
Spline Trajectory Planning for Path with Piecewise Linear
Boundaries

Hiroyuki Kano1 Hiroyuki Fujioka2

1Division of Science, Tokyo Denki University, Saitama 350-0394, Japan, kano@mail.dendai.ac.jp
2Department of System Management, Fukuoka Institute of Technology, Fukuoka 811-0295, Japan,

fujioka@fit.ac.jp

Abstract
We consider a problem of trajectory planning for path
with piecewise linear boundaries. The trajectory is con-
structed as smoothing splines using normalized uniform
B-splines as the basis functions. The boundary constraints
are treated as a collection of inequality pairs by right and
left boundary lines, and are formulated as linear inequality
constraints on the so-called control point vector. Smooth-
ing splines are constructed as an approximation of a piece-
wise linear centerline of the given path, where the given
entire time interval is divided into subintervals accord-
ing to the centripetal distribution rule. Other constraints
as initial and terminal conditions on the trajectory can
be included easily, and the problem reduces to convex
quadratic programming problem where very efficient nu-
merical solvers are available. The effectiveness of the pro-
posed method is confirmed by an example of fairly com-
plex path with piecewise linear boundaries. Also an exam-
ple is included to demonstrate its usefulness for trajectory
planning in an environment with obstacles.
Keywords: trajectory planning, smoothing spline, B-
spline, boundary constraint, quadratic programming
problem

1 Introduction
Splines have been used frequently in robotics as in the
problems of trajectory planning of robotic arms and mo-
bile robots (Biagiotti and Melchiorri, 2008; Egerstedt and
Martin, 2010; Khalil and Dombre, 2002). A typical prob-
lem of trajectory planning consists of constructing a func-
tion of time that satisfies initial and terminal conditions
together with other requirements such as via points and
obstacle avoidance.

When via points are specified, trajectories may be con-
structed as interpolating splines to pass the via points or as
approximating splines to pass near the points (Crouch and
Jackson, 1991; Egerstedt and Martin, 2001). The prob-
lems of obstacle avoidance trajectory planning are often
treated by introducing a cost function consisting of dis-
tance to obstacles together with e.g. the trajectory length,
which are expressed as nonlinear function of some pa-
rameters representing the trajectories. Cubic splines are
frequently used to construct trajectories (Kolter and Ng,

2009; Saska et al., 2006; Piazzi and Visioli, 2000), and
an optimization problem is solved numerically for trajec-
tory planning. Particle swarm optimization method is em-
ployed in (Saska et al., 2006).

In (Gallina and Gasparetto, 2000), representing trajec-
tories by sums of harmonics, the trajectory planning prob-
lem is formulated as constrained nonlinear programming
problem, where the obstacles are treated as inequality con-
straints by assuming their parametric representation as
polygons and ellipses. Also, treating obstacles as linear
inequality constraints in (Berglund et al., 2010), nonlin-
ear programming problem is solved for quartic B-spline
curves with minimum curvature. Only B-splines of de-
grees two to four are allowed.

In this paper, we consider a problem of trajectory plan-
ning for road-like path with the right and left boundaries
in a 2-dimensional plane. The boundaries are assumed to
be given as piecewise linear functions, and the problem
is to construct a trajectory from given start point to goal
point without exceeding the boundaries. Although such a
problem of planning trajectories for path with boundaries
naturally arises, the treatment as in this study seems novel
to the authors’ knowledge.

To be more specific, we construct trajectories as
smoothing splines using B-splines as the basis functions
(Kano et al., 2005). This approach is very suitable to the
present problem, since we can construct trajectories piece-
wise in accordance with each piece of boundaries. Also,
by dividing the entire time interval into subintervals, the
problem is to construct the trajectory bounded by two lines
for each time interval.

In such problems, our approach by constrained splines
(Kano et al., 2011; Fujioka and Kano, 2012; Kano et al.,
2014) is very effective. The studies on constrained splines
include constraints at isolated time instants, those over an
interval of time, constraints on function values, on time
derivatives of arbitrary degrees, or on integral values, and
so forth. The constraints can be equality and/or inequality,
and are systematically included in the formulation by B-
spline based smoothing splines.

We show that the problem is formulated as a convex
QP (quadratic programming) problem. The description of
the problem is easy since the boundaries can be defined
by simply providing a series of pairs of right and left cor-

EUROSIM 2016 & SIMS 2016

439DOI: 10.3384/ecp17142439 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Figure 1. A path with piecewise linear boundaries.

ners, and the resulting QP problem is solved efficiently
numerically by existing QP solver. The usefulness of the
proposed method is confirmed by two examples: first, for
relatively complex path with piecewise linear boundaries,
and, second, for application to obstacle avoidance trajec-
tory planning problem.

This paper is organized as follows. In Section 2, we
present problem statement and describe 2-dimensional
vector smoothing splines based on B-splines. Then in Sec-
tion 3, the trajectory planning problem is formulated and
solved. Two numerical exampled are considered in Sec-
tion 4. Concluding remarks are given in Section 5.

Throughout the paper, the symbol ⊗ denotes the Kro-
necker product, and ’vec’ the vec-function (see e.g. (Lan-
caster and Tismenetsky, 1985)).

2 Preliminaries
2.1 Problem Statement
As shown in Fig. 1, let a path with piecewise linear bound-
aries be defined by a pair of corner points (Ri,Li), i =
0,1, · · · ,n on xy-plane. Then we consider to design a tra-
jectory p(t) ∈ R2

p(t) =
[

x(t)
y(t)

]
(1)

for given time interval [t0, tm] and for given initial position
p(t0) and final position p(tm). Our particular interest is
to construct a smooth trajectory p(t) that is guaranteed to
stay within the path specified by the piecewise linear right
boundary R0R1 · · ·Rn and the left boundary L0L1 · · ·Ln. It
is noted that the initial and terminal conditions can be
specified as equality and/or inequality conditions on p(t)
and its derivatives.

