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Abstract
We consider a problem of trajectory planning for path
with piecewise linear boundaries. The trajectory is con-
structed as smoothing splines using normalized uniform
B-splines as the basis functions. The boundary constraints
are treated as a collection of inequality pairs by right and
left boundary lines, and are formulated as linear inequality
constraints on the so-called control point vector. Smooth-
ing splines are constructed as an approximation of a piece-
wise linear centerline of the given path, where the given
entire time interval is divided into subintervals accord-
ing to the centripetal distribution rule. Other constraints
as initial and terminal conditions on the trajectory can
be included easily, and the problem reduces to convex
quadratic programming problem where very efficient nu-
merical solvers are available. The effectiveness of the pro-
posed method is confirmed by an example of fairly com-
plex path with piecewise linear boundaries. Also an exam-
ple is included to demonstrate its usefulness for trajectory
planning in an environment with obstacles.
Keywords: trajectory planning, smoothing spline, B-
spline, boundary constraint, quadratic programming
problem

1 Introduction
Splines have been used frequently in robotics as in the
problems of trajectory planning of robotic arms and mo-
bile robots (Biagiotti and Melchiorri, 2008; Egerstedt and
Martin, 2010; Khalil and Dombre, 2002). A typical prob-
lem of trajectory planning consists of constructing a func-
tion of time that satisfies initial and terminal conditions
together with other requirements such as via points and
obstacle avoidance.

When via points are specified, trajectories may be con-
structed as interpolating splines to pass the via points or as
approximating splines to pass near the points (Crouch and
Jackson, 1991; Egerstedt and Martin, 2001). The prob-
lems of obstacle avoidance trajectory planning are often
treated by introducing a cost function consisting of dis-
tance to obstacles together with e.g. the trajectory length,
which are expressed as nonlinear function of some pa-
rameters representing the trajectories. Cubic splines are
frequently used to construct trajectories (Kolter and Ng,

2009; Saska et al., 2006; Piazzi and Visioli, 2000), and
an optimization problem is solved numerically for trajec-
tory planning. Particle swarm optimization method is em-
ployed in (Saska et al., 2006).

In (Gallina and Gasparetto, 2000), representing trajec-
tories by sums of harmonics, the trajectory planning prob-
lem is formulated as constrained nonlinear programming
problem, where the obstacles are treated as inequality con-
straints by assuming their parametric representation as
polygons and ellipses. Also, treating obstacles as linear
inequality constraints in (Berglund et al., 2010), nonlin-
ear programming problem is solved for quartic B-spline
curves with minimum curvature. Only B-splines of de-
grees two to four are allowed.

In this paper, we consider a problem of trajectory plan-
ning for road-like path with the right and left boundaries
in a 2-dimensional plane. The boundaries are assumed to
be given as piecewise linear functions, and the problem
is to construct a trajectory from given start point to goal
point without exceeding the boundaries. Although such a
problem of planning trajectories for path with boundaries
naturally arises, the treatment as in this study seems novel
to the authors’ knowledge.

To be more specific, we construct trajectories as
smoothing splines using B-splines as the basis functions
(Kano et al., 2005). This approach is very suitable to the
present problem, since we can construct trajectories piece-
wise in accordance with each piece of boundaries. Also,
by dividing the entire time interval into subintervals, the
problem is to construct the trajectory bounded by two lines
for each time interval.

In such problems, our approach by constrained splines
(Kano et al., 2011; Fujioka and Kano, 2012; Kano et al.,
2014) is very effective. The studies on constrained splines
include constraints at isolated time instants, those over an
interval of time, constraints on function values, on time
derivatives of arbitrary degrees, or on integral values, and
so forth. The constraints can be equality and/or inequality,
and are systematically included in the formulation by B-
spline based smoothing splines.

We show that the problem is formulated as a convex
QP (quadratic programming) problem. The description of
the problem is easy since the boundaries can be defined
by simply providing a series of pairs of right and left cor-
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Figure 1. A path with piecewise linear boundaries.

ners, and the resulting QP problem is solved efficiently
numerically by existing QP solver. The usefulness of the
proposed method is confirmed by two examples: first, for
relatively complex path with piecewise linear boundaries,
and, second, for application to obstacle avoidance trajec-
tory planning problem.

This paper is organized as follows. In Section 2, we
present problem statement and describe 2-dimensional
vector smoothing splines based on B-splines. Then in Sec-
tion 3, the trajectory planning problem is formulated and
solved. Two numerical exampled are considered in Sec-
tion 4. Concluding remarks are given in Section 5.

