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Abstract

In this work, the effect of the 2-D Optical Orthogonal
Spatial Pattern Codes (OOSPC) is evaluated
quantitatively for the transmission of medical images
over Multi-core optical fiber using a double blind
CDMA technology. The implemented method assumes
that P medical practitioners or users are working
simultaneously and transmitting images from one site
to another. The transmitted images are encoded using a
two-steps procedure: 1) coding the pixels (users) using
a particular OOSPC and 2) coding the bits using time
orthogonal basis functions. The encoding procedure
follows the decomposition of an image into its bits to
increase the transmission rate by performing a parallel
transmission. Then, the encoded information from
different images is combined using a multiplexer and is
transmitted over the multi-core optical fiber. The
transmitted information is de-multiplexed at the
receiver side to identify the user that is transmitting the
information and consequently, to reconstruct the
original image i.e. is decoded using the same double
blind Orthogonal Signatures. The performance is
quantitatively evaluated using Monte-Carlo simulation
techniques using different criteria, namely, the
Performance Test, The Bit Error Rate, the Root Mean
Square Error and the Pixel Error Rate.

Keywords: medical image transmission, CDMA, bit
error rate, orthogonal spatial signature, fiber optics

1 Introduction

Over the past years, the transmission of image data
over various transmission or link mediums (such as
cables, local arca networks, wide area networks,
wireless communications and Fiber optics) has gained
a big momentum [Kohli, 1989;Tsiknakis et.al., 1996].
The transmission of data, especially of a large number
of images, within the same medical facility or between
facilities from one site to another is of great importance
in order to visualize, process and/or analyze the
medical information and consequently to achieve a
better diagnosis by various medical practitioners. In
this context, the exchange of information will lead to
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the improvement of the health and the quality of the
patient’s life. Besides, the cost of the health care can
be reduced, especially for patients who live in rural
regions.

These reasons have given the impetus and the driving
force to research groups and data service providers to
concentrate their works in this area. Furthermore, the
research has been geared toward the transmission of
data using multiple access transmission technologies
such as Time Division Multiple Access (TDMA) and
Frequency Division Multiple Access (FDMA) [Kohli,
1989; Tsiknakiset.al. 1996]. However, the latter
techniques require very sophisticated network
management and scheduling approaches [Kohli,
1989;Tsiknakiset.al., 1996]. Thus, Code Division
Multiple Access (CDMA) approach has been used in
image transmission to mitigate and/or to reduce such
complexities [Tsiknakis et.al., 1996; Chang et. al.,
1998; Abtahi et.al., 2002; Kitayana, 1994; Lisimachos
et. al., 2005; Chang et. al. , 1996; Kamakura et. al.,
2003; Peng et. al. , 2008; Yang et.al., 2011]. The
techniques introduced in references [Tsiknakis
et.al.,1996; Chang et. al., 1998; Abtahi et.al., 2002;
Kitayana, 1994; Lisimachos et. al., 2005; Chang et. al.
, 1996; Kamakura et. al., 2003] have used a spatial
CDMA approach which in turn ensures a fast
transmission. However, they have failed to preserve the
pixel’s intensities of the transmitted image at the
receiver. The quality of the reconstructed image is of
great importance in healthcare and medical
applications in which a large number of images can be
transmitted between various sites. That is because any
distortion or error in the associated received images
would lead to an inaccurate diagnosis and analysis.
Consequently, wrong decisions will be made by
various medical practitioners and could greatly affect
the patient's life.

The CDMA-based approach has several advantages.
The same range of time or the same frequency
bandwidth can be occupied by several users
simultaneously. Therefore, high quality images can be
reconstructed using the highest spectrum efficiency in
conjunction with several spatial Optical Orthogonal
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Signature Patterns (OOSPs) [Yang et. al., 1998].
Consequently, the large bandwidth of the optical fiber
will be an advantage in image transmission which will
improve the quality of the patient’s diagnostic.
However, the information (data, images) should be
transferred authentically and with a sufficient accuracy.
Therefore, a multi access approach characterized by
high speed, high spectrum efficiency and high quality
data transmission rate is required for medical images’
transmission. Thus, a double blind CDMA technique
using a multi-core optical fiber was introduced to
improve the reconstructed image's quality at the
receiver end and to increase the transmission of the
data rate [Abche et.al., 2011] between the various
medical facilities. In this work, the effect of 2D spatial
OOSPC on the latter CDMA based approach is studied.

