (3) 

 
Figure 3 gives a graphic representation of (3). The fitting 
quality is proved by a good value of R-squared (0.9487) 
(the adjusted R-Squared is quite near, i.e. 0.9464). 
Further the value of Root Mean Square Error (RMSE) is 
low enough, i.e. 0.185. 

 

 
 

Figure 3. MOS to Delay regression model. 

 

5.1.2 MOS vs JIT fitting. 

In case Jitter is considered as a QoS, the regression 
model is estimated as   

 

7898121902194 .)JIT*.(exp*.MOS   (4) 

 
Figure 4 shows the plot for (4). R-squared value is as for 
(3), i.e. 0.9374 (as much as the adjusted R-squared, i.e. 
0.9352). The RMSE value is 0.2034. We can conclude 
the fit to be adequate. 
 

 

Figure 4. MOS to Jitter regression model. 

 

5.1.3 MOS vs PLR fitting. 

As far as PLR is considered, the regression model comes 
out to be 
 

391106111982 .)PLR*.(exp*.MOS   (5) 

 
Figure 5 shows graphically the regression model. Data 
exhibit a strong non linear character. R-square value is 
0.8969, while RMSE value is 0.226. The quality of 
fitting is slightly lower than for (3) and (4). 

 

 
 

Figure 5. MOS to PLR regression model. 

 
Further Figure 5 reports the existence of 3 clusters in 

the scenarios set. The clusters are linearly separable. 
This effect is similar in the (MOS, DEL) plane, and not 
evident in the (MOS, JIT) plane. 
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5.2 Multiple Variable Linear Regression 
Model 

The previous fitting models are able to identify a 
(sometimes-strong) non-linear relationship between 
MOS and QoS KPIs taken once a time. These models 
give for VoLTE an idea of the QoE/QoS mapping but 
have a limited validity. In this section we look for a 
relationship between all QoS KPIs and QoE, a multi-
variable approach is helpful. The Multiple variable 
regression (MLR) model is usually represented as 
 

inn x....xxY  22110  (6) 

where β0, β1, β2,…, βn are the unknown regression 
coefficients and ℰi ~ (N,σi

2) is the error for each 
observation. 

As far as MOS is the response (dependent variable) 
and DEL, PLR, THR are the independent variables, 
from (6) we have 

 

PLRJITDELMOS  3210  (7) 

For our dataset, the regression model comes out as 
 

PLR.

JIT.DEL..MOS




14770

533595868244
 (8) 

Figure 6 shows relevant statistical indicators for 
model (8): the fit looks actually good, and residuals are 
well distributed and adequately symmetric. The 
goodness of the regression model (8) is proved by R-
squared quite high 0.973 (with an adjusted R-squared 
equal to 0.971) and a quite low value of RMSE, i.e. 
0.136. The overall pValue is very low: 1.75e-34. This 
means the null hypothesis can be firmly rejected. 

 

 

  

Figure 6.  Statistical indicators for MLR in case of MOS, 
DEL, JIT and PLR. From upperleftmost to right: plot for 
whole model vs samples; histograms of residuals; 
symmetry plot of residuals around their median; residuals 
vs fitted values. 

Table 3 presents the main statistical parameters for 
the coefficients in (7) and (8). 

Table 3. MLR Results. 

Coeffi
cients 

Estimated 
Value 

Standard  
Error 
(SE) 

tStat pValue 

β0 
(interce

pt) 
4.824 0.1339 36.035 2.67e-34 

β1 -6.958 1.36 -5.116 6.568e-06 

β2 -5.533 0.8751 -6.323 1.131e-07 

β3 -0.1477 0.6879 -0.2147 0.8310 

 

5.3 Cluster Analysis  
Besides the results coming out of the regression 
analysis, we need to gain a better insight in the QoE/QoS 
mapping. Clustering may provide that. Let us map the 
scenarios in the 4 dimensional feature space, whose 
dimensions are MOS, DEL, JIT and PLR. If we apply 
the well-known k-means technique [20] [21], we get 
three clusters as a result after the algorithm stabilization. 
Figure 7 shows the clusters projected onto the first two 
principal components. Clusters are linearly separable 
and fairly separated. 