Throughout the paper, the symbol ⊗ denotes the Kro-
necker product, and ’vec’ the vec-function (see e.g. (Lan-
caster and Tismenetsky, 1985)).

2 Preliminaries
2.1 Problem Statement
As shown in Fig. 1, let a path with piecewise linear bound-
aries be defined by a pair of corner points (Ri,Li), i =
0,1, · · · ,n on xy-plane. Then we consider to design a tra-
jectory p(t) ∈ R2

p(t) =
[

x(t)
y(t)

]
(1)

for given time interval [t0, tm] and for given initial position
p(t0) and final position p(tm). Our particular interest is
to construct a smooth trajectory p(t) that is guaranteed to
stay within the path specified by the piecewise linear right
boundary R0R1 · · ·Rn and the left boundary L0L1 · · ·Ln. It
is noted that the initial and terminal conditions can be
specified as equality and/or inequality conditions on p(t)
and its derivatives.

We construct the trajectory p(t) for t ∈ [t0, tm] by splines
using normalized uniform B-spline Bk(t) of degree k(≥
1),

p(t) =
m−1

∑
i=−k

τiBk(α(t− ti)). (2)

Table 1. N j,3(t) ( j = 0,1,2,3) and its derivatives

j 3!N j,3(t) 2!N(1)
j,3 (t) N(2)

j,3 (t) N(3)
j,3 (t)

0 (1− t)3 −(1− t)2 1− t −1
1 4−6t2 +3t3 −4t +3t2 −2+3t 3
2 1+3t +3t2−3t3 1+2t−3t2 1−3t −3
3 t3 t2 t 1

Here τi ∈ R2 are weighting coefficients called control
points, and α(> 0) is a constant for scaling the interval
between equally-spaced knot points ti with

ti+1− ti =
1
α
. (3)

Moreover, Bk(t) is defined by

Bk(t) =


Nk− j,k(t− j) j ≤ t < j+1,

j = 0,1, · · · ,k
0 t < 0 or t ≥ k+1,

(4)

where the basis elements N j,k(t) ( j = 0,1, · · · ,k), 0 ≤
t ≤ 1 can be derived recursively by de Boor’s algorithm
(de Boor, 2001) for any k ≥ 1. Note that this basis ele-
ments satisfies N j,k(t)≥ 0 ∀t ∈ [0,1] and

k

∑
j=0

N j,k(t) = 1, ∀t ∈ [0,1]. (5)

Since cubic splines are most frequently used, for ref-
erence, we show N j,3(t) together with its derivatives in
Table 1. Smoothing splines are used to determine the
control points τi, or the control point matrix τ ∈ R2×M

(M = m+ k)

τ = [ τ−k τ−k+1 · · · τm−1 ] (6)

as we see in the sequel.

2.2 Vector Smoothing Splines
In this particular problem, we consider smoothing splines
for continuous-time data f (t) ∈ R2, where the following
cost function is minimized.

J(τ) = λ

∫ tm

t0

∥∥∥p(l)(t)
∥∥∥2

Λ

dt +
∫ tm

t0
‖p(t)− f (t)‖2 dt. (7)

Here λ (> 0) is a smoothing parameter, Λ ∈ R2×2 is a
positive-definite weight matrix, ‖u‖2 = uT u, and ‖u‖2

Λ
=

uT Λu. We take the integer l as l = 2 for cubic spline
(k = 3) and l = 3 for quintic spline (k = 5). Thus the prob-
lem is to construct a smooth spline p(t) that approximate
the function f (t), which is given, typically so as to repre-
sent the center line of the path.

It is noted that usual smoothing spline problem (Wahba,
1990) employs discrete-time set of data (si, fi) in which
case the second term in (7) is set as ∑

N
i=1 ‖p(si)− fi‖2

Wi
.
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Now, let τ̂ ∈ R2M be the vec-function (Lancaster and
Tismenetsky, 1985) of τ , i.e.

