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Abstract
A series of works such as harvesting and transporting in a
farm is one of such works with so care as not to damage
the harvest in order to maintain the value of harvests. We
are developing an autonomous cart for gathering a harvest
with the bed to be controlled to keep in horizontal level
at work and in transit, in order to avoid harvests gathered
in particular area of the bed and to keep away from be-
ing damaged in harvests. It is proposed a method of au-
tonomous steering control of a harvest vehicle with main-
taining the horizontal level of the bed of the cart with air
cylinder suspension systems. It is shown that the problem
of a level control of vehicle’s bed can be formulated as one
of optimal control problems. Finally, its simulation study
is considered.
Keywords: level control of vehicle’s bed, pneumatic servo
control, autonomous vehicle, terrain farm, harvesting

1 Introduction
The work of harvesting of the fields is one of tough works
which need the efficiency of materials handling, while it
is necessary for guarantee of commodity value to treat
crops carefully so that a crack may not be attached to
crops. A harvest cart is, therefore, one of necessary appa-
ratuses for both a professional farmer and a urban farmer
to lighten their work load to harvest the fields. There are
many harvest carts developed and sold in various size,
from smalled-sized to mega-sized. In this research, it
aims at development of the conveyance cart which can
carry a harvest without swaying of the loading bed by per-
forming level surface maintaining control, in order for the
crops not to be damaged. We proposed the basic struc-
ture for level control of a harvest bed using pneumatic
system (Moriwaki, 2012). It was proposed the harvest ve-
hicle with a level-controlled harvest bed and considered
the optimal control problem of a level control of a harvest
bed (Moriwaki, 2013, 2016). We, furthermore, consider
to realize the system of intelligent harvesting which per-
forms autonomous collection of crops in a cultivated land
and autonomous carrying them to the crops shed without
deterioration of the commodity value of them. Figure 1
shows an examples of harvest vehicle, which carries crops
from the cultivated land to the harvest gathering place.
The harvest cart often jolts over the rough cultivated land,
and crops vibrate on the loading bed of the harvest cart.

Crops collide together or with the wall of a harvest stand,
It damages the surface of crops and reduces the commod-
ity value of crops. If crops without cracks can be harvested
and shipped, they can be sold for a high price at a market.
We have started a development program of a harvest vehi-
cle which can perform harvesting operation and maintain
the level surface of its loading bed, and can autonomously
go to a harvest collection place.

The suspension model of a vehicle is considered in Sec-
tion 2. After considering the structure of the loading bed
of a harvest vehicle in Section 3, A model of level con-
trolled bed by a pneumatic servo system is proposed in
Section 4. The control system of a harvest bed with a pair
of pneumatic cylinder is proposed in Section 5, where is
also shown some numerical simulations and experimental
study. Finally, it is considered the problem of level control
of harvest’s bed on the terrain farm land in Section 6.

Figure 1. A harvest vehicle with active pneumatic suspension
bed.

2 Suspension model of a vehicle dy-
namics

The control problem of leveling the load bed of a harvest
vehicle is deeply relation to the vertical dynamics of a ve-
hicle, its suspension dynamics. The features of car vertical
dynamics in (X-Z)-plane are described by Figure 2 (Abe,
1992; Andrezejewski and Awrejcewicz, 2005) with active
suspension system in which the external control forces is
used to suppress the uncomfortable bouncing motion and
pitching motion.

The equations of motions for two degrees of freedom in
(X-Z)-plane with the constant velocity V are
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Figure 2. Active suspension control of a harvest vehicle.

bouncing motion : mz̈ = Ff +Fr (1)

pitching motion : Iyθ̈ =−l f Ff + lrFr (2)

where m is the mass of a vehicle, z is the vertical displace-
ment of the center of gravity (CG) of a car(Figure 2), Iy
is the moment of inertia around y-axis, θ is the pitching
angle of the center of gravity (CG) of a car and the ex-
ternal forces acting on a front wheel and the rear wheel
from the road surface are written by Ff and Fr, respec-
tively. The state space model of the vertical dynamics
is derived from (1) and (2), where it is assumed that
the vehicle is affected from the terrain of the farm land
as the unknown input Uf , Ur and the surface roughness
z0 f = z0(t), z0r = z0(t −L/V ), where L = l f + lr.
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where w := ż , q := θ̇ and
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Iy , ã42 =−Cf l2
f +Crl2

r
Iy

} (4)

b̃31 =
1
m , b̃32 =

1
m

b̃41 =− l f
Iy , b̃42 =

lr
Iy

} (5)

h̃31 =
Kf
m , h̃32 =

Kr
m

h̃41 =−Kf l f
Iy , b̃42 =

Krlr
Iy

} (6)

where

Kf : stiffness coefficient for front suspension
Kr : stiffness coefficient for rear suspension
Cf : damping coefficient for front suspension
Cr : damping coefficient for rear suspension