 

 
 

Figure 7.  Clusters of VoLTE scenarios. Plot is a 
projection on the plane of the first two principal 
components. Centroids are marked as crosses. 

 
Table 4 reports the position of the centroids of the 

three identified clusters in the 4-dim space. The utility 
of this clustering is evident from the changes of QoE 
between the centroids: MOS assumes the best value in 
C1 that consists of 24 scenarios, characterized by a 
single application: (VoLTE in the scenarios 1-12) or by 
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a mixed traffic, (VoLTE and HTTP web browsing 
applications, scenarios 13-24).  

The MOS gets worse of -3.1 dB for C2 when the 
VoLTE application co-exists with end-to-end 
transmission errors due to an IP cloud (scenarios 25-36). 
The MOS decreases of -6.8 dB in C3 where both a 
mixed traffic (VoLTE and HTTP web browsing) and 
end-to-end transmission errors are present.   

Table 4. MLR Results. 

Cluster  
No. 

Scenar
io  
No. 

MOS Dela
y  

[s] 

Jitter 
[s] 

PLR 
[%] 

1 [1-24] 3.40 0.12 0.11 0.77 

2 [25-36] 2.39 0.20 0.19 8.20 

3 [37-48] 1.56 0.26 0.25 22.54 

 
 
To be remarked that cluster C1 gathers scenarios 

from subsets 1 and 2. C2 is overlapping with subset 2 of 
the scenarios. C3 is overlapping with subset 3. Based on 
Table II, Table IV shows both this relationship and 
related cluster characteristics.  

 

6 Conclusions 
VoLTE is an important service for LTE networks since 
it is the basic voice service in the 4G wireless standard. 
Since LTE is a fully IP-based system, VoLTE 
application is delivered in the best effort modality. 
Mapping QoE/QoS is of key importance for the MNOs. 
Here we studied how the correlation between QoE and 
QoS can be expressed through mathematical models.  

We designed a certain number of scenarios, that 
include as network impairments both mixed traffic (co-
presence of VoLTE and HTTP web browsing), and end-
to-end transmission errors (presence of an IP cloud). We 
analyzed results from simulation through different 
techniques: single variable regression, Multi Linear 
Regression (MLR) and cluster analysis.  

From the single variable nonlinear regression, we 
learnt that DEL and JIT have linear models. On the 
contrary, the PLR model exhibits a stronger non-
linearity, which is the reason why presence of clusters 
in data has been anticipated from Figure 5. 

The multivariable linear regression came to results 
comparable with the single variable regression for 
dependence from DEL and JIT. This is straightforward 
from the linearization of (3) and (4). Further, model (8) 
expresses the joint influence of all QoS metrics on MOS, 
with a good statistical quality. Nonetheless, the 
coefficient related to PLR has an unsatisfying pValue. 
This may be motivated by the irrelevance of the variable 
(that is the likelihood of the null hypothesis). Further, it 
may be a signature of statistical instability when a 
nonlinear behavior is forced to accommodate into a 

linear model. Related work demonstrated PLR to be a 
relevant predictor for MOS. Thus we consider (8) 
relevant under a theoretical viewpoint, but of limited use 
as far as a large PLR variation is considered. 

The cluster analysis showed that the designed 
scenarios naturally group into three distinct clusters. 
Each of them has different features in terms of QoE and 
QoS metrics. As a first result, the authors observed that 
scenarios of C3 have an unacceptable MOS, due to 
errors of end-to-end transmission (modeled through IP 
cloud). About the role of PLR, clustering reveals a 
strong capability of PLR to predict existence of cluster 
(compare Figure 3 and Figure 7), and a very high 
discrimination between the clusters based on the PLR 
value (see Table IV) 

Future works will be focused on the mapping 
QoE/QoS for LTE networks with different scenarios and 
design parameters. Applications in the scope will be 
video streaming and HTTP web browsing. 
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