τ̂ = vec τ. (8)

Then, following the similar procedure as in (Kano et al.,
2005), J(τ) in (7) is expressed as a quadratic function J(τ̂)
in τ̂ ,

J(τ̂) = τ̂
T Gτ̂−2τ̂

T g+gc (9)

where G ∈ R2M×2M , g ∈ R2M and gc ∈ R are given by

G = Q⊗Λ+Q0⊗ I2 (10)

g =
∫ tm

t0
b(t)⊗ f (t)dt (11)

gc =
∫ tm

t0
‖ f (t)‖2dt. (12)

Here b(t) ∈RM is a vector of shifted B-splines defined by

b(t) =
[

Bk(α(t− t−k)) Bk(α(t− t−k+1))

· · · Bk(α(t− tm−1))
]T

, (13)

and Q,Q0 ∈ RM×M are Gram matrices defined by

Q =
∫ tm

t0

dlb(t)
dt l

dlbT (t)
dt l dt (14)

Q0 =
∫ tm

t0
b(t)bT (t)dt (15)

3 Trajectory Planning
Recalling that the path is constrained by piecewise linear
boundaries as in Fig. 1, it is convenient to plan the tra-
jectory p(t) for each piece of the path constrained by a
pair of right and left boundary line segments, RiRi+1 and
LiLi+1. The construction of p(t) in (2) is very suitable for
this purpose since it is a piecewise polynomial with the
knot points ti.

For this purpose, we divide the time interval [t0, tm] into
n subintervals [si,si+1], i = 0,1, · · · ,n− 1 in accordance
with n pairs of boundary segments RiRi+1 and LiLi+1.
Here we take [si,si+1] to be a knot point interval, namely
each si is taken as one of the knot point t j with s0 = t0 and
sn = tm.

Now denote the straight line passing two points Ri and
Ri+1 by li, and the one for points Li and Li+1 by l′i (see
Fig. 2). Then we plan the trajectory p(t) so that, for each
i = 0,1, · · · ,n− 1, it lies between the two boundary lines
li and l′i for all t in [si,si+1].

This condition is described in Section 3.1, a method of
assigning si as a knot point in Section 3.2, and the spline
construction procedure will be given in Section 3.3, e.g.
taking initial and final conditions into account.

Figure 2. Corner points (Ri,Li) and boundary lines (li, l′i).

Figure 3. Right and left boundary lines li, l′i and a point p.

3.1 Trajectory between Two Lines
For the present problem, it is natural to introduce the fol-
lowing assumptions (see Figs. 1 and 2).

(A1) The polygon Pi = RiRi+1Li+1Li is a convex quad-
rangle for all i.

(A2) In Pi, the vertices Ri,Ri+1,Li+1,Li are located coun-
terclockwise.

By (A1), all the four points are distinct and the line seg-
ment RiRi+1 does not intersect with LiLi+1. By (A2), the
quadrangle Pi constitutes part of the path with piecewise
linear boundaries, or the path is the union of the quadran-
gles.

Now we derive a condition such that p(t) remains in a
region between the two lines li and l′i for all t in a knot
point interval [si,si+1], where we let [si,si+1] = [tκ , tµ ]with
κ < µ . Here and hereafter, by the term ’region between
the two lines li and l′i’, we mean the region between the
two lines including the quadrangle Pi. Thus if lines li and
l′i intersect, then among the two wedge-shaped regions, the
one including Pi is meant.

Since the lines li and l′i respectively play the roles of
right and left boundaries of the path, we require the point
p(t) to lie to the left of li when viewed from Ri toward
Ri+1 along li, and moreover, p(t) to lie to the right of l′i
when viewed from Li toward Li+1 along l′i .

In view of Fig. 3, the above conditions for a point
p(x,y) to lie between the two lines can be written as{ −→

Ri p×
−−−−→
RiRi+1 ≤ 0

−→
Li p×

−−−→
LiLi+1 ≥ 0.

(16)
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Here × denotes cross product of 2-dimensional vectors,
and it holds that, for u = [u1 u2]

T and v = [v1 v2]
T

u× v =
∣∣∣∣ u1 v1

u2 v2

∣∣∣∣= u1v2−u2v1 (17)

Applying this relation to the vectors in (16), for example−→
Ri p = [x− xi y− yi]

T , (16) can be rewritten as linear in-
equalities in p = [x y]T as follows.

Ap≤ d, (18)

where

A =

[
−yi + yi+1 xi− xi+1
y′i− y′i+1 −x′i + x′i+1

]
, (19)

d =

[
xiyi+1− xi+1yi
−x′iy

′
i+1 + x′i+1y′i

]
. (20)

Next we consider the condition such that p(t) given by
(2) stays between the two lines li and l′i for all t in the
knot point interval [tκ , tµ ]. By (18), it suffices to derive the
condition for Ap(t)≤ d ∀t ∈ [tκ , tµ ].

