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Abstract 
The development of steel products with various 

characteristics increases the need for timely and 

preventive maintenance and condition monitoring of the 

production machinery. For instance, the roller levelers 

at modern steel factories are exposed to a high variation 

of forces due to the large range of steels leveled. In this 

study, the vibration measured from a steel leveler used 

for cold steel strips is analyzed with the goal to identify 

the effects different operational conditions have. 

Features such as generalized norms, generalized norm 

sums and the crest factor are computed from the 

vibration signals. The effects of the steel strip properties 

and the operational parameters of the machine on these 

features are then analyzed. The obtained information 

can be utilized in the models that are used as planning 

tools for the preventive maintenance of the steel leveler. 

Keywords:     feature extraction, roller leveling, signal 

processing, vibration 

1 Introduction 

The machines and devices in the modern steel industry 

are exposed to a high variation of load. This is a 

common characteristic especially at the factories which 

produce special steels. The special steel strips have 

properties such as exceptionally high yield strength. 

Major stresses are therefore inflicted on the processing 

equipment such as roller levelers during the production. 

This increases the risks of damage. The major forces 

make the roller leveler behave in an undesirable manner 

which makes, e.g., the mechanical load limiters break 

and the work rollers slip. Other common detriments 

encountered in the steel levelers include bearing damage 

in the rollers and the breakage and abrasion of the work 

rollers. These factors may consequently weaken the 

quality of the final steel product or cause a notable 

production loss due to the maintenance time. Therefore, 

the real-time monitoring of machine condition and the 

prediction of the effects of a specific steel product on the 

leveler are important subjects of research. 

In this paper, the effects of the operating conditions 

during the steel leveling are studied from the vibration 

signal measured from the bodywork of a steel leveler. 

The studied roller leveler is used for strips of cold steel 

in a sheet line. The sheets are cut from the strip next to 

the leveler using a flying shear. The cutting causes 

impacts which are conducted to the leveler and the 

measured signal. Figure 1 depicts two examples of the 

measured signal during the processing of steel strips in 

the steel leveler. Figure 1 indicates that the effects of the 

steel strip properties and the operational parameters of 

the leveler are divergent in these cases. Differences 

between the leveling events can be commonly seen in 

the general signal level, in the impact magnitude of the 

sheet cutting and in the duration of the leveling events. 

The identification of changes in the behavior of the 

monitored system can be done by using features 

(Lahdelma and Juuso, 2011). In this study, derivatives 

are first calculated in order to magnify the effects 

appearing in the signal. This is done according to the 

definitions by (Lahdelma, 1997) for real order 

derivatives. The actual vibration features are then 

extracted from the signal using the generalized norms 

introduced by (Lahdelma and Juuso, 2008). These 

norms are also used as the basis for other features such 

as generalized norm sums and the crest factor. 

The signal derivatives and generalized norms have 

been previously used to demonstrate that different steel 

grades inflict different stress levels on a steel leveler 

(Karioja et al, 2015). Features based on the generalized 

norms have been proposed also as stress indicators for 

the same application (Nikula et al, 2017). In contrast to 

these studies, this paper addresses the effects of the 

operational parameters of the machine on the measured 

vibration. The effects of the steel strip properties on the 

general signal level and on the relative peak magnitude 

are studied as well. The correlations of the signal 

features with the machine parameters and steel strip 

properties are studied using Pearson’s correlation 

coefficient. This information is useful for the 

development of data-driven models that are used in the 

preventive maintenance of the roller levelers. 

2 Materials and Methods 

2.1 Steel Leveler 

The purpose of roller leveling is the elimination of 

various shape defects in the material. Steel coils contain 

flatness defects caused by uneven stresses and defects 

resulting from thickness variation across the product 

width (Smith, 1997). The stress patterns create 
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transverse and longitudinal curvature. Center and edge 

waves are caused by difference in the length of sheet 

between the center and the edges (Park and Hwang, 

2002). Roller leveling is done by subjecting the strip to 

multiple back and forth bending sequences with 

decreasing roll penetrations as illustrated in Figure 2. 