We construct the trajectory p(t) for t ∈ [t0, tm] by splines
using normalized uniform B-spline Bk(t) of degree k(≥
1),

p(t) =
m−1

∑
i=−k

τiBk(α(t− ti)). (2)

Table 1. N j,3(t) (j = 0,1,2,3) and its derivatives

j 3!N j,3(t) 2!N(1)
j,3 (t) N(2)

j,3 (t) N(3)
j,3 (t)

0 (1− t)3 −(1− t)2 1− t −1
1 4−6t2 +3t3 −4t +3t2 −2+3t 3
2 1+3t +3t2−3t3 1+2t−3t2 1−3t −3
3 t3 t2 t 1

Here τi ∈ R2 are weighting coefficients called control
points, and α(> 0) is a constant for scaling the interval
between equally-spaced knot points ti with

ti+1− ti =
1
α
. (3)

Moreover, Bk(t) is defined by

Bk(t) =

Nk− j,k(t− j) j ≤ t < j+1,

j = 0,1, · · · ,k
0 t < 0 or t ≥ k+1,

(4)

where the basis elements N j,k(t) (j = 0,1, · · · ,k), 0 ≤
t ≤ 1 can be derived recursively by de Boor’s algorithm
(de Boor, 2001) for any k ≥ 1. Note that this basis ele-
ments satisfies N j,k(t)≥ 0 ∀t ∈ [0,1] and

k

∑
j=0

N j,k(t) = 1, ∀t ∈ [0,1]. (5)

Since cubic splines are most frequently used, for ref-
erence, we show N j,3(t) together with its derivatives in
Table 1. Smoothing splines are used to determine the
control points τi, or the control point matrix τ ∈ R2×M

(M = m+ k)

τ = [τ−k τ−k+1 · · · τm−1] (6)

as we see in the sequel.

2.2 Vector Smoothing Splines
In this particular problem, we consider smoothing splines
for continuous-time data f (t) ∈ R2, where the following
cost function is minimized.

J(τ) = λ

∫ tm

t0

∥∥∥p(l)(t)
∥∥∥2

Λ

dt +
∫ tm

t0
‖p(t)− f (t)‖2 dt. (7)

Here λ (> 0) is a smoothing parameter, Λ ∈ R2×2 is a
positive-definite weight matrix, ‖u‖2 = uT u, and ‖u‖2

Λ
=

uT Λu. We take the integer l as l = 2 for cubic spline
(k = 3) and l = 3 for quintic spline (k = 5). Thus the prob-
lem is to construct a smooth spline p(t) that approximate
the function f (t), which is given, typically so as to repre-
sent the center line of the path.

It is noted that usual smoothing spline problem (Wahba,
1990) employs discrete-time set of data (si, fi) in which
case the second term in (7) is set as ∑

N
i=1 ‖p(si)− fi‖2

Wi
.

EUROSIM 2016 & SIMS 2016

440DOI: 10.3384/ecp17142439 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Now, let τ̂ ∈ R2M be the vec-function (Lancaster and
Tismenetsky, 1985) of τ , i.e.

τ̂ = vec τ. (8)

Then, following the similar procedure as in (Kano et al.,
2005), J(τ) in (7) is expressed as a quadratic function J(τ̂)
in τ̂ ,

J(τ̂) = τ̂
T Gτ̂−2τ̂

T g+gc (9)

where G ∈ R2M×2M , g ∈ R2M and gc ∈ R are given by

G = Q⊗Λ+Q0⊗ I2 (10)

g =
∫ tm

t0
b(t)⊗ f (t)dt (11)

gc =
∫ tm

t0
‖ f (t)‖2dt. (12)

Here b(t) ∈RM is a vector of shifted B-splines defined by

b(t) =
[

Bk(α(t− t−k)) Bk(α(t− t−k+1))

· · · Bk(α(t− tm−1))
]T

, (13)

and Q,Q0 ∈ RM×M are Gram matrices defined by

Q =
∫ tm

t0

dlb(t)
dt l

dlbT (t)
dt l dt (14)

Q0 =
∫ tm

t0
b(t)bT (t)dt (15)

3 Trajectory Planning
Recalling that the path is constrained by piecewise linear
boundaries as in Fig. 1, it is convenient to plan the tra-
jectory p(t) for each piece of the path constrained by a
pair of right and left boundary line segments, RiRi+1 and
LiLi+1. The construction of p(t) in (2) is very suitable for
this purpose since it is a piecewise polynomial with the
knot points ti.

For this purpose, we divide the time interval [t0, tm] into
n subintervals [si,si+1], i = 0,1, · · · ,n− 1 in accordance
with n pairs of boundary segments RiRi+1 and LiLi+1.
Here we take [si,si+1] to be a knot point interval, namely
each si is taken as one of the knot point t j with s0 = t0 and
sn = tm.

Now denote the straight line passing two points Ri and
Ri+1 by li, and the one for points Li and Li+1 by l′i (see
Fig. 2). Then we plan the trajectory p(t) so that, for each
i = 0,1, · · · ,n− 1, it lies between the two boundary lines
li and l′i for all t in [si,si+1].

This condition is described in Section 3.1, a method of
assigning si as a knot point in Section 3.2, and the spline
construction procedure will be given in Section 3.3, e.g.
taking initial and final conditions into account.

Figure 2. Corner points (Ri,Li) and boundary lines (li, l′i).

Figure 3. Right and left boundary lines li, l′i and a point p.

3.1 Trajectory between Two Lines
For the present problem, it is natural to introduce the fol-
lowing assumptions (see Figs. 1 and 2).

(A1) The polygon Pi = RiRi+1Li+1Li is a convex quad-
rangle for all i.

(A2) In Pi, the vertices Ri,Ri+1,Li+1,Li are located coun-
terclockwise.

By (A1), all the four points are distinct and the line seg-
ment RiRi+1 does not intersect with LiLi+1. By (A2), the
quadrangle Pi constitutes part of the path with piecewise
linear boundaries, or the path is the union of the quadran-
gles.

Now we derive a condition such that p(t) remains in a
region between the two lines li and l′i for all t in a knot
point interval [si,si+1], where we let [si,si+1] = [tκ , tµ]with
κ < µ . Here and hereafter, by the term ’region between
the two lines li and l′i’, we mean the region between the
two lines including the quadrangle Pi. Thus if lines li and
l′i intersect, then among the two wedge-shaped regions, the
one including Pi is meant.

Since the lines li and l′i respectively play the roles of
right and left boundaries of the path, we require the point
p(t) to lie to the left of li when viewed from Ri toward
Ri+1 along li, and moreover, p(t) to lie to the right of l′i
when viewed from Li toward Li+1 along l′i .

In view of Fig. 3, the above conditions for a point
p(x,y) to lie between the two lines can be written as{ −→

Ri p×
−−−−→
RiRi+1 ≤ 0

−→
Li p×

−−−→
LiLi+1 ≥ 0.