3 Structure of the loading bed of a
harvest vehicle

It is considered that the structure of the loading platform
with the level control mechanism using pneumatic cylin-
ders of an autonomous harvest cart in this section. We
propose a control system which maintains a loading plat-
form horizontally while harvested crops is gathered on
the loading platform. When crops are taken in and it is
stored by the loading platform, there are often for crops
to be thrown into the harvest cart and stored randomly on
a loading-platform. If the level maintaining of a loading-
platform becomes difficult according to the random load-
ing of crops, a loading-platform inclines and crops may
roll in the direction of a lower side, then the damage to the
crops caused by collision with other crops or with the wall
of the loading-platform may occur, and it may produce
deterioration of the commodity value of crops. Moreover,
if crops are loaded to the specific side of a loading plat-
form and a loading-platform inclines, the efficiency car-
rying crops will be affected. In order to prevent such a
bad influence to an agricultural harvest work, this research
considers a method of the level control of the loading bed
of an autonomous harvest cart.

There are many cases in position the load bed with
crops (Figure 3). Cases (a) and (b) are situations of the bed
on flat field, the bed in (a) is maintained horizontally with
the harvest orderly, on the other hand, the bed (b) leans
with gathered crops on one side. Case (c) and (d) are sit-
uations of the bed on terrain field, the bed in (c) leans be-
cause of gathered harvest and uneven surface of the field,
our aim is to propose the controlled bed to maintain hor-
izontally, whether on uneven field or with gathered crops
in ether side. In this paper, it aims at realizing the level
control of a loading-platform by using position control
of pneumatic cylinders with electromagnetic pressure pro-
portional valves and a computer (Figure 4). In Figure 4,
the load fL, which is induced for crops to drop on the load
platform, presses down the cylinder head, whose mass is
denoted by M, and the loading platform leans down to ei-
ther side. The deviation is detected by a height sensor and
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is put into a computer as the reference. The computer cal-
culates the control input e, with which a pressure valve
controls the cylinder pressure so that the loading platform
move back to the horizontally.

(a) Equal loading of crops. (b) Unequal loading of crops.

(c) Unequal loading of crops 
      on uneven field.

(d) Unequal loading of crops 
      with level control of the bed 
      on uneven field.

Figure 3. Harvest quality managing cart.
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Figure 4. Position control of a pneumatic cylinder with a pres-
sure proportional valve.

4 Modeling of a pneumatic cylinder
with a pressure proportional valve

A pneumatic cylinder servo control system is expected
to be applied to various automation systems, because it
has some advantages such as high power/weight ratio,
functions of impact absorption and rigorous force con-
trol owing to air compressibility. However, the com-
pressibility makes it a high order and nonlinear sys-
tem, its exact modeling and parameter estimation are not
easy (Noritsugu and Takaiwa, 1993; Song, et al., 1997).

There are many paper published about pnematic servo sys-
tem up to now, almost all of them are, however, dealed
with the problem of the position control or force control
of a simple pneumatic cylinder. There is few study about
the practical control system with the pneumatic servo sys-
tem (Moriwaki, 2012, 2013, 2016).

4.1 A model for a pneumatic cylinder
The air mass flow rate W [kg/s] which flows into a cylinder
can be expressed as follows.

W =
1

RT0
{pV̇ +(

V
κ
)ṗ} (7)

where

V = A(yD + y) (8)

and A is a area of the cylinder [m2], T0 is an absolute
temperature [K], κ is the ratio of specific heat of the air
(≈ 1.4) and R is the gas constant (= 287m2/s2K).

The motion of a rod of the pneumatic cylinder is de-
scribed by the following equation:

Mÿ+Bẏ = Ap−As ps + fL (9)

where y, As, p, ps, M, B, fL are the position of rod in a
cylinder, a area of rod-side, a nominal portion of the sup-
ply pressure Ps, a fluctuation portion of the supply pressure
Ps, a inertial mass of the cylinder, a viscous coefficient of
friction of the cylinder and a external force, respectively.
It is usually assumed that a fluctuation portion of the sup-
ply pressure is sufficiently small, then we can put ps = 0
in (9). Therefore, we obtain the following equation from
(9).

