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Abstract
In this paper, we propose a simulation model with a PI
controller to analyze and control the dynamics of a multi-
workstation production system. The formulation is based
on dynamic modelling and control theory, and the model
was implemented in Matlab and Simulink. Exploratory
tests were carried out, and the results indicated some re-
lationships between the values of the parameters of the
controller and the values of the output variables, that is,
the levels of work in process. They also showed that the
proposed model has the potential of providing manage-
rial directions on how to dynamically adjust the capac-
ity, aiming to smooth the operation of the shop floor and
to keep the work in process close to the desired levels.
Keywords: production systems, control theory, dynamics,
simulation, planning and scheduling

1 Introduction
As known, the increasing computational capacity engen-
dered a sound evolution of the operations management
area, since it allowed the development of several tools to
cope with large amounts of data related to the planning
process and to ground the analysis of the decision mak-
ers. In this sense, the use of dynamic modeling and sim-
ulation techniques complements the static approaches for
planning optimization of production systems and supply
chains. Control theory is also a correlated area whose the-
ories and tools have been applied to production and sup-
ply chain management. Some steps in these directions are
enumerated in the literature review section of this paper.

Considering the aforementioned approaches, we
present in this paper a simulation model based on state
equations to depict the dynamics of a multi-workstation
manufacturing system. A proportional-integral (PI) con-
troller is applied to the model, and exploratory tests are
carried out.

The model basically deals with the work in process
(WIP) and capacity allocation variables (represented by
the processing frequency of the stations), in a plant with
job shop configuration. In general terms, the control
of work in process is a classical concern in the opera-
tion of job shops, since it generates more predictable cy-
cle/throughput times, which lead to better promises and

fulfilment of delivery dates, a more stable coordination of
the shop floor, and more flexibility to attend changes in
the customer demand. These effects are highlighted in the
literature related to various methodologies in production
engineering, such as just-in-time, quick response manu-
facturing, workload control, factory physics, and others.

The results obtained with the simulation of the pro-
posed model provided some indications of how its param-
eters influence the WIP levels, and demonstrated the po-
tential of the proposed approach to depict the dynamic re-
lations between capacity allocation, work in process and
operations smoothness in production systems.

2 Literature Review
The effort of evolving from the static to the dynamic anal-
ysis of production and supply chain systems relies on sys-
tem dynamics and control theory, as mentioned. In a
broader sense, system dynamics may be defined as an area
of knowledge that deals with the time-varying behavior of
a system (Doebelin, 1998). This includes not only me-
chanical, electrical, fluid and thermal, but may also in-
clude biological, manufacturing, social and hybrid sys-
tems. Control theory, on its turn, has different subareas
and a range of tools for the analysis and design of closed-
loop systems, where the information of the outputs is fed
back to the system in order to lead it to desired goals. In
the literature reviews concerning the application of con-
trol theory to production and supply chain, the models are
classified according to the area of application [(Ortega and
Lin, 2004), (Sagawa and Nagano, 2015b)], the underlying
control methodology (Sarimveis et al., 2008), the type of
analysis that is carried out (i.e. robustness, stability, etc.)
(Ivanov and Sokolov, 2013), or according to mixed criteria
(Åström and Kumar, 2014).

In Table 1, we present some applications of control the-
ory to production and supply chain systems, classified ac-
cording to subareas of application and the methods under-
lying the models. Our intention here is not to present an
extensive review, but rather to enumerate different possi-
bilities and to provide few references in each category, as
examples.

Other applications based on model predictive control or
robust optimal control are not listed here, but can be found
in (Sarimveis et al., 2008). Also, there are some alterna-
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Table 1. Some Applications of control theory in production sys-
tems and supply chains

Area/type of appli-
cation

Applied
methodolo-
gies and
tools

References
(examples)

single-product
production-
inventory models
and extensions to
supply chain

classical
control the-
ory, block
diagrams,
transfer
functions

(Towell,
1982; Zhou
et al., 2006;
Spiegler
et al., 2016)

production-
inventory models
with single and
multiple-machines
(with or without ad-
ditional constraints)

dynamic pro-
gramming
and optimal
control

(Scarf, 1960;
Boukas and
Liu, 2001;
Gharbi and
Kenne, 2003)