(16)

EUROSIM 2016 & SIMS 2016

441DOI: 10.3384/ecp17142439 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Here × denotes cross product of 2-dimensional vectors,
and it holds that, for u = [u1 u2]

T and v = [v1 v2]
T

u× v =
∣∣∣∣ u1 v1

u2 v2

∣∣∣∣= u1v2−u2v1 (17)

Applying this relation to the vectors in (16), for example−→
Ri p = [x− xi y− yi]

T , (16) can be rewritten as linear in-
equalities in p = [x y]T as follows.

Ap≤ d, (18)

where

A =

[
−yi + yi+1 xi− xi+1
y′i− y′i+1 −x′i + x′i+1

]
, (19)

d =

[
xiyi+1− xi+1yi
−x′iy

′
i+1 + x′i+1y′i

]
. (20)

Next we consider the condition such that p(t) given by
(2) stays between the two lines li and l′i for all t in the
knot point interval [tκ , tµ]. By (18), it suffices to derive the
condition for Ap(t)≤ d ∀t ∈ [tκ , tµ].

First note that, by the definition of Bk(t) in (4), p(t) is
written for unit knot point interval [t j, t j+1) as

p(t) =
k

∑
i=0

τ j−k+iNi,k(α(t− t j)), t ∈ [t j, t j+1), (21)

and it depends on only the k+1 weights τ j−k, τ j−k+1, · · · ,
τ j. Introducing a new variable u = α(t− t j), we see that
p(t) is written as p̂(u),

p̂(u) =
k

∑
i=0

τ j−k+iNi,k(u), u ∈ [0,1). (22)

Thus if Aτ j−k+i ≤ d holds for i = 0,1, · · · ,k, then using
(5), we get

Ap̂(u) =
k

∑
i=0

Aτ j−k+iNi,k(u)≤ d
k

∑
i=0

Ni,k(u) = d (23)

or Ap(t)≤ d for all t ∈ [t j, t j+1). This interval can be read-
ily extended to [tκ , tµ] by imposing the following condi-
tion,

Aτi ≤ d, i = κ− k,κ− k+1, · · · ,µ−1. (24)

Namely if (24) is satisfied, then it holds that

Ap(t)≤ d ∀t ∈ [tκ , tµ]. (25)

Now the remaining task is to express the inequality con-
dition (24) in terms of the control point vector τ̂ defined
in (8). First rewrite (24) as

ATκ,µ ≤ 1T
µ−κ+k⊗d (26)

with Tκ,µ = [τκ−k τκ−k+1 · · · τµ−1] and 1i = [1 1 · · · 1]T ∈
Ri. Then noting that Tκ,µ is a submatrix of τ consisting of
its columns from κ +1 through µ + k, it can be expressed
as

Tκ,µ = τEκ,µ , (27)

where Eκ,µ ∈ RM×(µ−κ+k) is defined by

Eκ,µ =
[

0µ−κ+k,κ Iµ−κ+k 0µ−κ+k,M−µ−k
]T

. (28)

Thus (26) is written in τ as

AτEκ,µ ≤ 1T
µ−κ+k⊗d. (29)

Using a formula vec(AXB) = (BT ⊗A)vecX for matrices
A,B,X of compatible dimensions (see e.g. (Lancaster and
Tismenetsky, 1985)), and noting vec τ = τ̂ , (29) yields

(ET
κ,µ ⊗A)τ̂ ≤ 1µ−κ+k⊗d, (30)

which is the desired expression.
For convenience we summarize the above develop-

ments as follows.

Proposition 1 The trajectory p(t) lies for all t ∈
[si,si+1] = [tκ , tµ] between the two lines li and l′i if the con-
trol point vector τ̂ satisfies the following inequality.

Fiτ̂ ≤ hi (31)

where Fi ∈R2(µ−κ+k)×2M and hi ∈R2(µ−κ+k) are given by
Fi = ET

κ,µ ⊗A and hi = 1µ−κ+k⊗d.

3.2 Centerline and Intermediate Time In-
stants

Recall that it is necessary to allocate the given time inter-
val [t0, tm] to n intervals [si,si+1] with si being some knot
point t j for each i= 0,1, · · · ,n−1. A natural way is to take
the length of center line CiCi+1 (see Fig. 4) into account.

Let Ci, i = 0,1, · · · ,n be defined by

Ci = γiRi +(1− γi)Li (32)

for some γi (0≤ γi ≤ 1). Then for determining the time in-
stants si in [t0, tm], we employ the so-called centripetal dis-
tribution (Biagiotti and Melchiorri, 2008). Namely each si
is determined so that the whole interval [t0, tm] is divided
into subintervals [si,si+1] in proportion to the following
value ζi,

ζi = ‖Ci+1−Ci‖ν (33)

for i = 0,1, · · · ,n−1, where ν(0 < ν < 1) is usually taken
as ν = 1/2. Actually, each si is determined as a knot point
t j based on ζi. Also it is noted that the centripetal dis-
tribution method in above requires less accelerations than
other method e.g. cord length distribution, distributed pro-
portionally to ‖Ci+1−Ci‖.

EUROSIM 2016 & SIMS 2016

442DOI: 10.3384/ecp17142439 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Figure 4. Centerline in the i-th quadrangle.

3.3 Smoothing Spline Trajectory
Obviously we require that, for all i = 0,1, · · · ,n− 1, the
trajectory p(t) lies between the two lines li and l′i for all
t ∈ [si,si+1] = [tκ , tµ]. Thus by Proposition 1, we impose

Fiτ̂ ≤ hi, i = 0,1, · · · ,n−1. (34)

Usually an initial and terminal conditions of p(t) are
given, and typical examples are

p(t0) = p0, p(1)(t0) = 0, p(2)(t0) = 0 (35)

p(tm) = pm, p(1)(tm) = 0, p(2)(tm) = 0 (36)

with p0 and pm lying on the line segments R0L0 and RnLn
respectively. Noting that p(t) in (2) is written as p(t) =
τb(t) and hence p(t) = vec p(t) = vec (τb(t)) = (b(t)T ⊗
I2)τ̂ , the above initial and final conditions can be written
in terms of τ̂ as follows.

H(t0)τ̂ = h̄0, H(tm)τ̂ = h̄m (37)

where H(t) ∈ R6×2M , h̄0 ∈ R6 and h̄m ∈ R6 are

H(t) =

 b(t)T ⊗ I2

b(1)(t)T ⊗ I2

b(2)(t)T ⊗ I2

 , h̄0 =

 p0
02
02

 , h̄m =

 pm
02
02

 .
(38)

The matrices H(t0) and H(tm) can be easily set up, for
example by using Table 1 when k = 3.