The principle of roller leveling is based on controlling 

the plastic deformation through the thickness of the 

material. The plastic deformation determines the 

resultant flatness and memory and it also affects the 

required force. The roll force is a function of material 

thickness, width, yield strength, roll spacing and the 

extent of plastic deformation (Smith, 1997). A proper 

combination of the operational parameters is therefore 

needed for the required leveling result. 

A schematic representation of a roller leveler is 

shown in Figure 2. The leveler under investigation is a 

four-high leveling machine used for strips of cold steel 

in a sheet line. The sheet cutting is performed 

simultaneously with the leveling without a need to stop 

the strip in the leveler due to the cutting. The cutting 

causes impacts that are conducted to the leveler and 

emerge as peaks in the monitored vibration signal which 

is also demonstrated in the lower graph in Figure 1.      

2.2 Steel Leveler Parameters 

The studied operational parameters of the leveler are 

presented in Table 1. The leveling of one complete steel 

strip is considered here as a leveling event. Exact time 

stamps for the operational parameters were unavailable 

and therefore the medians of each parameter represent 

the whole leveling event. The median represents the 

general level of an operational parameter during the 

leveling event. To precisely identify the instantaneous 

effect of an operational parameter on the vibration 

signal, the exact synchronization of time stamps is 

required. 

The studied steel strip properties include yield 

strength, strip length, strip weight, strip width and strip 

thickness. The properties of the studied steel strips 

varied extensively. The range of the yield strength was 

approximately 200–1600 MPa; the length range was 68–

1161 m; the thickness range was 1.98–15.21 mm; and 

the number of cut sheets was 4–465. The vibration 

signals from the leveling of altogether 739 steel strips 

were analyzed. The most common steel grade from 53 

steel grades was a cold formable steel grade with yield 

strength around 400 MPa. This steel grade was leveled 

123 times. 

2.3 Vibration Measurements 

The measurements were done at the SSAB rolling 

mill in Raahe, Finland. The accelerometer was stud-

mounted in the middle of the runway on the bodywork 

supporting the lower supporting rolls. The acceleration 

was measured horizontally in the cross direction relative 

to the direction of the roller track. The used 

accelerometer was SKF CMSS 787A-M8, which has the 

frequency response from 0.7 Hz to 10 kHz with ±3 dB 

deviation. The measurement hardware included NI 9234 

data acquisition card and NI CompactRIO for the data 

recording. The sampling rate was 25.6 kHz and the only 

filter used in hardware level was the built-in antialiasing 

filter of the data acquisition card. The measurement 

system was calibrated after the completion of 

measurements using a hand-held calibrator. 

 

 

Figure 1. The acceleration signals from the leveling of 

two steel strips. 

 

 

Figure 2. A schematic view of a roller leveler. 

 

Table 1. The Studied Operational Parameters. 

operational parameter parameter 

identifier 

measure 

exit gap, drive side P1 mm 

exit gap, difference between sides P2 mm 

exit gap, change side P3 mm 

degree of plastic deformation P4 % 

entrance gap, drive side P5 mm 

entrance gap, difference between 

sides 

P6 mm 

entrance gap, change side P7 mm 

drawing force caused by roller 

leveler 

P8 kN 

drawing force caused by entry 

pinch roller 

P9 kN 
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2.4 Signal Processing 

The signals were processed using computational 

methods which are integration, derivation and filtering. 

