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Borut Zupančič Primož Vintar

Faculty of Electrical Engineering, University of Ljubljana, Slovenia, borut.zupancic@fe.uni-lj.si

Abstract
The paper deals with modelling, simulation and control of
a laboratory crane for the purpose of control education.
There were many similar activities in the past with reali-
sations in causal modelling e.g. Matlab-Simulink. How-
ever we wanted to model and control the set-up also in
the OO and multi-domain environment Dymola-Modelica
using library components instead of mathematical equa-
tions to show all the advantages of such approach. The
combination with some causal structures to solve certain
problems is also discussed. The model was properly vali-
dated with some open and closed loop experiments. These
results confirm the applicability of the model and the effi-
ciency of the mentioned approach in modern control engi-
neering courses.
Keywords: control education, modelling and simulation,
OO approach, multi-domain approach, model validation

1 Introduction
It is extremely important to use miniature laboratory
plants in control education. As such plants are very ex-
pensive they usually cover only a part of exercises, the
basic part is realised in modelling and simulation environ-
ment. There are usually two important areas which have
to be covered with education: modelling of real plants and
control. Control schemes can be validated in simulation
environment or on real plants.

However there are two approaches in modelling and
simulation: traditional causal or block oriented or in-
put output modelling which originates in analog simu-
lation, in CSSL standard and is nowadays mostly cov-
ered with Matlab-Simulink environment (Moller, 2004;
Simulink, 2014). However, more advanced approach is
based on acausal, object oriented modelling which repre-
sents a multi-domain approach (connection of components
from different fields) and giving a possibility of building
libraries with reusable components. The most powerful
tools are based on Modelica language (Modelica Associ-
ation, 2010; Fritzson, 2004; OpenModelica, 2012), which
is supported with several modelling packages. In our ac-
tivities Dymola was used (Dymola, 2015). Many experi-
ences with such tools in industrial projects and in educa-
tion (Zupančič and Sodja, 2013) show, that it is possible to
produce complex model in shorter periods while the mod-
els are very illustrative as they retain physical structure.

However the executable models become very complex,
it is usually difficult or impossible detect and solve nu-
merical problems (Sodja, 2012). The practice shows that
students are much more motivated when modelling with
OO tools. This was evident when our traditional Matlab-
Simulink modelling courses were expanded with Dymola-
Modelica several years ago.

In our courses AMIRA 600 laboratory set-up (Amira,
2001) for basic and also more advanced courses from
modelling and control was used. It enables several sub-
processes, one is so called Loading bridge which actually
models a crane. The mathematical model and the imple-
mentation in SIMULINK is described in (Hančič et al.,
2015).

This paper describes our efforts to model the mentioned
set-up without numerous mathematical equations. Instead
a modeller uses prepared components from standard Mod-
elica library. Our goal was only partly fulfilled because
some modelling problems were finally solved with causal
components.

2 Description of the loading bridge
AMIRA 600 (Amira, 2001) (see Figure 1) is a convenient
laboratory set-up, appropriate for basic and also more ad-
vanced courses from modelling and control. It consists
of an aluminium frame covered with sheets of plexiglass.
The plant has different configurations, one of them is also
the bridge crane. The set-up is very convenient for mod-
elling and control. There are different control tasks such
as proper positioning of the load in minimal time, small
angles of the thread, avoiding obstacles, etc.

Figure 1. Laboratory set-up for control education: loading
bridge.
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The laboratory set-up consists of a cart which can be
moved along a metal guiding bar by means of a transmis-
sion belt. Two proximity switches are mounted close to
both ends of the guiding bar. They are used for limiting
the position of the cart. The cart carries a rope winch that
is used to change the length of the rope. A weight is fixed
to another end of the thread. So the length of the thread
influences the position of the weight. The lifting and de-
scending of the weight as well as the movement of the
cart is realised with two current DC motors enabling the
proper positioning of the load (weight). So the DC volt-
ages applied to these motors represent two inputs while
the torques produced by both DC motors are proportional
to the DC voltages. The outputs are given by three incre-
mental encoders which measure the position of the cart,
the length of the thread and the angle between the thread
direction and vertical direction (ϕ). The thread itself to-
gether with the load is denoted as a pendulum system. The
origin of the coordinate system is the cart in the very left
position and the point in which the pendulum is handled
to the cart. Figure 2 illustrates the described set-up with
some dimensions.
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Figure 2. Part a: set-up Amira 600 working as the loading
bridge. Part b: pendulum with appropriate dimensions.