Finally in this section we consider the function f (t)
used for approximation of smoothing splines in (7). A
natural choice will be a function constructed from the
piecewise linear centerline C0C1 · · ·Cn introduced by (32).
Specifically we employ a linear function of t in each sec-
tion as shown in Fig. 4 as

fi(t) = qit + ri, t ∈ [si,si+1]. (39)

Here qi,ri ∈ R2 are determined so as to satisfy fi(si) =Ci
and fi(si+1) =Ci+1. Thus the vector g in (11) is computed
from

g =
n−1

∑
i=0

∫ si+1

si

b(t)⊗ fi(t)dt (40)

Now we are ready to formulate the trajectory planning
problem by constrained smoothing splines with J(τ̂) in

(9), the boundary inequality conditions in (34) and initial
and terminal conditions in (37). Namely the problem is to
minimize the cost function,

min
τ̂∈R2M

J(τ̂) =
1
2

τ̂
T Gτ̂−gT

τ̂ (41)

subject to the constraints of the form

Aeqτ̂ = deq, Ainτ̂ ≤ din, (42)

where G and g are given in (10) and (11) respectively, Aeq
and deq are formed as the collection of equalities (37), and
Ain and din as collection of inequalities in (34).

Note that, in the case of (37), Aeqτ̂ = deq consists of
12 equality constraints in 2M unknowns τ̂ . On the other
hand, the total number of inequality constraints resulting
from (34) is computed as 2M +2(n−1)k, with 2(n−1)k
more than the number of unknowns.

This is a convex quadratic programing problem and
can be solved numerically by using software tool as the
function ’quadprog’ in MATLAB. If necessary, other con-
straints may be introduced such as constraints on the mag-
nitude of velocity or acceleration as long as all the con-
straints are consistent.

Finally, it is noted that, by our construction, the planned
trajectory satisfies the following proposition.

Proposition 2 The planned spline trajectory p(t) is guar-
anteed to stay, for each i = 0,1, · · · ,n−1, between the two
lines li and l′i as the right and left boundaries for all time
t ∈ [si,si+1]. In particular, p(t) is in the corner quadran-
gle formed from the four lines li, l′i , li−1, l′i−1 at time t = si
for i = 1,2, · · · ,n−1.

4 Numerical Examples
Two examples of trajectory planning are considered,
where we use cubic splines, namely we set k = 3 and l = 2
in (2) and (7). MATLAB function ’quadprog’ is used for
numerical solution of quadratic programming problems.

4.1 Path with Piecewise Linear Boundaries
We consider a path with the right and left corners Ri and
Li given as in Table 2.

Table 2. The coordinates Ri and Li of right and left corners for
i = 0,1, · · · ,n with n = 9.

0 1 2 3 4 5 6 7 8 9

Ri 1 2 2 8 3 8 2 13 13 14
0 2 9 9 6 4 0 0 8 9

Li 0 1 1 12 6 11 6 12 12 14
0 2 10 10 6 4 1 1 8 10

For this path, we construct a smoothing spline trajectory
p(t) in time interval [t0, tm] = [0,10]. The initial and final
conditions are as given in (35) and (36) with p0 = (R0 +

EUROSIM 2016 & SIMS 2016

443DOI: 10.3384/ecp17142439 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

9

10

x

y

trajectory
trajectory 2
start
goal
center line
boundaries

Figure 5. Constructed spline trajectories plotted in xy plane with
and without the boundary constraints in (34).

L0)/2 and pm = (R9 +L9)/2. We set γi = 1/2 ∀i in (32)
for centerline of the path, which together with (39) is used
to set f (t) in (7). The number of knot points m = 80, and
hence the knot point interval is ti+1− ti = 10/80 = 0.125.
The smoothing parameter is set as λ = 0.01 in (7).

Fig. 5 shows the given path with the boundaries de-
noted by black lines and the constructed trajectory p(t) =
[x(t), y(t)]T on the xy plane in thick blue line. The start
and goal positions are denoted by × and ◦ respectively,
and the center line is shown in dotted lines. We ob-
serve that the trajectory satisfies the boundary constraints
in addition to initial and final conditions. The red line
is a smoothing spline trajectory p2(t) = [x2(t), y2(t)]T

constructed similarly as p(t) but without the inequality
boundary constraints (34). It exceeds the boundaries at
three corners, and the effect of introducing the inequality
constraints is apparent.

4.2 Path in Obstacle Avoidance Problem
The proposed method can be used for planning trajecto-
ries of mobile robots in an environment with obstacles.
As shown in Fig. 6, let us consider an environment with
three ’obstacles’, denoted by yellow rectangles, and the
start and goal denoted by × and ◦ respectively. If we de-
cide to take the upper route of the table-like obstacle in the
figure, which will be shorter than taking the lower route,
the path with piecewise linear boundaries can be defined,
for example by setting the right and left corners (Ri,Li) as
shown in Table 3. These boundaries are shown in Fig. 6
in black dotted lines with the sign 4 and 5 for right and
left boundaries respectively.

We plan trajectories for this path with the time interval
[t0, tm] = [0,10], initial and final conditions are as given
in (35) and (36), m = 50 and the smoothing parameter
λ = 0.1. Two cases of the parameters γi in (32) are con-
sidered for the centerline of the path as shown in Table 3.
The first case (i) sets the line in the middle of the path,
whereas the second case (ii) sets the line closer to the in-

Table 3. The coordinates Ri and Li of right and left corners and
the parameter γi for centerline for i = 0,1, · · · ,n with n = 5.

0 1 2 3 4 5

Ri 3 3 4 4 13 13
0 8 8 7 7 5

Li 0 0 6 6 16 16
0 12 12 10 10 5

γi : Case (i) 1/2 1/2 1/2 1/2 1/2 1/2
γi : Case (ii) 1/2 2/3 2/3 1/3 2/3 1/2

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

x

y

trajectory
trajectory 2
start
goal
right boundary
left boundary

Figure 6. Constructed spline trajectories plotted in xy plane for
two Cases (i) and (ii) of the centerline (see Table 3).

ner corner of the path. The planned trajectories are shown
in the xy plane in thick blue line for Case (i) and thick red
line for Case (ii). We see that reasonable trajectories have
been generated where the second case seems more desir-
able, and that the parameters γi for the center line could be
effectively used to adjust the trajectory. Note that the path
is defined by only six pairs of right and left corners.

5 Concluding Remarks
We presented a method of trajectory planning for path
with piecewise linear right and left boundaries. The trajec-
tory is constructed as smoothing splines employing nor-
malized uniform B-splines as the basis functions. Obvi-
ously, such boundaries can be described by simply pro-
viding a series of pairs of right and left corners (Ri,Li),
and the problem can be readily defined.