First note that, by the definition of Bk(t) in (4), p(t) is
written for unit knot point interval [t j, t j+1) as

p(t) =
k

∑
i=0

τ j−k+iNi,k(α(t− t j)), t ∈ [t j, t j+1), (21)

and it depends on only the k+1 weights τ j−k, τ j−k+1, · · · ,
τ j. Introducing a new variable u = α(t− t j), we see that
p(t) is written as p̂(u),

p̂(u) =
k

∑
i=0

τ j−k+iNi,k(u), u ∈ [0,1). (22)

Thus if Aτ j−k+i ≤ d holds for i = 0,1, · · · ,k, then using
(5), we get

Ap̂(u) =
k

∑
i=0

Aτ j−k+iNi,k(u)≤ d
k

∑
i=0

Ni,k(u) = d (23)

or Ap(t)≤ d for all t ∈ [t j, t j+1). This interval can be read-
ily extended to [tκ , tµ ] by imposing the following condi-
tion,

Aτi ≤ d, i = κ− k,κ− k+1, · · · ,µ−1. (24)

Namely if (24) is satisfied, then it holds that

Ap(t)≤ d ∀t ∈ [tκ , tµ ]. (25)

Now the remaining task is to express the inequality con-
dition (24) in terms of the control point vector τ̂ defined
in (8). First rewrite (24) as

ATκ,µ ≤ 1T
µ−κ+k⊗d (26)

with Tκ,µ = [ τκ−k τκ−k+1 · · · τµ−1] and 1i = [1 1 · · · 1]T ∈
Ri. Then noting that Tκ,µ is a submatrix of τ consisting of
its columns from κ +1 through µ + k, it can be expressed
as

Tκ,µ = τEκ,µ , (27)

where Eκ,µ ∈ RM×(µ−κ+k) is defined by

Eκ,µ =
[

0µ−κ+k,κ Iµ−κ+k 0µ−κ+k,M−µ−k
]T

. (28)

Thus (26) is written in τ as

AτEκ,µ ≤ 1T
µ−κ+k⊗d. (29)

Using a formula vec(AXB) = (BT ⊗A)vecX for matrices
A,B,X of compatible dimensions (see e.g. (Lancaster and
Tismenetsky, 1985)), and noting vec τ = τ̂ , (29) yields

(ET
κ,µ ⊗A)τ̂ ≤ 1µ−κ+k⊗d, (30)

which is the desired expression.
For convenience we summarize the above develop-

ments as follows.

Proposition 1 The trajectory p(t) lies for all t ∈
[si,si+1] = [tκ , tµ ] between the two lines li and l′i if the con-
trol point vector τ̂ satisfies the following inequality.

Fiτ̂ ≤ hi (31)

where Fi ∈R2(µ−κ+k)×2M and hi ∈R2(µ−κ+k) are given by
Fi = ET

κ,µ ⊗A and hi = 1µ−κ+k⊗d.

3.2 Centerline and Intermediate Time In-
stants

Recall that it is necessary to allocate the given time inter-
val [t0, tm] to n intervals [si,si+1] with si being some knot
point t j for each i= 0,1, · · · ,n−1. A natural way is to take
the length of center line CiCi+1 (see Fig. 4) into account.

Let Ci, i = 0,1, · · · ,n be defined by

Ci = γiRi +(1− γi)Li (32)

for some γi (0≤ γi ≤ 1). Then for determining the time in-
stants si in [t0, tm], we employ the so-called centripetal dis-
tribution (Biagiotti and Melchiorri, 2008). Namely each si
is determined so that the whole interval [t0, tm] is divided
into subintervals [si,si+1] in proportion to the following
value ζi,

ζi = ‖Ci+1−Ci‖ν (33)

for i = 0,1, · · · ,n−1, where ν(0 < ν < 1) is usually taken
as ν = 1/2. Actually, each si is determined as a knot point
t j based on ζi. Also it is noted that the centripetal dis-
tribution method in above requires less accelerations than
other method e.g. cord length distribution, distributed pro-
portionally to ‖Ci+1−Ci‖.
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Figure 4. Centerline in the i-th quadrangle.