The processing was done in the frequency domain by 

manipulating the sequence of complex numbers 

resulting from fast Fourier transform (FFT). Lahdelma 

(Lahdelma, 1997) defined real order derivative x(α) of 

the function x(t) = Xeiωt in the form 

                    𝑥(𝛼) = 𝜔𝛼𝑋𝑒
𝑖(𝜔𝑡+𝛼

𝜋

2
)
,                        (1) 

where α is the order of derivative, ω is angular 

frequency, X is amplitude, e is the Napierian number, i 

is the imaginary unit and t is the time variable. The 

derivative with respect to time can be calculated by 

multiplying every term Xk of the FFT by (iωk)α and then 

using the inverse of FFT. The integrals can be calculated 

similarly by using negative values of α. Furthermore, the 

value is not limited to integers but any real or complex 

number can be used (Lahdelma, 1997; Lahdelma and 

Kotila, 2005). Signals are filtered by multiplying the 

unwanted frequency components by zero.  

In this study, the order of derivation was α = {1, 2, 3, 

4}. The variable x(2) corresponds to acceleration and x 

stands for displacement. The velocity signal (α = 1) was 

filtered so that it included the frequencies 2–1000 Hz. 

The other signals were filtered only by the antialiasing 

filter embedded in the data acquisition card. The 

calculation of derivatives was done only for the leveling 

events that took less than 60 minutes. The events with 

longer duration were removed. Otherwise, the pre-

processing was done according to the procedure 

presented in (Nikula et al, 2017). Five per cent of data 

was removed from the start and the end of each event to 

remove the effect of windowing in signal processing. 

2.5 Vibration Features 

The generalized norm is defined by  

        ‖𝑋(𝛼)‖
𝑝
= [

1

𝑁
∑ |𝑥𝑖

(𝛼)|
𝑝𝑁

𝑖=1 ]

1

𝑝
.    (2) 

This feature is known as the lp norm of signal x(α) 

where p is the order of the norm, α is the order of 

derivation and N is the number of signal values. The lp 

norm has the same form as the generalized mean which 

is also known as the Hölder mean or power mean 

(Bullen, 2003). The root mean square and the peak value 

are special cases of the norm (2) when p = 2 and p = ∞, 

respectively. The large order of the norm magnifies the 

effect of the peaks, whereas the small order of the norm 

diminishes them. 

The rms (l2) was used to study the effect of the 

machine parameters and strip properties on the general 

signal level in this study. The crest factor (C) is the ratio 

between the absolute peak value (l∞) and rms (l2). The 

crest factor was used to study the relative magnitude of 

the impacts seen in the signal. These two features were 

computed from the segments, which had the duration of 

ten seconds. The mean of segments from the complete 

event was then used in the analysis of the effects. 

The sums of l0.1, l2, l4, l10, and l1 + l10 were used to 

study the effects of the operational parameters of the 

machine only. A study concerning the correlations 

between the steel strip properties and the generalized 

norm sums is presented in (Nikula et al, 2017). The 

generalized norms were calculated using one-second 

samples in this case. Each sum was divided by the mean 

of the corresponding sums from the events, during 

which the most common steel grade was processed. 

Therefore, the value 1 corresponds to the mean of the 

most common steel grade in each sum. This operation 

was done in order to make the summation of l1 and l10 

practical. 

2.6 Pearson’s Correlation Coefficient 

The correlation coefficient, Rxy, is defined by 

               𝑅𝑥𝑦 =
∑ (𝑥𝑖−�̅�)
𝑛
𝑖=1 (𝑦𝑖−�̅�)

√∑ (𝑥𝑖−�̅�)
2∑ (𝑦𝑖−�̅�)

2𝑛
𝑖=1

𝑛
𝑖=1

,    (3) 

where xi and yi are two different variables; x  and y  

are their corresponding sample means; and n is the total 

number of observations. Rxy close to ±1 indicates strong 

linear correlation whereas Rxy close to 0 indicates weak 

linear correlation between the variables. 

3 Results and Discussion 

3.1 Correlations of Operational Conditions 

Table 2 shows the correlation coefficients between the 

operational parameters of the machine and the steel strip 

properties based on the 739 events studied. The yield 

strength had a rather strong negative correlation with the 

gap values (P1, P3, P5, and P7), a strong negative 

correlation with the plastic deformation (P4) and a 

strong positive correlation with the drawing force 

caused by the machine (P8). The strip length had rather 

similar relationships with these operational parameters. 