multi-echelon
production-
inventory mod-
els using bills of
material as input

input-output
analysis,
Laplace or
z-transform,
probability
distributions,
NPV

(Axsäter,
1976; Grubb-
ström and
Molinder,
1994; Grubb-
ström et al.,
2010)

multiple-machine
and multi-product
systems based on
flow models

flow mod-
els, block
diagrams,
transfer func-
tions, bond
graphs

(Wiendahl
and Brei-
thaupt, 2000;
Kim and
Duffie, 2006;
Sagawa and
Nagano,
2015a)

supervisory/process
control of contin-
uous production
systems and its
integration within
the hierarchical
production planning

mixed inte-
ger dynamic
optimization
(MIDO),
mixed
integer non-
linear pro-
gramming
(MINLP)

(Monfared
and Yang,
2007; Mu-
nawar and
Gudi, 2004;
Du et al.,
2015)

production and sup-
ply chain models
with autonomous
control/decentral-
ized agents

queue length
estimator
(QLE),
pheromone,
heuristic
methods,
RFID

(Scholz-
Reiter
and Fre-
itag, 2007;
Wang and
Lin, 2009;
Barenji
et al., 2014;
Schukraft
et al., 2016)

tive formulations out of the control theory area, based, for
instance, in queueing systems, which are out of the scope
of this paper.

In the following subsection, we present the mathemat-
ical model that was adopted as basis for the simulation
model proposed in this paper.

2.1 Dynamic multi-workstation model based
on electrical components

A dynamic model based on the ideal properties of elec-
trical components is proposed in (Sagawa and Nagano,
2015a) to depict a multi-workstation system that can man-
ufacture different families of products. The model is ba-
sically composed by machines, buffers and junction ele-
ments.

The machines are compared to resistors and their pro-
cessing frequency Ui correspond to 1

R , where R is an ideal
resistance. Similarly, the buffers are seen as ideal ca-
pacitors with capacitance C, which corresponds to their
storage capacity (Ferney, 2000). The junctions are used
to couple these manufacturing elements and to depict the
configuration of the production flow in the system, i.e. to
represent the different process routings of each product
or product family (Sagawa and Nagano, 2015a). When
a given machine outputs flow to m workstations down-
stream, it is coupled to these workstations by means of
a divergent junction that imposes the conservation of flow.
Similarly, the upstream flows coming from different work-
stations to a given workstation are merged by means of a
convergent junction that conserves the total flow (Sagawa
and Nagano, 2015a; Ferney, 2000). The discussed model
is continuous and deals with 3 variables: the production
flow f , the production volume q and the effort e. The
production volume corresponds to the integral of the flow,
and the effort is used as an auxiliary variable, for cou-
pling a machine and its precedent buffer, as well for the
approximation of a discrete system as a continuous sys-
tem (Ferney, 2000). The basic equation of the model is
derived from the well-known constitutive equations of the
ideal electrical components previously mentioned, and is
shown in (1). The variables and parameters of this equa-
tion were already mentioned in the text. The index i de-
notes a given workstation, the index s applied to the flow
or effort variables denotes the output of this station, and
the index e denotes its input. Eq. (2) is based on the afore-
mentioned integral relation between the production vol-
ume q and the flow variable f , likewise the electric charge
stored in a capacitor is defined as a function of the integral
of the electric current. In the context of manufacturing,
q̇i(t) is interpreted as a rate of material storage or con-
sumption, expressed as the difference between the input
and output flow of a workstation.

fsi =Ui

[
qi(t)
Ci

+min{1,qi(t)}− esi(t)
]

(1)

q̇i(t) = fei(t)−Ui min{1,qi(t)} (2)
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- Set the parameters of
the simulation

- Call the Simulink
model

- Calculate the
performance measures

- Plot the results

Main routine

- Call the embedded
function

- Save the instantaneous
outputs of the simulation
into matrix or arrays

- integrate signals
(integration blocks)

Simulink model

Used elements:
- Timmer, multiplexers

and demultiplexers, 
integration blocks, 

linking elements, sinks, 
embedded function

- calculate the
instantaneous errors

-implement the
differential equations

- implement the
control laws

Embbeded function

Figure 1. Schematics of the simulation model

The assumption of buffers with unlimited capacity allows
simplifying (1), and the combination of (1) and (2) yields
the basic state equation of a workstation, presented in (3).

q̇i(t) = fei(t)−Ui min{1,qi(t)} (3)