Mÿ+Bẏ = Ap+ fL (10)

4.2 A model for a pressure proportional valve
It is well known that the transient characteristics of a pneu-
matic cylinder is remarkably affected to a control flow,
inertial mass, death volume of a valve (Tanaka, 1987;
Kagawa and Cai, 2010). The servomechanism which con-
trols the cylinder of a single rod type by the three direc-
tion type of a pressure proportional valve is used in the
proposed system.

The mass flow rate Wv may be linearized with respect
to the displacement xv of a valve, then we obtain the fol-
lowing equation (Tanaka, 1987; Kagawa and Cai, 2010):

Wv = (
∂Wv
∂xv

)xv +(
∂Wv
∂ p

)p = kvxv − kp p (11)

where kv, kp, are a flow gain, a pressure flow coefficient
(kp > 0), respectively. Accompanying the motion of a
cylinder to the mass flow rate Wv given by (11), the en-
ergy equilibrium equation is given by

Wv +
1

RT0
Av pẋv =W (12)
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Equation (12) is transformed and the following (13) is ob-
tained.

Wv =
1

RT0
(pAẏ+

V
κ

ṗ−Av pẋv) (13)

where Av is the area of a feedback pressure of a valve.
For an electromagnetic force Fc of a solenoid, the equa-

tion of motion of a pressure valve can be expressed as fol-
lows (Tanaka, 1987).

mẍv +bẋv = Fc −Av p (14)

where m is the inertial mass of a moving rod of a cylinder
and b is the coefficient of viscous damping.

5 The position control system of a
pneumatic cylinder using a pressure
proportional valve

5.1 A block diagram of a pneumatic servo sys-
tem

The solenoid’s electromagnetic force Fc can be approxi-
mated by the following equation, denoting feedback gains
of a cylinder position y and its moving velocity ẏ by
g f s, g f v, respectively,

Fc ∼= a1(a0y0 −g f sy−g f vẏ)
τ0s+1

(15)

where a1, a0, τ0 denote the electromagnetic force conver-
sion coefficient, the voltage conversion coefficient w.r.t.
reference input y0, and the time constant of the solenoid.

Combining (10), (11) and (13)–(15), then the position
control system is obtained by Figure 5, in which a cylin-
der position y can be maintained at the reference position
y0 under an unexpected load (or force) being added to the
cylinder. In Figure 5, time constants τi (i = 1, · · · ,4) de-
note τ1 = kc

kp
, τ2 = m

b , τ3 = Av
kx
, τ4 = M

B , respectively, and
kx is the flow gain of the valve, kp is the pressure flow co-
efficient, and kc is the compliance of air pressure. In the
usual air pressure servomechanism, τ0,τ2,andτ3 may be
very small and can be ignored (Tanaka, 1987). The time
constant τ4 may be changed to (τ4 +Δ) depending on the
loaded mass.

5.2 A reduced block diagram of a pneumatic
servo system

If the pneumatic servo system has the condition τ4 > τ1,
which means its inertia characteristics are dominant than
its volume characteristics in the system, the block diagram
shown in Figure 5 can be reduced as Figure 6. In Figure 6,
the parameters ωM, ζM, kLp denote the following values
respectively.

ωM =

√
{Av +(a1g f vA)/B}kx

bkpτ4
(16)
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+
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+
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Figure 5. The position control system by a pneumatic cylinder.
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Figure 6. The reduced position control system by a pneumatic
cylinder.

ζM =
b(kp +A2/B)+Avkxτ4

2
√

bkvτ4kx{Av +(a1g f vA)/B} (17)

kLp =
(a1g f pA)/B

Av +(a1g f vA)/B
(18)

The characteristics of step responce of the pneumatic
servo system is analyzed theoretically and the parameter
kLp/ωM is necessary to be set 0.4 or less in order to obtain
the undershoot step response (Tanaka, 1987).

5.3 A state space model for leveling control of
the loading bed of a harvest cart

The loading bed of a harvest cart, which we proposed in
this paper, is controlled by a pair of pneumatic cylinders
as shown in Figure 7, which is appeared in later section.
The structure of dynamics of the proposed level control
system is shown in Figure 8.