The boundary constraints could be expressed as linear
inequality constraints on the control point vector τ̂ . For
constructing smoothing splines, we introduced a piece-
wise linear centerline of the path in accordance with each
pair of right and left boundaries. An appropriate time in-
terval for each piece of the centerline is given based on the
centripetal distribution rule. It is shown that the problem
is formulated as convex quadratic programming problem.
We confirmed the effectiveness of the proposed method by
two numerical examples.

EUROSIM 2016 & SIMS 2016

444DOI: 10.3384/ecp17142439 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

One of the future issues is to relax the assumption (A1)
in Section 3.1 to allow the multiple corner points as Ri =
Ri+1. Extensions of present method are also important,
e.g. to the cases of higher order boundary curves and to
the planning in 3-dimensional space.

References
T. Berglund, A. Brodnik, H. Jonsson, M. Staffanson, and

I. Soderkvist. Planning smooth and obstacle-avoiding b-
spline paths for autonomous mining vehicles. IEEE Trans.
Automation Sci. and Eng., 7(1):167–172, 2010.

L. Biagiotti and C. Melchiorri. Trajectory Planning for Auto-
matic Machines and Robots. Springer, 2008.

P. Crouch and J. Jackson. Dynamic interpolation and application
to flight control. J. of Guidance, Control and Dynamics, 14:
814 – 822, 1991.

C. de Boor. A practical guide to splines,Revised Edition.
Springer-Verlag, New York, 2001.

M. Egerstedt and C. F. Martin. Optimal trajectory planning and
smoothing splines. Automatica, 37(7):1057–1064, 2001.

M. Egerstedt and C.F. Martin. Control Theoretic Splines: opti-
mal control, statistics and path planning. Princeton Univer-
sity Press, New Jersey, 2010.

H. Fujioka and H. Kano. Optimal vector smoothing splines with
coupled constraints. Trans. Institute of Systems, Control and
Information Engineers, 25(11):299–307, 2012.

P. Gallina and A. Gasparetto. A technique to analytically for-
mulate and to solve the 2-dimensional constrained trajec-
tory planning problem for a mobile robot. J. Intelligent and
Robotic Systems, 27:237–262, 2000.

H. Kano, H. Nakata, and C. F. Martin. Optimal curve fitting and
smoothing using normalized uniform b-splines : A tool for
studying complex systems. Applied Mathematics and Com-
putation, 169(1):96–128, 2005.

H. Kano, H. Fujioka, and C. F. Martin. Optimal smoothing and
interpolating splines with constraints. Applied Mathematics
and Computation, 218(5):1831–1844, 2011.

H. Kano, H. Fujioka, and C. Martin. Optimal smoothing spline
with constraints on its derivatives. SICE Journal of Control,
Measurement, and System Integration, 7(2):104–111, 2014.

W. Khalil and E. Dombre. Modeling, Identification and Control
of Robots. Hermes Penton Ltd., 2002.

J. Z. Kolter and A. Y. Ng. Task-space trajectories via cubic spline
optimization. In Proc. of the 2009 Int. Conf. on Robotics
and Automation, pages 1675–1682, Kobe, Japan, May 12-
17, 2009.

P. Lancaster and M. Tismenetsky. The Theory of Matrices, Sec-
ond Edition. Academic Press, 1985.

A. Piazzi and A. Visioli. Global minimum-jerk trajectory plan-
ning of robot manipulators. IEEE Trans. Industrial Electron-
ics, 47(1):140 – 149, 2000.

S. Saska, M. Macas, L. Preucil, and L. Lhotska. Robot path plan-
ning using particle swarm optimization of Ferguson
splines. In Proc. IEEE Conf. on Emerging Technologies and
Factory Automation (ETFA ’06), pages 833 – 839, Prague,
Sept. 20-22, 2006.

G. Wahba. Spline models for observational data. CBMS-
NSF Regional Conference Series in Applied Mathematics,
59, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1990.

EUROSIM 2016 & SIMS 2016

445DOI: 10.3384/ecp17142439 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	Introduction
	Calculation formulas
	Calculation of Intra-Ocular Lens for Non-Normal Eyes

	Back ground of studies
	Artificial Neural Network
	Real data
	Collected Data
	Specification of Patients Data Selected for Collection
	Specification of Preprocessing Parameters

	Results
	Objective
	ANN training
	ANN settings
	Results

	Conclusion
	Future work
	Introduction
	Homeostasis, Disturbance Rejection and Set Point Tracking
	Controller Motifs

	Results
	Dynamic Properties of Controller Motifs
	Tuning of Individual Controllers

	Conclusions
	Introduction
	Modelling the pharmacokinetics of propofol
	The 3-compartmental model
	Effect-site concentration model
	Model parameters

	Model verification
	Simulation results
	Propofol inflow
	Plasmatic concentration
	Effect-site concentration
	Evaluation of the predictive quality of the model

	Conclusion
	Introduction
	Modular Model Predictive Control Concept
	Building Setup
	Modular Predictive Control Concept

	Energy Supply Level - ESS - Models
	Linear Models
	Hybrid Models

	Model Predictive Controllers
	Objective Function
	LMPC
	MI-MPC

	Simulation Results
	Simulation Setup
	Demonstration of MPCC Performance
	Comparison between MPCC and RBC

	Conclusion
	Introduction
	Data Properties
	Macro Money Systems in QEs
	Behavior in QE1=(2008m11,2010m06)
	Behavior in QE2+=(2010m11,2012m08)
	Behavior in QE3=(2012m09,2014m10)

	Transmission Path of Housing Price from Reserve to Economic Activity
	Decomposition of M2 into Transaction and Precautionary Money Demands in (1975m10, 2016m03)
	Estimation of Precautionary Money Demand
	The Role of Business Condition u(t)=napm-50 in Transmission Mechanism of QEMP during QE1, QE2+ and QE3

	Conclusion
	Introduction
	Mathematical Model
	Model Parameters and Geometry
	Results and Discussions
	Conclusions
	Introduction
	Field Excitation Control
	Capability Curve
	Classical Control

	Concept and Formulation of MPC
	MPC as Excitation Control
	Modeling and Control Workflow

	Tuning the MPC Controller
	Time Response
	Open Circuit Conditions

	First-swing Angle Stability Enhancement
	Long-term Voltage Stability Enhancement
	Steady-state Voltage Stability
	Power System Simulator
	LTVS Simulations