This paper is organized as follows: the system
model is presented in Section II. The method of
evaluation using Monte Carlo simulation techniques is
given in Section III. Also, different criteria to study its
performance are introduced. The corresponding results
are presented, analyzed and discussed in Section IV
and a conclusion is given in Section V.

2 System Model

Figure 1 illustrates the implemented OCDMA
approach to investigate the effect of 2D spatial
OOSPCs on the transmission of images. It is assumed
that P healthcare practitioners (users) are transmitting
simultaneously medical images from one location to
another over a multi-core optical fiber. Each image
consists of MxN pixels and the pixel’s intensity is
represented by n bits. The optical encoding (temporal
and spatial) and decoding of the images constitute the
principal concept of the CDMA based technique
[Abche et.al., 2011].

The encoding operation requires the decomposition
of each image into n-binary images using the Bit Plane
Decomposition (BDP) technique [Gonzalez et.al.,
2008]. That is, one image is generated from the least
significant bit (Bit 0) of each pixel's intensity. Another
binary image consists of bit 1 of each pixel's intensity.
Similar images are generated for bit 2 until bit n (i.e.
the most significant bit).

The next step involves the temporal encoding of
each pixel’s intensity. That is, the bits are converted
from serial-to-parallel for transmission purposes. Each
bit is converted to an optical signal using a broadband
light source (such as a light emitting diode). Then, each
generated ultra-short light pulse is temporally encoded
using a sequence of optical delay lines and is selected
according to pre-determined basis functions. The
results of each pixel's temporal encoding process (from
bit 0 to bit n) are multiplexed using a passive optical
coupler.

Then, the output of the multiplexer is spatially
encoded using a particular 2-D spatial signature
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(OOSP). This procedure is crucial for wuser's
identification by using a specific optical mask. The
orthogonality between spatial signatures (OOSPs) will
impose certain conditions on the spatial correlation
(auto or/and Cross) in order to distinguish one 2-D
spatial signature from the other signatures [G-C Yang
et.al., 1998]. This double blind approach ensures the
ultra high transmission rate and the accuracy needed in
most medical imaging applications. The results of the
spatial encoding procedure from all users are combined
using a multiplexer and the corresponding information
is transmitted over the multi-core fiber.
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Figure 1.The implemented OCDMA approach.

At the receiver end, the signal is passively de-
multiplexed using a passive optical splitter. It is fed to
a set of optical decoders to identify the users, to extract
the corresponding information and to reconstruct the
original images. The decoding process involves the
spatial decoding of the information using the same
spatial mask that is used for encoding purposes. The
identification of the desired user is based on the auto-
correlation with the desired pixel and the cross-
correlation with the interfering pixels. Then, the
corresponding information is fed as inputs to n
branches in which the desired signal is decoded by the
same encoding temporal code. Each branch
corresponds to a particular bit of the desired n-bit pixel.
The decoders' outputs are converted to -electrical
signals using photo-detectors. Finally, the estimated
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bits are converted from parallel-to-serial to form the
pixels’ intensities.

3 Method of Evaluation

The performance of the implemented OCDMA
approach is quantitatively evaluated using Monte-Carlo
simulation techniques. The simulated images (desired
and the interfering) are generated randomly. The
intensity of each pixel is represented by 8-bits and each
bit is generated uniformly and randomly. That is
followed by decomposing each image using the BPD
approach into 8 binary images and a temporal coding is
generated according to the Galois Field (GF(11)).
Then, the image is encoded spatially using a 2-D
OOSPC which is selected randomly from a pool of
generated signatures. The OOSPCs are generated by
assuming the size of the core fiber to be p by p (in this
work p=7) [Yang et. al., 1998]. The pool consists of
OOSPCs with a Cross Correlation (CC) and an Auto-
Correlation (AC) of zero, one and/or two. Each 2-D
signature is assigned to a specific image i.e. user.
Having combined the information from the desired and
interfering images, the results are transmitted over the
optical fibers. At the receiver, the information is
collected and the user is identified by performing the
correlation of the desired and received patterns. Then,
the coded bit stream is extracted by correlating the
received data with the temporal codes that are
implemented at the transmitter. Subsequently, the
transmitted image is reconstructed and is evaluated
quantitatively by comparing the latter with the original
image because it is hampered by users’ interference.