The negative correlations with gap values were even 

stronger, but the correlations with the plastic 

deformation and the drawing force caused by the 

machine were slightly weaker. The correlations of strip 

weight and width with the operational parameters were 

generally weaker. The strong correlation of the strip 

width with the drawing force caused by the entry pinch 

roller (P9) is an exception. The correlations of the strip 

thickness were the opposite to the correlations of the 

yield strength or the length with the same operational 

parameters. This means that the thickness has a strong 

positive correlation with the gap values and the plastic 

deformation but quite strong negative correlation with 

the drawing force caused by the machine. 

Table 2 roughly illustrates how the properties of the 

steel strips influence the operation of the roller leveler. 
In practice, the operational parameters are set based on 

the steel properties and then manipulated during the 
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leveling by the operator in the steelworks. Moreover, the 

strong correlations in Table 2 indicate that the medians 

of the operational parameters represent the operation 

sufficiently for the analysis purpose. 

3.2 Correlations of Steel Strip Properties 

with Vibration Features 

Table 3 shows the correlation coefficients of rms and 

crest factor with the steel strip properties. The rms 

calculated from the acceleration signal x(2) correlated the 

strongest with the yield strength, whereas the other steel 

strip properties had weak correlation. The rms values 

from the higher order derivatives of the signal indicated 

similar behavior. In the case of the velocity signal x(1), 

the correlation with the yield strength was slightly 

lower. The results indicate that the general signal level 

correlates the strongest with the yield strength 

considering the studied steel strip properties. 

Figure 3 shows the rms of the x(2) signal together with 

two steel strip properties that had the strongest 

correlation. This 3D scatter plot illustrates that the strips 

with high yield strength are relatively thin. The 

thickness seems to have a positive correlation with rms 

if the yield strength is fixed although the general 

correlation is negative as shown in Table 3. 

The crest factor had negative correlation with the 

strip length and positive correlation with the thickness 

according to Table 3. This result indicates that a thick 

steel strip results in relatively large impacts appearing in 

the signal. These impacts are mostly resulting from the 

sheet cutting using the flying shear. The weight and the 

width of the strip had low correlations in general. The 

effect of the yield strength varied based on the order of 

derivation. When the strip is thick, the yield strength and 

the strip length are relatively low, which explains the 

negative correlations of these two variables with the 

crest factor. When the velocity signal was used, the 

effect of weak impacts reduced on the crest factor. On 

the other hand, the strong impacts clearly stood out. This 

effect is shown in Figure 4. When the other signal 

derivatives were used, also the weaker impacts were 

magnified. This behavior is illustrated in the lower part 

of Figure 4. The level of the crest factor was lower in 

the case of x(1) signal compared with the higher order 

derivatives of the signal.    

            

Figure 3. The effect of yield strength and thickness on the 

rms calculated from the acceleration signals.      

     

      

Figure 4. The effect of yield strength and thickness on the 

crest factor using x(1) and x(2) signals. 

 

Table 2. Correlations between the Operational Parameters 

and the Steel Strip Properties. 

id. 
yield 

strength 
length weight width thickness 

P1 -0.656 -0.793 0.441 0.277 0.991 

P2 0.218 -0.075 0.070 0.093 -0.017 

P3 -0.662 -0.790 0.438 0.274 0.990 

P4 -0.875 -0.630 0.401 0.286 0.758 

P5 -0.673 -0.810 0.490 0.332 0.973 

P6 -0.036 -0.209 0.151 0.159 0.153 

P7 -0.676 -0.809 0.488 0.329 0.973 

P8 0.853 0.510 -0.312 -0.183 -0.683 

P9 -0.116 -0.201 0.561 0.931 0.156 

 

Table 3. Correlations of the Steel Strip Properties with 

rms and Crest Factor. 