	Discussion
	Conclusion
	Introduction
	Grid impedance model
	Impedance-based instability studies
	Practical implementation
	Conclusion
	Aknowledgements
	Introduction
	Literature Review
	Circulating Fluidized Bed Boilers
	Characteristics of RDF
	Agglomeration

	Methodology
	Description of Model
	Mass and Energy Balances
	Hydrodynamics

	Results and Discussion
	Validation
	Agglomerate Prediction

	Conclusion
	Introduction
	Theory
	Stability of Grid-Connected System
	Maximum-Length Binary Sequence

	Implementation in dSPACE
	System Setup
	Experiment

	Conclusions
	Introduction
	Governing Equation for Flow Modeling
	KP Numerical Scheme
	Simulation of the River Flow
	Results and Discussion
	Simulation Results
	Simulation Results for Numerical Stability Analysis

	Conclusion
	Introduction
	Air preparation process
	Fuzzy identification
	Takagi-Sugeno fuzzy model
	Fuzzy clustering

	Data collection
	Structure selection
	Input and output variables
	Representation of the systems' dynamics
	Fuzzy models granularity

	Fuzzy clustering and model validation
	Comments on resulting model performance

	Control experiments
	PID control
	Supervisory logic

	Conclusions
	Introduction
	First step - DES model
	Second Step - Portfolio optimization

	Stochastic DES model through markovian properties
	Product-Form Networks - Convolution algorithm
	Marginal probability
	Mean response time

	Load-haulage cycle
	DES model: Load-haulage system
	Project portfolio formulation
	Conclusion
	Introduction
	Overview of the Method
	Computing the Encounter Probabilities
	Example

	State Transition Matrix
	Projectile with a Single Sensor Fuzed Submunition
	Example
	Projectile with Two Sensor Fuzed Submunitions

	Failure Probability of the System
	Conclusion
	Hydro-pneumatic Accumulator
	Recent Research
	Purpose of This Study

	Logical Structure of Simulation Model
	Physics of Piston Type Hydro-Pneumatic Accumulator
	Nitrogen gas
	Mechanical Structure
	Hydraulic Fluid

	Conceptual Model

	Mathematical Model
	Equations for Nitrogen Gas
	Equations for Piston
	Equations for Friction
	Equations for Hydraulic Fluid
	Equations for Orifice

	Modelling in MATLAB/Simulink
	Calibration and Validation of the Simulation Model
	Testing Setup
	Laboratory Tests
	Validation

	Conclusion
	Introduction
	Contributions
	Setup for the analysis
	Experimental data
	Compressor Map
	Compressor Isentropic Efficiency
	Corrected Mass Flow
	Data Treatment

	 Pressure Losses in Gas Stand
	Pressure Loss in Straight Pipe
	Friction Factor - Laminar Flow
	Friction Factor - Turbulent Flow
	Pressure Loss In Bend
	Pressure Loss in Inlet Nozzle and Outlet Diffuser
	Adjust Measured Data
	Calculate New Compressor Efficiency

	Effect of pressure losses on measured compressor efficiency
	Compressor and Pipes Dimensions
	Case 1: Straight Pipes
	Case 2: Pipes with Diffuser and Nozzle
	Case 3: Pipes with Diffuser, Nozzle and Bend

	Summary and Discussion
	Future Work
	Conclusion
	Introduction
	Traffic Regulation: Stage selection
	Signal Control Schemes
	Pre-timed network control
	Max-Pressure Practical (MPract)

	Modelling and Simulation Overview
	An event-driven approach
	PointQ design

	Case Study-Data description
	From theory to applications
	System Stability
	Trajectory Delay Measurement
	Queue Delay Measurement
	Varying Traffic Conditions

	 PointQ versus AIMSUN Network Performance
	Evolution of phase (137,154)
	Evolution of phase (254,237)

	Conclusion
	Introduction
	Background
	MVB and Master Transfer
	Multifunction Vehicle Bus
	Mastership Transfer

	Model Checking with temporal logic

	System Modelling
	Bus Administrator Modelling
	basic data structure
	finite state machine of Bus Administrator

	Communication and Timing Modelling
	communication mechanism of BusAdmin
	timing mechanism

	Property Modelling
	Property Classification
	safety property
	liveness property

	Live sequence charts
	Observer Automata modelling

	Experiments
	Conclusion
	Introduction
	Experimental data
	Modeling
	Compressor
	Turbine
	EGR Blowers
	Auxiliary Blower
	Exhaust Back Pressure
	Combustion Species and Thermodynamic Parameters

	Parameterization Procedure
	Complete stationary parameterization
	Dynamic estimation

	Model Validation
	Conclusions
	Nomenclature
	Introduction
	Fundamentals
	Safe Active Learning
	The high pressure fuel supply system

	Design and Implementation
	Training of the hyperparameters
	The discriminative model
	The risk function
	The path to the next sample
	The algorithm

	Evaluation
	Evaluation in simulation
	Evaluation at a test vehicle

	Conclusion
	Introduction
	Modelling
	Centre of Gravity
	Aerodynamic Forces
	Definition of Angles
	Lever Arms
	Catenary
	Equations of Motion
	Velocities
	Self Stabilisation
	Complete Model

	Model Parameters
	Simulation Results
	Gliding Flight
	Towing Process

	Conclusions
	Introduction
	Context
	Compton scattering tomography (CST)

	Modelling of the new CST modality
	Proposed setup by back-scattering
	Direct problem : Image formation
	The half-space Radon transform (HRT)
	Image formation

	Inverse problem : Object Reconstruction
	Inversion of the HRT
	Filtered back-projection

	Simulation of the new CST modality
	Energy resolution of the detector
	Spatial discretization
	Window functions

	Conclusion and perspectives
	Introduction
	Powertrain model
	Problem formulation
	Tip-in problem constraints
	Boundary conditions for the tip-in problem
	Path constraints during tip-in

	Optimal control problem formulation
	Numerical solution of optimal control problems

	Optimal control results
	Extreme transients
	Compromise between time, Jerk and energy
	Jerk-Energy trade-off
	Efficient state and control transients

	Conclusions
	An Improved Kriging Model Based on Differential Evolution
	1 Introduction
	2 Theory of kriging model
	3 Kriging model based on DE algorithm
	3.1 Theory of DE algorithm
	3.2 Kriging interpolation based on DE algorithm
	3.3 Process of kriging Model based on DE algorithm

	4 An engineering example
	4.1 Setting DE algorithm parameters
	4.2 Data preprocessing
	4.3 Model computation and optimization

	5 Conclusion
	Introduction
	Model for slug flow
	Simulation for slug flow
	State estimation
	Control strategies
	Model predictive control
	PI control