In this work, various 2-D spatial patterns are
implemented to compare their effects on the
transmission of medical images: the Yang &Kwong
approach [Yang et. al., 1998], the Extended Hyperbolic
Congruential Hop Code (EHC) [Wronskiet.al., 1996]
and several versions of The Frequency-Hopped Spread
Spectrum (FHSS) code [Shaar et. al.,, 1984.]. The
performance of the presented approach is quantitatively
evaluated using several similarity measures: the Bit
Error Rate (BER), the pixel Error Rate (PER), the Root
Mean Square Error (RMSE) and the Performance Test
(PT).

3.1 Bit Error Rate (BER)

In image transmission, the BER can be defined as the
percentage of bits that are transmitted in error with
respect to the total number of bits. For example, a
transmission with a BER of 10™° means that one bit is
in error when 1,000,000 bits are transmitted.

3.2 Pixel Error Rate (PER)

As it is mentioned earlier, an image consists of MxN
pixels and each pixel consists of several bits.
Therefore, if one bit is transmitted in error, the
corresponding intensity value of the pixel will differ
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from its original value. In medical applications, the
quality (integrity) of the received image is of great
value and importance because any variation of the
pixels' intensities can lead to a different appearance
and consequently medical practitioners can provide an
inaccurate diagnosis. Therefore, if the pixel’s intensity
is transmitted with an error; the reconstructed values of
the received image will vary from the corresponding
original intensity values. Besides, the error’s severity
depends on the bit’s location that is transmitted in error
over the multi-core optical fiber (bit O-the least
significant bit, bit 1... bit n -the most significant bit).

3.3 Root Mean Square Error (RMSE)

The RMSE is a quantitative criterion to measure the
performance of a particular approach [Gonzalez et. al.,
2008]. The measure is defined in terms of the
difference between the original image (I(i,j)) and the
reconstructed image ( Lcons(i,)) ) at the receiver end:

RMSE = |—— 3 3 (1, j)—1 i, )’
= MN Q) recons(ﬂj)) (1)

i=1j=1

3.4 Performance Test (PT)

The Performance Test (PT) is a quantitative measure to
evaluate the similarity of two images. It is defined in
terms of two reference images: "a high quality image
(Isn) and a low quality image (Iworst)”.  The high
quality image is assumed to be the original image and
the latter is the objective of the transmission approach.
On the other hand, the worst image is defined as to be
an image where all transmitted bits are wrong. The PT
is defined as [Fuderer, 1989]:

2
recons ||

pT :1_|I|full -1

If the reconstructed image is similar to the original
image, it is evident that the PT measure yields a value
of 1. If the reconstructed is similar to the worst image,
the PT has a value of 0. Therefore, the closer the
reconstructed image is to the original image, the closer
the PT value is to 1 and the better is the performance of
the tested approach. Thus, the PT measure varies
between 0 and 1 depending on the accuracy of the
reconstructed image.

)

2
I full — Iworst"

4 Results and Discussion

In this section, the results of the performed simulations
are presented. The study is performed quantitatively
using Monte-Carlo simulation Techniques. First, the
principal 2-D Optical Orthogonal Spatial Pattern Codes
(OOSPC) are generated by implementing the
appropriate equations for each code-generation
approach. Then, a pool (or pools) of 2-D spatial
patterns can be constructed from the initial principal set
by performing a row and/or a column shift. At this
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stage, the pool consists of all the generated signatures
that are correlated i.e. a pool could contain all the
signatures that are characterized by an auto-correlation
Aa of 0 and/or 1 and a cross-correlation Ac of 0 and/or
1. Consequently, the latter patterns (i.e. OOSPCs) are
kept and each one will be assigned to identify a
particular user (i.e. doctor) who is transmitting medical
information (such as three dimensional images) over
the multi-core optical fiber using CDMA approach.
Thus, various pools can be generated based on the
values of the auto-correlation and/or the cross
correlation.