3.3 Smoothing Spline Trajectory
Obviously we require that, for all i = 0,1, · · · ,n− 1, the
trajectory p(t) lies between the two lines li and l′i for all
t ∈ [si,si+1] = [tκ , tµ ]. Thus by Proposition 1, we impose

Fiτ̂ ≤ hi, i = 0,1, · · · ,n−1. (34)

Usually an initial and terminal conditions of p(t) are
given, and typical examples are

p(t0) = p0, p(1)(t0) = 0, p(2)(t0) = 0 (35)

p(tm) = pm, p(1)(tm) = 0, p(2)(tm) = 0 (36)

with p0 and pm lying on the line segments R0L0 and RnLn
respectively. Noting that p(t) in (2) is written as p(t) =
τb(t) and hence p(t) = vec p(t) = vec (τb(t)) = (b(t)T ⊗
I2)τ̂ , the above initial and final conditions can be written
in terms of τ̂ as follows.

H(t0)τ̂ = h̄0, H(tm)τ̂ = h̄m (37)

where H(t) ∈ R6×2M , h̄0 ∈ R6 and h̄m ∈ R6 are

H(t) =

 b(t)T ⊗ I2

b(1)(t)T ⊗ I2

b(2)(t)T ⊗ I2

 , h̄0 =

 p0
02
02

 , h̄m =

 pm
02
02

 .
(38)

The matrices H(t0) and H(tm) can be easily set up, for
example by using Table 1 when k = 3.

Finally in this section we consider the function f (t)
used for approximation of smoothing splines in (7). A
natural choice will be a function constructed from the
piecewise linear centerline C0C1 · · ·Cn introduced by (32).
Specifically we employ a linear function of t in each sec-
tion as shown in Fig. 4 as

fi(t) = qit + ri, t ∈ [si,si+1]. (39)

Here qi,ri ∈ R2 are determined so as to satisfy fi(si) =Ci
and fi(si+1) =Ci+1. Thus the vector g in (11) is computed
from

g =
n−1

∑
i=0

∫ si+1

si

b(t)⊗ fi(t)dt (40)

Now we are ready to formulate the trajectory planning
problem by constrained smoothing splines with J(τ̂) in

(9), the boundary inequality conditions in (34) and initial
and terminal conditions in (37). Namely the problem is to
minimize the cost function,

min
τ̂∈R2M

J(τ̂) =
1
2

τ̂
T Gτ̂−gT

τ̂ (41)

subject to the constraints of the form

Aeqτ̂ = deq, Ainτ̂ ≤ din, (42)

where G and g are given in (10) and (11) respectively, Aeq
and deq are formed as the collection of equalities (37), and
Ain and din as collection of inequalities in (34).

Note that, in the case of (37), Aeqτ̂ = deq consists of
12 equality constraints in 2M unknowns τ̂ . On the other
hand, the total number of inequality constraints resulting
from (34) is computed as 2M +2(n−1)k, with 2(n−1)k
more than the number of unknowns.

This is a convex quadratic programing problem and
can be solved numerically by using software tool as the
function ’quadprog’ in MATLAB. If necessary, other con-
straints may be introduced such as constraints on the mag-
nitude of velocity or acceleration as long as all the con-
straints are consistent.

Finally, it is noted that, by our construction, the planned
trajectory satisfies the following proposition.

Proposition 2 The planned spline trajectory p(t) is guar-
anteed to stay, for each i = 0,1, · · · ,n−1, between the two
lines li and l′i as the right and left boundaries for all time
t ∈ [si,si+1]. In particular, p(t) is in the corner quadran-
gle formed from the four lines li, l′i , li−1, l′i−1 at time t = si
for i = 1,2, · · · ,n−1.

4 Numerical Examples
Two examples of trajectory planning are considered,
where we use cubic splines, namely we set k = 3 and l = 2
in (2) and (7). MATLAB function ’quadprog’ is used for
numerical solution of quadratic programming problems.

4.1 Path with Piecewise Linear Boundaries
We consider a path with the right and left corners Ri and
Li given as in Table 2.

Table 2. The coordinates Ri and Li of right and left corners for
i = 0,1, · · · ,n with n = 9.

0 1 2 3 4 5 6 7 8 9

Ri 1 2 2 8 3 8 2 13 13 14
0 2 9 9 6 4 0 0 8 9

Li 0 1 1 12 6 11 6 12 12 14
0 2 10 10 6 4 1 1 8 10

For this path, we construct a smoothing spline trajectory
p(t) in time interval [t0, tm] = [0,10]. The initial and final
conditions are as given in (35) and (36) with p0 = (R0 +

EUROSIM 2016 & SIMS 2016

443DOI: 10.3384/ecp17142439       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

9

10

x

y

 

 

trajectory
trajectory 2
start
goal
center line
boundaries

Figure 5. Constructed spline trajectories plotted in xy plane with
and without the boundary constraints in (34).