	Simulation results and discussion
	Control structure I
	Control structure II
	Control structure III

	Computational time for MPC
	Maximum valve opening
	Conclusion
	Introduction
	Description of the loading bridge
	Modelling with Modelica
	Package of mechanical components Mechanics
	Package of causal components Blocks
	Structure and components of the overall model
	Model of the loading bridge
	World
	Cart
	Pendulum
	Drive

	Controller in Matlab Simulink environment
	Experiments
	Open loop experiments
	Closed loop experiments

	Conclusion
	Introduction
	MMT - Mathematics, Modelling and Tools
	Structure of MMT
	Usage of MMT

	Maple T.A. - Maple Testing and Assessment
	Structure MTA
	Usage MTA
	Mathapps
	MTA - Moodle Connector

	Case Study
	Conclusion
	Outlook
	Introduction
	Signal processing
	DFT and derivatives
	lp-norms and MIT-indices
	Nadaraya-Watson nonparametric regression

	Measurements and gearbox properties
	Load haul dumper front axle
	Water power station gearboxes

	Calculations from the LHD measurements
	Calculations from the WPS measurements
	Conclusion
	Introduction
	Preliminaries
	Problem Statement
	Vector Smoothing Splines

	Trajectory Planning
	Trajectory between Two Lines
	Centerline and Intermediate Time Instants
	Smoothing Spline Trajectory

	Numerical Examples
	Path with Piecewise Linear Boundaries
	Path in Obstacle Avoidance Problem

	Concluding Remarks
	Introduction
	Literature Review
	Dynamic multi-workstation model based on electrical components

	Simulation Model with a PI Controller
	Test and Results
	Final Remarks
	Introduction
	Related Work
	Methodology
	DataSet

	Semantic Identification Through Multiple Classifiers
	Global Feature Extraction through Wavelet Decomposition
	Deep Learning of Neural Network

	Image Retrieval
	Performance Analysis
	Conclusion
	Motivation
	Related work
	Data set and pre-processing
	Defining the curvature of a steel plate
	Experiment
	Discussion
	Conclusion
	Introduction
	New Evolutionary Computation
	Island model parallel distributed in NN-DEGA
	Self-adaptive using Neural Network
	Reconstruction of differential vector
	Elite strategy

	Numerical Experiments
	Benchmark Functions
	Experiment Results
	Comparison for Robustness

	Conclusion
	Introduction
	Classical RF Prediction
	Fuzzy Clustering Prediction
	Analysis
	Conclusion
	Introduction
	Dynamic Artificial Neural Network
	Back Propagation Through Time (BPTT)
	Real Time Recurrent Learning (RTRL)
	Extended Kalman Filter Learning (EKF)

	Experimental Set-up
	Results
	Simulation Study
	Experimental Study

	Conclusion
	Introduction
	Overview of Toolbox
	DANN Main
	Uploading data set
	Division of data set
	Validation check
	Bias
	Learning algorithm
	Learning parameters
	Past inputs and outputs
	Additional parameters

	Parameter Tuning
	Plot Menu
	Performance plot
	Regression plot
	Prediction plot
	Parameter plot
	Error plot

	Additional information
	Installing the MATLAB DANN toolbox

	Case Studies
	Case I: BPTT learning algorithm for flow measurement
	Case II: EKF learning algorithm for temperature measurement
	Case III: RTRL learning algorithm for mortality prediction

	Conclusion
	Modeling and Simulation of Train Networks Using Max-Plus Algebra
	1. Introduction
	2. Max-plus algebra
	3. Scheduled max-plus linear systems
	4. Timetable stability
	4.1 Delay sensitivity analysis
	4.2 Dynamic Delay Propagation
	4.3 Recovery Matrix

	5. Conclusion
	Introduction
	Construction of DBN metamodels
	Utilization of DBN metamodels
	Example analysis - simulated operation of air base
	Conclusion
	Introduction
	Metastable liquids

	Model for two phase flow and phase transition
	The van der Waals equation of state

	Solver
	Stiff pressure relaxation
	Stiff thermodynamic relaxation

	Experiments
	Simulation set-up
	Results and discussion
	Conclusion
	Introduction
	ParModelica
	Previous Research on PDEs in Modelica
	Partial Differential Equations (PDE)
	Explicit Form

	Numerics
	Discretisation
	Runge-Kutta with Variable Step Length

	General-Purpose Computing on Graphics Processing Units (GPGPU)
	PDEs in Modelica
	Algorithmic Modelica and ParModelica
	Solver Framework
	User Defined State Derivative and Settings
	Types Used by the Solver
	Solvers

	Use Case — Heat in Plane
	Poor Insulation and Constant Temperature
	Constant Temperature Depending on Location

	Performance Measurement
	Pros & Cons of Solver Written in Modelica
	Conclusions
	Blood Flow in the Abdominal Aorta Post 'Chimney' Endovascular Aneurysm Repair
	1 Introduction
	2 Methodology
	2.1 Governing Equations
	2.2 Anatomical Model
	2.3 Numerical Model
	2.4 Numerical Discretization

	3 Results
	3.1 Validation
	3.2 Flow Patterns
	3.3 Flow Regime

	4 Discussion and Conclusions
	Introduction
	Spin-Image Algorithm
	The Proposed Parallel Spin-Images Algorithm
	Results and Analysis
	Platform Specification
	Experimental Data
	Results

	Conclusions and future work
	Introduction
	Overview of Python API
	Goal
	Installing the OMPython Extension
	Status
	Description of the API
	Python Class and Constructor
	Utility Routines, Converting Modelica FMU
	Getting and Setting Information
	Operating on Python Object: Simulation, Optimization
	Operating on Python Object: Linearization

	Use of API for Model Analysis
	Case Study: Simple Tank Filled with Liquid
	Model Summary
	Modelica Encoding of Model
	Use of Python API
	Basic Simulation of Model
	Parameter Sensitivity/Monte Carlo Simulation

	Discussion and Conclusions
	Introduction
	Related Work
	Virtual Testing of Open embedded Systems
	Simulator Coupling for Network Simulation
	Network Fault Injection Testing
	Case Study
	Conclusions and future work
	Validation Method for Hardware-in-the-Loop Simulation Models
	1 Introduction
	2 Validation Methods
	2.1 Open-Loop Operation
	2.2 Independent Closed-Loop Operation
	2.3 Compensated Closed-Loop Operation