In this context, Figure 2 shows the four principal
OOSPC’s that are constructed using Yang and
Kwong's approach and from which various pools of 2-
D patterns can be generated [Yang et. al., 1998]. 1t is
assumed that the medical images are transmitted over a
7 by 7 Multi-core Optical fiber. In each pattern, a
white pixel reflects that the information is transmitted
through the corresponding optical fiber. These four
patterns are characterized by a correlation of zero. The
generation requires the definition of two parameters
and a prime number o in order to execute the
corresponding equations [Yang et. al, 1998].
Similarly, the 2-D signatures of the other techniques
are generated and are implemented in this work for
comparison purposes.

(a) (b)
(©) (d)

Figure 2.The principal codes generated using Yang-
Kwong’s approach.

Figures 3, 4, 5 and 6 show the dependence of the
BER, the PER, the RMSE and the PT on the number of
users (N;) who are transmitting information
simultaneously, respectively. Each figure shows the
display of five plots. Each plot corresponds to a
different approach: Yang-kwong (black color) EHC
(blue color), FHSS-1 (red color), FHSS-2 (green color)
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and FHSS-3 (yellow color). The 2-D spatial signatures
are divided into two pools. The first pool (Pool A)
includes all the signatures that have a correlation of 0
or 1. The remaining patterns (correlation = 2) are
included in the second pool (Pool B). As is already
stated, the signatures are selected randomly from the
first pool and then they are selected randomly from the
second pool when the first pool is empty.

Bit Error Rale

7. s Yang-Kwong

i i i i i
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Number of interferer

Figure 3.Dependence of BER on N; for Various 2-D
OOSPCs.
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Figure 4.Dependence of the PER on N; for Various 2-D
OOSPCs.
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Figure 5.Dependence of the RMSE on N; for Various 2-D
OOSPCs.

The results of the Monte Carlo simulations illustrate
the following:
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i) The RMSE, BER and PER increase as the
Number of users (N;) transmitting over the multi-core
fiber is increased. This is reflected in a higher error
value.  Similarly, as N; is increased, the PT is
decreased i.e. the received image is closer to the worst
image. Thus, intensities of the desired image are
becoming more and more different from the original
intensities. This observation is associated with each 2-
D OOSPC code.

i S—

o5 20 | Yang-Kwong
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L L L L X " . L . )
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Mumber of Interferer

Figure 6.Dependence of the Performance Number on N;
for Various 2-D OOSPCs.

i) The EHC and FHSS-1 based OCDMA
approaches exhibit similar results for BER, PER, PT
and RMSE. Besides, for a given number of users, the
BER, PER, RMSE and the PT have different errors for
various 2-D OOSPC codes.

iii) A transmission error is observed when 3 users
are sending images simultaneously in conjunction with
the desired user using the Yang-Kwong approach. On
the hand, the FHSS-2 algorithm and FHSS-3 algorithm
preserve the integrity of the transmitted information
with 14 (FHSS - 2) and 16 interferers (FHSS - 3) ,
respectively (i.e. BER=0, PER=0, RMSE=0 and PT
=1). Thus, it is evident that the FHSS-3 algorithm
shows the best results among the five algorithms and
consequently, the best encoding scheme (in this work)
to send medical images over the transmission medium
and to preserve the quality of these images. Also, the
FHSS-2 algorithm is the second best code until 25
users are transmitting simultaneously.  However, it
has to be kept in mind that the FHSS-3 algorithm
generates 2-D 8x8 Spatial Patterns whereas the FHSS-
2 algorithm generates 2-D 7x7 signatures. This might
explain the higher number of users (16 instead of 14).
For completion purposes, the transmission without an
error can be achieved with 7 and 8 interferers using the
EHC and the FHSS-1 spatial signatures, respectively.

iv) While EHC and the FHSS-1 algorithms are the
worst approaches when the number of interferers is
greater than 17, the Yang-Kwong approach exhibits the
worst error for Ni less than 17. That is reflected in a
higher BER (Figure 3), a higher PER (Figure 4), a
higher RMSE (Figure 5) and a lower performance
number (Figure 6). This could be due to the fact that
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the corresponding 2-D OOSPCs have a higher cross-
correlation.

v) The transmission error can be associated with the
cross correlation at the receiver end in order to identify
the desired user and the selection of the weight or
threshold value. Therefore, it might be that the cross
correlation differs from one family of codes to another.