Table 1. Physical parameters of the set-up.

Parameters Values
Mass of the cart+winch 5,7 kg
Mass of the load (weight) 0,143 kg
Length of the guiding bar 1,38 m
Length of the pendulum stick 0,18 m
Distance between the centre of

load gravity and the point where
the load is fixed to the thread 0,035 m

Maximal length of the rope 0,55 m

Table 1 shows some important plant parameters, which
were partly measured or obtained from the documentation
(Amira, 2001).

3 Modelling with Modelica
The basic aim of this investigation was to show that Mod-
elica is a convenient approach especially in the modelling
of mechanical systems. We intended to use the Modelica
standard library and to build an efficient model without
usual mathematical modelling with equations. Of course
we have to be aware that also a profound knowledge of the
mathematical modelling using balance equations in mod-
elling subjects is needed. Even very sophisticated libraries
are usually not sufficient the introduction of some changes
or developments of customized components in real appli-
cations is often needed.

The approach was to build the model with diagram
layer (icon or graphical based modelling) and to establish
some more efficient solutions using some improvements
with textual model layer. Basically the components from
two libraries (packages): Mechanics and Blockswere
used.

3.1 Package of mechanical components
Mechanics

The package Mechanics is a part of Standard Model-
ica library. The library consists of three sub libraries:
Multibody, Rotational, Translational.

The library MultiBody is a free Modelica pack-
age providing 3-dimensional mechanical components to
model in a convenient way mechanical systems, such as
robots, mechanisms, vehicles. The components - the co-
ordinate system of the world frame, the revolute joints and
the rigid bodies have also animation properties.

The libraries Translational and Rotational
are also free Modelica packages which enable mod-
elling of traditional rotational and translational problems
which are commonly needed especially in basic modelling
courses. The basic components are mass, inertia, spring,
damper etc.

It is convenient to model 3D mechanical systems with
components from all three libraries, as there are property
defined connectors which enable proper conections. As
an example we can use two components from the sub
library Mechanics.MultiBody.Joints, shown in
Figure 3. Both components entitled prismatic and
revolute are important in the loading bridge model.

Figure 3. Two components from the sub library
Modelica.Mechanics.Joints.

The prismatic joint has 1 translational degree-of-
freedom. There are two regular connectors (frame a and
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frame b) which enable to connect the components from
the library Multibody. Optionally, two additional 1-
dimensional mechanical connections can be driven with
elements of the Translational library. This is es-
pecially convenient to connect a control force to the 3D
mechanical system.

Revolute joint has 1 rotational degree-of-freedom
where frame b rotates around axis n which is fixed in
frame a. Optionally, two additional 1-dimensional me-
chanical connections can be driven with a component from
Rotational library. This is often used to connect a
control torque to 3D mechanical systems.

3.2 Package of causal components Blocks

The library Blocks contains input/output blocks to build
up block diagrams. This is actually the implementation
of a traditional modelling approach based in causal in-
put/output interactions originating from analog simula-
tion, supported later by a CSSL standard and finally im-
plemented also in Simulink environment. The library is
important for the implementation of model parts where the
causality is needed, e.g. for the implementation of a con-
trol system where inputs and outputs have to be strictly
defined.

With components from the library Blocks some new
components were implemented and some existing were
modified. These components were included into a new
library AdditionalComponents, which is a part of
the loading bridge model.