	3 Related Work
	3.1 Example Circuit
	3.2 Simulation Models

	4 Simulation Results
	4.1 Models with Different Switching Delays
	4.2 Discrete-Time Models
	4.3 Fixed-Point Models

	5 Conclusion
	Introduction
	Control Engineering: The Teacher's Challenge
	New Curriculum For Teaching Automatic Control
	Luma Activity
	Conclusion
	Introduction
	The Activated Sludge Process
	Mass balances and expression for the sludge age
	The settler

	ASP with ideal settler model
	Steady-state solutions
	Substrate input-output relationship for constant sludge age

	ASP with DZC settler model
	Steady-state solutions
	Substrate input-output relation for constant sludge age

	An approximation for S* given 0
	Numerical example
	Theorem 1
	Theorem 2

	Conclusions
	Introduction
	Materials and Methods
	Gaussian Mixture Models
	GMM based fault detection criteria

	Case Study: Monitoring a Secondary Settler
	Results
	Discussions
	Conclusions
	Introduction
	Industrial Process Description
	SIAAP Waste water and sewage Sludge Treatment Process
	Incineration Process
	The Furnace
	The Heat Exchanger

	Identification Process Overview
	Sludge Incineration sub-models: Input-output interaction.
	Identification Strategy

	Validation Methods
	Absolute Criteria
	Relative reference-model criteria

	Results and Discussions
	Relative Reference-Model Criteria Results

	Conclusion
	1 Introduction
	2 Modelling
	2.1 Basic Process Components
	2.2 Boiler Evaporator Loop
	2.3 Test Model

	3 Simulation Tests
	3.1 Comparison of Numerical Solvers
	3.2 Effects of Initial State and Parameters

	4 Conclusions
	Introduction
	TCP-100 solar field description
	Mathematical modeling of TCP-100 solar field
	 Optical and geometric efficiencies
	Characteristics of the heat transfer fluid
	Thermal losses

	Simulations
	Conclusion
	Introduction
	Description of a Basic Gas Turbine Model
	Compressor
	Combustion Chamber
	Turbine Module

	Computational Causality And Conditions for Numerical Convergence
	First Principles Compression and Expansion Maps
	Compression Case
	Expansion Case

	Simulation Results
	Conclusion
	Appendix
	Introduction
	Modelling methodology, libraries and tools
	Plant Description
	Innovative aspects
	OTSG topology

	Device modelling
	Re-used components
	Custom component models
	Separator
	Feedwater heater
	Deaerator
	MS fluid model

	Plant modelling
	OTSG model
	Turbine model
	Feedwater preheaters train
	Plant control system
	Complete plant model

	Simulation objectives - methodology
	Simulation performance
	Conclusion
	Introduction
	Formal Problem Statement and SVM
	SVM by Set-Valued Training Data
	A Modification of the AdaBoost
	Imprecise Updating Weights of Robots
	Conclusion
	Introduction
	Methodology
	Power grid connection
	Electrolyser
	Interim gas storages
	Methanation
	MEA CO2 capture
	CH4 compression

	Control sequences
	CH4 compression
	Start-up
	Power grid connection
	Methanation reactor
	Electrolysers
	Interim gas storages
	CH4 compression

	Shutdown
	Methanation reactor
	CH4 compression
	Interim gas storages
	Electrolysers

	Results
	Conclusion and future work
	Acknowledgment
	Introduction
	Mathematical Model
	Assumptions
	Development of Model
	Material Balance
	Energy Balance
	Heat Exchanger

	Simulation Results and Discussion
	Simulation Results
	Comparison with Previous Work

	Conclusions
	1 Introduction
	2 Herding behavior of rhinos
	2.1 A synoptic model of space use
	2.2 Population size updating model

	3 Rhino herd (RH) algorithm
	3.1 Synoptic model
	3.2 Population size updating model
	3.3 RH algorithm

	4 Simulation results
	5 Discussions and conclusions
	Acknowledgements
	References

	Introduction
	Structure and Kinematics of the Double-Spiral Mobile Robot
	Structure
	Forward kinematics
	Gripper positions
	COG

	NESM
	Numerical Case Study
	Conditions and methods
	Results

	Discussion
	Conclusion
	Introduction
	Data analysis
	Nonlinear scaling
	Interactions
	Uncertainty
	Natural language

	Recursive analysis
	Scaling
	Interactions
	Fuzzy logic
	Smart adaptive systems

	Temporal analysis
	Trend indices
	Fluctuations
	Changes of operating conditions

	Conclusion
	Introduction
	MOEA/D
	Algorithm
	Focused Issue

	Proposed Method: Chain-Reaction Initial Solution Arrangement
	Aim and Concept
	Method

	Experimental Settings
	Results and Discussion
	Search Performance at Final Generation
	Search Performance over Generations

	Conclusions
	Introduction
	Modeling demand-side management
	Markets
	Actors
	Other elements

	Controlling consumption
	Optimizing scheduling
	Controlling (via) frequency

	Discussion and conclusions
	Introduction
	Components and Parameters of Musical Expression
	Learning Support System of Musical Representation
	Generation of Example of Musical Expression
	Construction of Kansei Space
	Image Estimation
	Parameter Values Estimation using Fuzzy Inference
	Interactive Modification of Musical Expression

	Comparison of Parameter of Musical Expression
	Advice for Parameter of Musical Expression

	Range of Learner's Musical Expression on Kansei Space
	Estimation of Range of Musical Expression
	Advice about Impression

	Experiment
	Results and Discussions

	Conclusion
	Introduction
	Formulating the GA Optimization
	The Problem Encoding
	The Objective Function (Fitness)
	Selecting The GA Operators
	Tuning the GA Parameters

	FPGA Implementation
	GA's HDL Entities
	Fitness
	Selection
	Crossover
	Mutation
	Generating Pseudo Random Sequences
	Replacement

	Performance Evaluation
	Functional Verification
	Fitness
	Selection
	Replacement
	Crossover
	Mutation
	LFSRs
	Comparator

	Integrating GA into the SoC
	Interfacing GA with the HPS
	Controlling GA from the Linux host

	Conclusion and Future Work
	Introduction
	Related Work
	Earthmoving Simulator
	Workspace Subdivision with Scoop Area
	High Point and Zero Contour Methods
	Simulation Results and Discussion
	Conclusion and Future Work
	Introduction
	SDNized Wireless LAN Testbed
	 Central Manager
	 Aggregator and Transport Network
	 Network Edge
	 Android Measurement Application
	Experiment Automation

	Mobility Management - A Use-Case Scenario Implementation
	Mobility Handling in Developed Testbed
	Logging
	Running the Experiment
	Parsing and aggregating results

	Conclusion