This basic equation and the constitutive equations of the
junctions were applied to a 11-workstation production sys-
tem, as presented in (Sagawa and Nagano, 2015a), result-
ing in the state model shown in (4).



q̇1
q̇2
q̇3
q̇4
q̇5
q̇6
q̇7
q̇8
q̇9
q̇10
q̇11


=



−1 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0
0 0.4300 −1 0 0 0 0 0 0 0 0
0 0.2508 0.5118 −1 0 0 0 0 0 0 0
0 0.1538 0.3140 0 −1 0 0 0 0 0 0
0 0.0170 0.0347 0 0 −1 0 0 0 0 0
0 0.0175 0.0020 0.2811 0.2811 0 −1 0 0 0 0
0 0.0087 0.0010 0.1399 0.1399 0 0 −1 0 0 0
0 0.0161 0.0018 0.2588 0.2588 0 0 0 −1 0 0
0 0.0200 0.0023 0.3204 0.3204 0 0 0 0 −1 0
0 0 0 0 0 0 0.2407 0.2407 0.2407 0.2407 −1





U1 min{1,q1}
U2 min{1,q2}
U3 min{1,q3}
U4 min{1,q4}
U5 min{1,q5}
U6 min{1,q6}
U7 min{1,q7}
U8 min{1,q8}
U9 min{1,q9}

U10 min{1,q10}
U11 min{1,q11}


+



U01
0
0
0
0
0
0
0
0
0
0


(4)

3 Simulation Model with a PI Con-
troller

A simulation model based on the presented state equa-
tions was implemented using Matlabr and Simulinkr. It
included a proportional-integral (PI) controller, as men-
tioned. The structure of this model, as well as the executed
instructions, are shown in Fig. 1. As it can be seen, the rel-
evant parameters of the simulation are defined in the main
routine. After that, this routine calls the Simulink model
(Fig. 2), which contains the block diagram of the dynamic
model with the controller. The computation of the state
equations is performed by a user-defined function embed-
ded in the Simulinkr model.

After the iterations are carried out for the total simu-
lated time, the main routine compiles the results and calcu-
lates the performance measures. For the implementation
of a proportional-integral controller, integration blocks
(1/s) of the first level should be applied to the instanta-
neous material storage rates q̇i, while second level integra-
tions should be applied to the relative errors in the stock
levels, as it can be seen in Fig. 2.

Figure 2. Schematics of the model build in Simulinkr

Inputs

• reference processing frequency of 
the machines Uip (steady state)

• reference levels of the buffers qjc

• initial levels of the buffers qi0

• coefficients of the state model 
matrix

• parameters of the PI controller 
(gains)

Outputs

• instantaneous rate of 
material storage

• instantaneous 
processing frequency of 
the machines Ui(t)

• relative errors ej(t)

Processing

• Step 1: calculation of the relative errors  ej(t) = (qj(t)– qjc)/ qjc

• Step 2: application of the control law, i.e., calculation of the instantaneous 

frequencies Ui(t) according to the equations shown

• Step 3: calculation of the instantaneous rate of material storage                  , i.e. 
implementation of the state equations

Embedded 
function

�� (�) 

�� (� + 1) 

Figure 3. User-defined function implemented in the simulation
model

As mentioned, the state model is implemented by
means of a user-defined function. The inputs of this func-
tion are those parameters defined in the main routine, and
presented in Fig. 3.

With these inputs, the function calculates, at each time
t, the relative errors of the stock levels, shown in (5), and
implements the control law. For an integral controller,
this control law is shown in (6). With the values of the
instantaneous processing frequencies of the machines Ui,
resulting from the implementation of the control law, the
instantaneous rates of material storage q̇i(t + 1) are then
calculated. These rates are integrated in the integration
blocks and fed back to the model

epj(t) =−e j(t) =
q jc−q j(c)

q jc
(5)

Ui(t) =Uip

(
1+ kpepj(t)+ ki

∫
epj(t)dt

)
(6)

where q̇ j(t) is the instantaneous amount of material stored
in buffer j, epj(t) is the relative error considering the actual
level q̇ j(t) and the reference level q jc;Uip is the reference
for the processing frequency of machine i, considering the
customer demand fulfillment in the steady state; kp is the
proportional gain of the controller; and ki is the integral
gain. The presented equations apply for the case where the
buffer j immediately succeeds the machine i. If machine i
is succeeded by more than one buffer, the minimum value
of e j is computed.
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Figure 4. Processing frequencies of the machines for a test car-
ried out with kp = 0.05 and ki = 0.05 (whitout saturation limits).