L0)/2 and pm = (R9 +L9)/2. We set γi = 1/2 ∀i in (32)
for centerline of the path, which together with (39) is used
to set f (t) in (7). The number of knot points m = 80, and
hence the knot point interval is ti+1− ti = 10/80 = 0.125.
The smoothing parameter is set as λ = 0.01 in (7).

Fig. 5 shows the given path with the boundaries de-
noted by black lines and the constructed trajectory p(t) =
[x(t), y(t)]T on the xy plane in thick blue line. The start
and goal positions are denoted by × and ◦ respectively,
and the center line is shown in dotted lines. We ob-
serve that the trajectory satisfies the boundary constraints
in addition to initial and final conditions. The red line
is a smoothing spline trajectory p2(t) = [x2(t), y2(t)]T

constructed similarly as p(t) but without the inequality
boundary constraints (34). It exceeds the boundaries at
three corners, and the effect of introducing the inequality
constraints is apparent.

4.2 Path in Obstacle Avoidance Problem
The proposed method can be used for planning trajecto-
ries of mobile robots in an environment with obstacles.
As shown in Fig. 6, let us consider an environment with
three ’obstacles’, denoted by yellow rectangles, and the
start and goal denoted by × and ◦ respectively. If we de-
cide to take the upper route of the table-like obstacle in the
figure, which will be shorter than taking the lower route,
the path with piecewise linear boundaries can be defined,
for example by setting the right and left corners (Ri,Li) as
shown in Table 3. These boundaries are shown in Fig. 6
in black dotted lines with the sign 4 and 5 for right and
left boundaries respectively.

We plan trajectories for this path with the time interval
[t0, tm] = [0,10], initial and final conditions are as given
in (35) and (36), m = 50 and the smoothing parameter
λ = 0.1. Two cases of the parameters γi in (32) are con-
sidered for the centerline of the path as shown in Table 3.
The first case (i) sets the line in the middle of the path,
whereas the second case (ii) sets the line closer to the in-

Table 3. The coordinates Ri and Li of right and left corners and
the parameter γi for centerline for i = 0,1, · · · ,n with n = 5.

0 1 2 3 4 5

Ri 3 3 4 4 13 13
0 8 8 7 7 5

Li 0 0 6 6 16 16
0 12 12 10 10 5

γi : Case (i) 1/2 1/2 1/2 1/2 1/2 1/2
γi : Case (ii) 1/2 2/3 2/3 1/3 2/3 1/2

0 2 4 6 8 10 12 14 16
0
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4

6

8

10

12

x

y
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trajectory 2
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Figure 6. Constructed spline trajectories plotted in xy plane for
two Cases (i) and (ii) of the centerline (see Table 3).

ner corner of the path. The planned trajectories are shown
in the xy plane in thick blue line for Case (i) and thick red
line for Case (ii). We see that reasonable trajectories have
been generated where the second case seems more desir-
able, and that the parameters γi for the center line could be
effectively used to adjust the trajectory. Note that the path
is defined by only six pairs of right and left corners.

5 Concluding Remarks
We presented a method of trajectory planning for path
with piecewise linear right and left boundaries. The trajec-
tory is constructed as smoothing splines employing nor-
malized uniform B-splines as the basis functions. Obvi-
ously, such boundaries can be described by simply pro-
viding a series of pairs of right and left corners (Ri,Li),
and the problem can be readily defined.

The boundary constraints could be expressed as linear
inequality constraints on the control point vector τ̂ . For
constructing smoothing splines, we introduced a piece-
wise linear centerline of the path in accordance with each
pair of right and left boundaries. An appropriate time in-
terval for each piece of the centerline is given based on the
centripetal distribution rule. It is shown that the problem
is formulated as convex quadratic programming problem.
We confirmed the effectiveness of the proposed method by
two numerical examples.
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One of the future issues is to relax the assumption (A1)
in Section 3.1 to allow the multiple corner points as Ri =
Ri+1. Extensions of present method are also important,
e.g. to the cases of higher order boundary curves and to
the planning in 3-dimensional space.
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