3.3 Structure and components of the overall
model

Figure 4 shows the hierarchical structure of the load-
ing bridge model. It is implemented with the package
CraneModel on the highest hierarchical level. It con-
sists of three sub-packages: AdditionalComponents
is the library of components, developed or updated from
the existing components from the Standard Modelica li-
brary. The second package PilotPlantAMIRA600 is
intended to final Amira 600 models. Currently it con-
tains only the model of the loading bridge. The third sub-
package Controller is intended to implemented con-
trollers.

3.4 Model of the loading bridge

Figure 5 depicts the top level model of the
loading bridge, implemented with model class
LoadingBridgeCrane. All components except
CartDrive and ThreadDrive are taken from the
standard Modelica library Mechanics and model the
whole mechanical system with drives. The components
CartDrive and ThreadDrive were placed to the
library of new and appropriately modified components
(AdditionalComponents).

Figure 4. Hierarchical structure of the loading bridge model.

Figure 5. Model of the loading bridge in Dymola-Modelica.

3.4.1 World

Model class World is a part of the standard library
Modelica.Mechanics.Multibody. It represents a
global coordinate system and the gravity field.

3.4.2 Cart

The cart (model class Cart) is realised with BodyBox
component from the Multibody library. The parameters
are dimensions, mass, animation features etc. The cart is
driven with PushCart element, which is the appropriate
actuator for the movement of the cart. The information
for the needed movement is calculated in the model class
CartDrive.

3.4.3 Pendulum

On the connector b of the Cart the component
Revolute is connected. This is a revolute joint which
handles the pendulum. The pendulum is built according to
the construction shown in Figure 2, b. It is a mathemati-
cal pendulum with the whole mass concentrated in a point
at the end. The component Rod is a rod with no mass,
with appropriate length and it handles the thread which is
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realised with the class Thread. This prismatic actuator
is the implementation of the winch. The movement of the
the thread is therefore implemented in the same way as the
movement of the cart. The component ThreadDrive is
almost identical to the component CartDrive. So the
length of the thread depends on the input DC voltage. The
load of the crane is realised with the element Load with
the whole mass concentrated in the center of gravity point.
The distance between the mass point (center of gravity)
and the point where the mass is connected to the thread is
illustrated in Figure 2, b.

3.4.4 Drive

The model class Drive is used in two almost identical
classes CartDrive and ThreadDrive. It transforms
the input DC voltage signals into appropriate positions. It
consists of causal blocks. The Modelica diagram is shown
in Figure 6. This component includes many parameters,

Figure 6. The diagram of model class Drive in the Dymola-
Modelica environment.

which are needed for proper transformation. The informa-
tion of the mass of the object and its initial position are
also needed. The damping is also important. The experi-
ments show that constant damping is not appropriate. Bet-
ter results were achieved with the damping which depends
on the input voltage. Experimentally obtained curves ware
realised with look up tables.

The input to the model is a real variable, represent-
ing the DC voltage to the DC motor. This real vari-
able feeds the model class offVoltageSensor which
models proximity final position switches for limiting the
final positions. The output of this class is connected
to the input of the component modDeadZone, which
is a modified standard block deadZone from the li-
brary Modelica.Blocks.Nonlinear. A deadzone
in which the voltage is not sufficient for the movement
is implemented with this model. The output of the
block modDeadZone is connected to the lag system
firstOrder with an appropriate time constant. With
this time constant (delay) it was possible to tune the speed

of the positioning of the cart and the length of the thread.
At the beginning we tried to compensate a fast dynam-
ics with the appropriate damping but it appeared that the
appropriate delay, which has to be included, does not de-
pend on the velocity. The output from the lag system goes
to the limiter of the input voltage (limiter) and is fi-
nally in the block gain transformed into the appropriate
force. The gains 5.17 for the cart and -0.35 for the thread
were obtained experimentally. This gains actually repre-
sent very simplified models of DC motors. Additionally
we improved the model by introducing a damping force.
If a force F acts to a mass m, which movement is also
damped (damping b), then the acceleration can be evalu-
ated with the equation