4 Test and Results
The proposed simulation model was applied to the 11-
workstation system presented in (Sagawa and Nagano,
2015a). For an initial analysis, it was of interest to con-
sider the warm-up of the manufacturing system and its
transition to the regular operation, that is, to consider the
situation where all the buffers are empty (qi0 = 0 for all
i) and the system starts to work, aiming to attend the cus-
tomer demand and to reach the desired levels of work in
process. This starting condition is somewhat similar to
the application of a step input, conventionally used for the
study of the response in dynamic systems. In our case,
however, each buffer has a different reference level, since
these levels were defined as a multiple of the amount of
material cumulated in each buffer when the system was
simulated without control, i.e., when the open-loop sys-
tem was simulated. In order to allow comparisons, we
adopted a multiplication factor of 100 times, as in (Sagawa
and Nagano, 2015a). As output variables of the tests, we
analyzed the values of the processing frequencies of the
machines Ui(t) (the controlled variables); the relative pro-
cessing frequencies, i.e. (Ui(t)−Uip)/Uip; and the rel-
ative errors in the buffer levels (ei) over time. This last
measure indicates the variation of the work in process in
the system. Depending on the selected values of the gains,
the machines are led to operate with processing frequen-
cies above the reference frequencies, in order to fulfill
the buffers. In Fig. 4, the source of material works with
a processing frequency that is 60% greater than the fre-
quency that attends the customer demand in the medium
term, i.e. in the steady state. This control command gen-
erates a surplus of material in the buffers. When the con-
troller receives this information, it reduces the processing
frequency of the machines. This reaction, however, is ex-
cessive, so that the machines are shutdown. The saturation
of the integral controller could be a relevant parameter of
influence for the control of the processing frequencies of
the machines. Due to the saturation in PI controllers, the
integrator may drift to undesirable values, since it tends
to produce progressively larger control signs. This effect
is known as windup of the integral controller (F Franklin
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Figure 5. Evolution of the relative errors in stock levels (WIP),
for saturation limits of ±10, kp = 0.05 and ki = 0.001.
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Figure 6. Evolution of the relative errors in stock levels (WIP),
for saturation limits of ±1, kp = 0.05 and ki = 0.001.

et al., 1994; Moreno-Valenzuela, 2008). Therefore, addi-
tional tests were performed with the establishment of sat-
uration limits for the integral controller. Some results are
shown in Fig. 5-8. The values of the gains were kept
constant and different saturation limits were tested.

The presented results indicate that, with narrower sat-
uration limits, the overshoots in the WIP (represented by
the relative errors) were significantly reduced. In Fig. 5,
the overshoot is of 20 times the reference level and in
Fig. 5, it is of 10 times. Although punctual instabilities
in the control of some machines arose (Fig. 7), the oper-
ation of the system also became smoother with the estab-
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Figure 7. Evolution of the processing frequency of the ma-
chines, for saturation limits of ±10, kp = 0.05 and ki = 0.001.
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Figure 8. Evolution of the processing frequency of the ma-
chines, for saturation limits of ±1, kp = 0.05 and ki = 0.001.

lishment of saturation limits.
The exploratory tests have also shown that the over-

shoot in the processing frequencies of the machines tend
to increase with the increase of the integral gain. Hence,
the results could be further improved by means of system-
atic experiments and the application of control tools for
the optimization of these parameters (gains and saturation
limits).

From the managerial perspective, the controller can
lead the system to undesired operating points, depending
on parameters set, because working either too far above or
below the regular capacity imply higher operational costs.
Moreover, there are well-known relations among WIP, cy-
cle times and throughput rate. An increase in WIP may
engender a relevant increase in the cycle time (lead time),
without producing any effect in the throughput rate of the
production system (Hopp and Spearman, 2001). Longer
cycles times usually result in delayed jobs, rush orders,
and difficulty of coordination. Based on the aforemen-
tioned reasons, it is of interest, in our model, to find the
parameters that enable to reduce the overshoot of WIP
and, meanwhile, to reduce the oscillations in the process-
ing frequencies of the machines.