feature 
yield 

strength 
length weight width 

thick-

ness 

||x(1)||2 0.487 0.048 0.094 0.039 -0.085 

||x(2)||2 0.660 0.192 0.072 0.056 -0.310 

||x(3)||2 0.630 0.207 0.031 0.021 -0.328 

||x(4)||2 0.634 0.217 0.022 0.013 -0.339 

C, x(1)  -0.516 -0.569 0.275 0.175 0.759 

C, x(2)  0.091 -0.401 0.248 0.099 0.384 

C, x(3)  -0.217 -0.422 0.179 0.126 0.470 

C, x(4) -0.251 -0.423 0.185 0.154 0.468 
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3.3 Correlations of Operational Parameters 

with Vibration Features 

Table 4 shows the correlation coefficients of rms and 

crest factor with the operational parameters of the 

machine. The correlations of rms are shown using only 

x(1) and x(2) signals. The rms of x(3) and x(4) signals had 

almost the same correlations as the rms of x(2) signal. In 

general, the linear correlations between the operational 

parameters and rms were rather low. The drawing force 

caused by the leveler (P8) had the strongest correlation. 

As shown in Table 2, this parameter also had a strong 

correlation with the yield strength, which has a large 

influence on the rms level as shown in the previous 

Section. 

The crest factor had a strong positive correlation with 

the roller gap values and the degree of plastic 

deformation when calculated from the x(1) signal. These 

correlations were weaker using the higher order 

derivatives of the signal. The drawing force caused by 

the roller leveler (P8) had a stronger negative correlation 

with the crest factor of x(1) signal compared with the 

crest factor of the other signals. The correlations 

between the yield strength and the crest factor of 

different signal derivatives indicated a similar behavior 

which is shown in Table 3. 

Table 5 shows the correlations between the 

operational parameters of the machine and the 

generalized norm sums calculated from the x(2) signal. 

The generalized norm sums correlated the strongest with 

the drawing force caused by the roller leveler. The gap 

values and the degree of plastic deformation had 

substantially strong negative correlations. The results 

indicate that the correlations were the highest when the 

order of the norm was the lowest in these cases. In most 

cases, the second highest correlation was observed with 

the norm combination l1+l10. 

The effects of operational parameters P1, P4, P5, and 

P8 on l0.1 sum are depicted in Figure 5. According to the 

presented gap values, a thick steel strip causes a low 

accumulation of norm values. When the gap is reduced, 

the norm sums increase and an increasing variation in 

the sums is observed. This effect is seen in the graphs 

illustrating the effects of gap values and the degree of 

plastic deformation. The norm sums seem to increase 

together with the drawing force caused by the roller 

leveler. When the operational parameters are considered 

fixed, the variation in the norm sums can be explained 

by the effects of other variables. After all, the effects 

seen in the vibration are the result of the behavior of a 

multivariate system. 

3.4 Discussion 

The effects of the operational parameters of the steel 

leveler on the vibration signals were demonstrated in 

this study. Moreover, the results indicated that the 
operational parameters have strong correlations with the 

different steel strip properties. This implies that the 

characteristics of the vibration could be predicted with 

an approximate precision before the leveling is done 

based solely on the steel strip properties. 

The results indicated that the steel strips with high 

yield strength inflict relatively high vibration level, 

which is seen in the rms values. According to the results 

in Table 4, the drawing force caused by the leveler 

apparently had an effect on this as well. Figure 3 also 

indicates that the steel thickness affects the rms value 

when the yield strength is kept fixed. This implies that 

the strip thickness could be used to predict the rms level 

during the processing of a specific steel grade because 

the yield strength is fixed in that case. The high level of 

rms may be an indication of the potential risks of 

slipping in the work rollers or abrasion, for instance. 

The impacts caused by the sheet cutting manifested 

themselves in the crest factor especially with thick strips 

as shown in Figure 4. In addition, other variables such 

as the yield strength had an influence especially in the 

case of relatively thin strips. The roller gap values 

indicated a positive correlation with the crest factor as 

well. The impacts presumably stress the bearings of the 

work rollers and supporting rollers, which are under a 

major load during the leveling. 