F −bv = ma (1)

where v denotes the velocity and a acceleration. However
the model was improved with nonlinear damping where b
depends on the DC voltage. The nonlinear function was
realised with the look up table dCart. Finally the accel-
eration was obtained by dividing the left hand side of Eq. 1
with the mass m. With two integrations the velocity and
the position are obtained (model classes integrator
and integrator1). The calculated position was con-
nected to the position component (position) which in-
teracts the causal and acausal modelling parts and imple-
ments appropriate movement of the cart or thread.

It is clear that the described modelling is not what was
intended at the beginning - to implement fully acausal
model, because it introduces partly causal modelling and
reduces the efficiency of Modelica language. However
this was the most efficient solution of the problem appear-
ing above all in conjunction with the pendulum. Namely
we were not able to compensate gravitation and centrifu-
gal forces of the pendulum in open loop experiments what
resulted in uncontrolled and unstable movement of the
thread. With the solution that the driving actuators ob-
tain the information of the position instead of the force,
the compensation forces are automatically generated in-
side actuators.

4 Controller in Matlab Simulink envi-
ronment

Dymola-Modelica is an extremely powerful tool for true
physical modelling. However for complex experimenta-
tions (e.g. optimisation, linearisation, steady state calcula-
tion, etc.), for results presentation, e.t.c. it is far from Mat-
lab possibilities. So we decided to use Dymola-Modelica
just for the ’physical’ part and Matlab-Simulink for all
other needs: Simulink for control systems description and
Matlab with some Toolboxes for making experiments. We
prepared a top level Modelica model which can be used as
a Dymola (Modelica) block in the Matlab-Simulink envi-
ronment. Actually the appropriate connectors which are
compatible with other Simulink blocks had to be addition-
ally prepared. Such the top level Modelica model is shown
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in Figure 5. Two inputs (cart voltage, thread voltage) and
three outputs (cart position, thread length and thread an-
gle) were prepared. Then the Simulink environment to
accept Dymola block was properly configured. This block
had to be compiled within Simulink before the simulation
is started. The control scheme in Simulink is depicted in
Figure 7.
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Figure 7. Control system in Simulink.

The upper part is the control scheme for cart positioning
realised with PD and PI controllers

ucart(t) = KPc

(
ecart(t)+TDc

decart(t)
dt

)
(2)

uangle(t) = KPa

(
eangle(t)+

1
TIa

∫
eangle(t)dt

)
(3)

where ucart and uangle are the appropriate control sig-
nals which influence the position of the cart in or-
der to minimize errors between the cart reference po-
sition and actual position (ecart) and thread reference
and actual angle (eangle). So this part of controller
has 3 inputs: the reference value of the cart posi-
tion (ReferenceCartPosition), the actual position
(CartPosition) and the angle of the pendulum system
(Angle). So the left part of the structure is described with
Eq. 2. PD control was chosen as the process already has
the integral behaviour. To realise the real behaviour the
output of the PD controller was limited, so that the positive
values can change at the interval 1,28V - 3V and negative
values at −1,8V and −3V . The behaviour of the model
was improved by forcing the output of the controller to
0V , when the position error was in the range of ±0,001m.
At the right upper part of the scheme the PI control action
(Eq.3) was superadded. Namely the influence to the cart

position is the only possibility to influence the pendulum
angle, which has the reference value 0◦.

The lower part is the control scheme (Figure 7) handles
the length of the thread. Here the PD controller was used

uthread(t) = KPth

(
ethread(t)+TDth

dethread(t)
dt

)
(4)

where uthread is the appropriate control signal which in-
fluences the position of the length of the thread in order
to minimize the error between the thread reference po-
sition and actual position (ethread). Again the PD con-
troller is used as the process itself has an integral char-
acter. The reference length of the thread is in Figure 7
signed with ReferenceLoadPosition), and the ac-
tual length with CartPosition. To match the real behaviour
the output of the PD controller is limited, so that the posi-
tive values can change at the interval 3V - 5V and negative
values at −2,8V and −5V . The behaviour of the model
was improved by forcing the output of the controller to
0V , when the position error was in the range of ±0,001m.