The rods of pneumatic cylinder (a) and (b) are con-
nected to the loading bed with rotation and bottoms of
cylinders are connected to the base of the harvest cart with
the angle θ of inclination. The angle θ is assumed to be
fixed, i.e. sinθ is to be constant. The height za, zb of the
both ends of the loading bed are controlled by the position
of the rod ya, yb, respectively, as

za = ya sinθ , zb = yb sinθ (19)

EUROSIM 2016 & SIMS 2016

449DOI: 10.3384/ecp17142446       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



Figure 7. The experimental device for level control of the load-
ing platform.

θ θ

yayb zazb

fLafLb

Base of Harvest Cart

Loading Bed
Cylinder
 (a)

Cylinder
 (b)

harvest loadharvest load

Figure 8. The structure of a dynamic model for level control of
the loading bed.

with the state space model as follows: (i = a, b)

d
dt
[

yi
ẏi

] = [
0 1
0 − 2B

M
][

yi
ẏi

]+ [
0
2A
M

]pi +[
0
2A
M

] fLi,

(20)
where pi is the control input and fLi is the harvest load.
The objective of level control of the loading bed is, there-
fore, maintain the difference za−zb to be minimized. That
is the difference v defined by

v =
√
(za − zb)2 =

√
(ya − yb)2 sinθ (21)

to be reduced as soon as possible.

5.4 Simulation results of the level control sys-
tem

The harvest is loaded on the loading bed (Figure 8) of
the harvest cart unevenly from the farm. We have simu-
lated the level control of the loading bed under (a) the pe-
riodical loading from the both ends with different weights

Le
ve

l o
f h

ar
ve

st 
be

d 
(c

m
)

Time (sec)

Figure 9. A state of level of the harvest bed under periodical
loading.

Level of harvest bed (cm
)

Time (sec)

Figure 10. A state of level of the harvest bed under random
impulsive loading

and a phase difference and (b) the random impulsive load-
ing from the both ends with different weights and a phase
difference. Figure 9 shows the external harvest loadings
fLa, fLb and the difference v of the loading bed (21) for
the case (a). Figure 10 shows the external harvest load-
ings fLa, fLb and the difference v of the loading bed (21)
for the case (b). In Figures 9, 10 amplitudes of fLa, fLb, v
are normalized and scaled.

6 Leveling control of the harvest bed
on the terrain farm land

The harvest vehicle usually moves on rough terrain to
carry crops to the cargo-pickup point at the farm. In this
section, we consider the control problem to maintain the
level of a harvest bed under the existence of pitching mo-
tion of the suspension. Let’s assume there is a pitching
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Figure 11. The model of a harvest bed on the platform of the
vehicle on rough terrain.

angle ϕ , while the harvest vehicle moves. Then the model
of a harvest bed under pitching motion is shown in Fig-
ure 11.

The height z′a, z′b of the both ends of the loading bed are
controlled by the position of the rod ya, yb, respectively, as

z′a = y′a sinθa, z′b = y′b sinθb (22)

with the state space model as follows: (i = a, b)

d
dt
[

y′i
ẏ′i

] = [
0 1
0 − 2B

M
][

y′i
ẏ′i

]+ [
0
2A
M

]pi +[
0
2A
M

] f ′Li,

(23)
where pi is the control input and f ′Li is the harvest load.
There is the incline of the base of a harvest vehicle, caused
by the pitching angle ϕ . Therefore, we have to compen-
sate for the incline in order to control the level of the har-
vest bed. The difference between z′a and z′b is

Λ = lr sinϕ (24)

where lr is the distance between the center of gravity
(C.G.) and the rear axle of the vehicle (Figure 2).

The objective of level control of the loading bed for
this case is, therefore, maintain the difference z′b − z′a to
be equalized to the incline height Λ , as soon as possible.
That is the difference |Λ |− |v′| defined by

v′ =
√

(z′a − z′b)2 =
√

(y′a sinθa − y′b sinθb)2 (25)

to be reduced as soon as possible. It is not clear in this
general case for the solution to level control of the harvest
bed of the cart.

7 Conclusions
The autonomous harvest cart with level control of load-
ing platform has been proposed in this paper. Crops can
be stored in an uneven cultivated land so that reduction in

commodity value may not be produced by using the pro-
posed harvest cart. The pneumatic cylinder servo control
system is used to control the level of loading platform.
The proposed harvest cart is designed so that it can main-
tain the level of loading platform while loading of crops
and following a bumpy road from a farmland.
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