The variations in the processing frequencies represent,
in fact, capacity additions or reductions. Thus, the pro-
posed simulation model may provide insights on how
much capacity should be increased or decreased over time
in order to: 1. guarantee adequate levels of WIP, to ab-
sorb fluctuations; 2. avoid an excessive increase in the
cycle/throughput times; 3. smooth operations, so that the
operational costs stay low. These capacity adjustments can
be implemented in various ways, i.e. overtime, subcon-
tracting, adding/renting extra resources, or reducing the
utilization of the machines.

In practice, the goal of production managers is to keep
the operations stable, as much as possible, so that no extra
costs are incurred (although this pursuit of stability should
not unreasonably compromise the flexibility to attend cus-
tomers). In MRP systems, the short term variations in the
plans are usually smoothed or prevented by applying time
fences to demand, planning and/or order release. This so-
lution is efficient to keep the costs under control, but dis-

regards the dynamics of the production systems, so that
backorders and stock outs in the short term may occur. In
this sense, the use of the dynamic modeling and simula-
tion seems to be an interesting alternative or complement
to other methodologies used in the production engineering
area. The presented formulation is also relatively simple
and easy to implement, which is an advantage in terms of
use.

In order to implement it, the production system un-
der consideration must be first modeled according to the
methodology proposed in (Sagawa and Nagano, 2015a),
which requires data related to the production routings, the
historical demand for the end products, the product mix
and the capacity of the machines (for more details, please
refer to (Sagawa and Nagano, 2015a)). The mentioned
methodology presents a generalization capability due to
its modularity. The basic manufacturing entities, each one
associated to its respective constitutive equation, may be
arranged to represent different shop floor configurations,
such as single machine, parallel machines, flow shop, job
shop and open shop. The resulting state model will be a
combination of the expressions that represent the involved
entities. After this model is defined and implemented in
a software for dynamic simulation of continuous systems,
the adequate parameters of the controller must be defined,
aiming to reduce the WIP levels and to smooth the os-
cillations. The generalization of the presented model re-
quires an endeavor in this direction, since for each partic-
ular manufacturing system, a different type of controller
with specific tuning could provide the best results. Thus,
the control synthesis for different manufacturing systems
is still an issue to be tackled.

The analysis of the results, especially in terms of the rel-
ative processing frequencies of the machines, show how
much and when the capacity of each workstation should
be increased or reduced, in order to achieve the desired
levels of WIP. One practical limitation of the model refers
to the level of aggregation of the data. Therefore, it can
indicate that, for a certain period of time, a given station
should work 5% above its regular capacity, but it does not
give indications regarding the detailed scheduling level,
i.e. indications about which specific jobs/products to pro-
cess with this extra capacity, in which sequence, and so
on. In other words, the model is suitable for the planning
level, instead of for the detailed execution level. In order
to overcome this limitation, it could be used together with
discrete event simulation models, or future efforts could
be undertaken towards incorporating variables that con-
cern the scheduling level, such as set up times of the ma-
chines or processing times of individual jobs.

5 Final Remarks
In this paper, we proposed a closed-loop simulation model
with a PI controller to depict the dynamics of multi-
workstation production system. The model was imple-
mented and simulated in Matlabr and Simulinkr con-

EUROSIM 2016 & SIMS 2016

463DOI: 10.3384/ecp17142459       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



sidering the warm-up of the system, when the initially
empty buffers should be filled to desired levels, while the
medium-term customer demand is fulfilled.

The results of exploratory tests showed that the satura-
tion limits of the integral controller exert a relevant influ-
ence in the reduction of the work in process, but may also
introduce some punctual instabilities. In future works, this
parameter and the gains of the controllers could be simul-
taneously optimized, by means of the application of con-
trol theory tools and the execution of systematic experi-
ments.

In terms of operations management, the proposed sim-
ulation model has the potential to give prescriptive direc-
tions about the dynamic adjustment of the capacities, in
order to keep the WIP in the desired levels and the pro-
duction costs relatively low, when the smoothing of capac-
ity variations is set as a goal. In conventional production
planning and control systems, based on MRP, the short
term variations in production are avoided by means of the
implementation of time fences to demand, planning or or-
der release, disregarding the dynamics of the system and
its ability to react to disturbances. In this sense, the pre-
sented tool can complement the existing tools for analysis
and control of production systems and supply chains, al-
lowing to take the perspective of the dynamics into con-
sideration.
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