The roller gap values had quite strong negative 

correlation with the generalized norm sums. This 

indicates that the thin strips, which are also long, 

accumulate higher sums compared with the thick strips. 

This means that the leveler is stressed a relatively long 

duration. The generalized norm sums could be used for 

the general machine stress evaluation. 

The roller gap differences between the sides (P2 and 

P6) had low correlations with the vibration features. 

These parameters had low correlations with the studied 

steel strip properties as well. The entry pinch roller (P9) 

had weak correlations with the vibration features, but a 

strong correlation with the strip width. The strip weight 

and the width had low correlations with the studied 

vibration features as well. These parameters apparently 

have poor applicability to the prediction of the studied 

effects appearing in the vibration signal. The effects of 

the positions of the supporting rollers were rejected in 

this study because information on the possible steel strip 

shape flaws was unavailable. In general, the supporting 

rollers are adjusted to correct flatness defects (Smith, 

1997).       

 
Figure 5. The effect of four operational parameters on l0.1 

sums using x(2) signals. 
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Table 4. Correlations of the Operational Parameters with 

rms and Crest Factor. 

 x(1) x(2) x(1) x(2) x(3) x(4) 

id. rms Crest Factor 

P1 -0.135 -0.366 0.760 0.344 0.457 0.459 

P2 0.154 0.175 -0.075 0.222 0.008 -0.014 

P3 -0.139 -0.371 0.762 0.338 0.456 0.459 

P4 -0.280 -0.469 0.609 0.128 0.320 0.342 

P5 -0.149 -0.350 0.734 0.365 0.467 0.470 

P6 0.011 0.005 0.057 0.230 0.085 0.073 

P7 -0.150 -0.352 0.736 0.361 0.467 0.471 

P8 0.434 0.588 -0.522 -0.088 -0.289 -0.315 

P9 0.059 0.087 0.115 0.059 0.072 0.091 

 

Table 5. Correlations of the Operational Parameters with 

the Sums of the Generalized Norms. 

id. ∑l0.1 ∑l2 ∑l4 ∑l10 ∑(l1+l10) 

P1 -0.593 -0.511 -0.483 -0.484 -0.532 

P2 0.108 0.141 0.160 0.168 0.145 

P3 -0.595 -0.515 -0.487 -0.488 -0.536 

P4 -0.622 -0.577 -0.561 -0.560 -0.593 

P5 -0.600 -0.507 -0.473 -0.472 -0.528 

P6 -0.080 -0.050 -0.026 -0.013 -0.044 

P7 -0.601 -0.508 -0.475 -0.474 -0.529 

P8 0.658 0.618 0.592 0.582 0.626 

P9 0.002 0.051 0.061 0.057 0.041 

 

4 Conclusions 

The effects of steel leveler parameters on vibration 

features were studied based on the observed linear 

correlations. Signal derivatives were calculated to 

magnify the effects. Crest factor, rms and generalized 

norm sums were used as the vibration features. The crest 

factor, which shows the ratio of the peak amplitude and 

rms, had strong correlation especially with strip 

thickness and the roller gap parameters. The general 

magnitude of a signal, defined by rms, had the strongest 

correlations with the yield strength of strip and the 

drawing force caused by the roller leveler. The 

generalized norm sums, which can be used to indicate 

stress accumulation, had the strongest correlations with 

the drawing force caused by the roller leveler, the roller 

gap values and the degree of plastic deformation. The 

strong correlations between the steel strip properties and 

the operational parameters of the leveler suggest that the 

characteristics of the vibration signal could be predicted 

based on the strip properties solely. This implies that the 

steel strip properties could be used as input variables in 

models, which predict different effects on the vibration. 

These models could then be used in the preventive 

maintenance of the steel leveler. 
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