The parameters of all three controllers are shown in Ta-
ble 2.

Table 2. Controller parameters

KPc TDc KPth TDth KPa TIa
30 1 40 18 0,3 20

Figure 8 depicts the overall Simulink scheme, where
the control structure (Figure 7) was realised with a
Simulink subsystem Control system and the phys-
ical part of the laboratory set-up with Modelica model
DymolaBlock, which has to be compiled before sim-
ulation.

To Workspace2

ThreadAngle

To Workspace1

ThreadPosition

To Workspace

CartPosition

Control system

ReferenceCartPosition

ReferenceLoadPosition

CartPosition

LoadPosition

Angle

CartU

ThreadU

From Workspace1

Thread_ref
From Workspace

Chart_ref

DymolaBlock

Cart
Voltage

Thread
Voltage

Position

Length

Angle

Clock

Figure 8. Overall scheme in Simulink with Modelica block.

5 Experiments
It is well known that the model validation is the most
important part of each modelling procedure. It is based
on comparisons between real measurements and simula-
tion results. Many open loop and closed loop experiments
were performed.

5.1 Open loop experiments
The basic validation was performed in open loop with the
DC voltage inputs as shown in Figure 9. These inputs
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Figure 9. DC motor voltages for open loop experiments.

influenced the real loading bridge set-up and the model.
According to several experiments some parameters were
tuned and some procedures, which were already com-
mented in the modelling section, were performed. The
validation results presented in Figure 10 show that the
model behaviour is satisfactory. It appropriately describes
the movements of the cart and not so good the lower-
ing and lifting of the weight. Especially it is difficult to
tune the angle of the pendulum, where the basic frequency
is properly modeled, however real measurements contain
also higher frequency components.
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Figure 10. Open loop experiment: comparison of model outputs
and corresponding real measurements.

5.2 Closed loop experiments
Figure 11 shows the position of the cart, the length of the
thread and the angle of the thread in a closed loop ex-
periment. The same reference signals were applied to the
real set-up and the model and the control systems were of
course identical. We can notice that the behaviour of the
model is reasonable also in the closed loop. The largest
deviations are again at the pendulum part, especially with
its oscillations.
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Figure 11. Closed loop experiment: reference signals, model
outputs, real measurements.

As the basic goal of the control of the crane is that the
load tracks the appropriate trajectory, we also present it
in xy plane, where x and y are coordinates of the load.
Figure 12 shows the reference trajectory, the trajectory of
real measurements and the simulation trajectory.
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Figure 12. Presentation of trajectories in xy plane.

The reference trajectory is defined with points T1 to
T10. It has to be mentioned that controller parameters
were not strictly optimised as the emphasise was given to
the modelling part.

6 Conclusions
The laboratory set-up Loading bridge AMIRA 600 is a
very efficient equipment for control education enabling in-
teresting modelling and control courses. The models were
previously mostly developed in Matlab-Simulink environ-
ment where all balance equations have to be precisely
specified. In this investigation we tried to develop an us-
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able model without equations, with OO approach using
Modelica language and Standard Modelica libraries with
mechanical components in Dymola environment. How-
ever some difficulties in modelling were later solved with
causal approach, which was in Modelica implemented
with the Block library showing that the combination of
different approaches often gives better solutions. Anyway,
such model much better preserves the physical modelling
structure, what is important in the education but also in
better understanding when model users are not modelling
experts.

The experiments results confirm that the model reason-
ably describes the real system. The worst part of the model
is the presentation of the pendulum angle where some
higher frequencies also appear in real experiments. Ad-
ditional efforts will be also devoted to the control system
(optimisation of parameters, new control strategies, etc.).
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