As is already stated, the 2-D OOSPCs are selected
from two pools and the correlation is the factor that
determines the signatures in each pool. In this Monte
Carlo experiment, a third pool (Pool C) is formed and
it consists of all the signatures (Pool A and Pool B).
Consequently, the signature is selected randomly from
the pool C and is assigned to the user as outlined
earlier (referred to as Scenario 1). Consequently, the
corresponding results of each technique are compared
with the results under the condition that the signatures
are generated from Pool A and then from Pool B
(referred to as Scenario 2). Figures 7 and 8 show the
Bit Error Rate and the RMSE as a function of the
number of interferers, respectively. The Double Blind
CDMA approach is implemented with the
incorporation of the FSSS-2 spatial encoding. Each
figure illustrates two plots. While the first plot
corresponds to Scenaiol (blue color), the second
reflects the results of Scenario 2 (green color).

10°

""""""""""

Bit Emor Rate
=

0 5 1:3 115 EI'J 2!5- JID 3‘5 .I.J'J JIS

Humber of Interferer
Figure 7. Dependence of BER on the selection of
signatures for various number of interferer (FHSS-2
algorithm).

The results clearly show that the transmission of
medical images is achieved more accurately using
Scenario 2. That is, the integrity of the transmitted
data is more preserved. First, as long as the number of
users is less than six, the information is transmitted
without an error under Scenario 1. On the other hand,
fourteen users can transmit data simultaneously
without any error at the receiver end. In other words,
the reconstructed images will be exactly similar to the
original transmitted images. This is due to the fact that
the selected signatures have smaller correlation values
and consequently the identification of the user is much
easier. Second, for a given number of users, the BER
and the RMSE values are higher for Scenario 1 than for
Scenario 2. This observation remains until more than

470

September 12th-16th, 2016, Oulu, Finland



EUROSIM 2016 & SIMS 2016

Rool Mean Square Ermor
kY
.

- 1 1 1 1 1 1 1 ]
0 5 10 15 20 25 30 35 40 45 50
Number of Interferer

Figure 8.Dependence of RMSE on the selection of
signatures for various number of interferer (FHSS-2
algorithm).

forty users are transmitting information at the same
time i.e. the values of BER and RMSE become almost
the same. Similar observations can be deduced for the
dependence of PER and the Performance Test on the
number of interferers using the FHSS-2 encoding
scheme.

In the same context, Figures 9 and 10 illustrate the
effect of the two scenarios on the BER and the RMSE
for various numbers of users using the 2-D spatial
pattern  encoding FHSS-3, respectively. The
corresponding results lead to the same conclusions that
have been stated when the simulated images are
transmitted over multi-core optical fiber and encoded
using the FHSS-2 2-D spatial codes. In other words,
Scenario 2 provides better results than Scenario 1. That
is, the number of wusers working without any
transmission errors is higher for the second scenario
(15 vs 5) and the errors associated with scenario 2 are
lower for a given number of users. Unlike the FHSS-2
based transmission approach, it can be observed that
different errors exist between the two scenarios for a
higher number of users. = However, as it is stated
earlier, this might be due to the fact that the simulated
images are assumed to be transmitted over a 7 by 7
multi-core optical fiber using FHSS-2 code and over an
8 by 8 using the FHSS-3 code.
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Bit Eror Rate
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Figure 9.Dependence of BER on the selection of
signatures for various number of interferer (FHSS-3
algorithm).
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Figure 10.Dependence of RMSE on the selection of

signatures for various number of interferer (FHSS-3

algorithm).

5 Conclusions

In this work, the effect of the 2-D OOSPCs on the
transmission of medical images using a double blind
CDMA based technology is investigated. The
approach provides fast transmission rates through
spatial coding and preserves the simplicity and pixels'
information through the temporal coding of the pixels'
intensities. It is assumed that P users are working and
transmitting information (i.e. medical images)
simultaneously from one site to another within the
same facility or between different facilities. The main
concepts of the double blind CDMA approach are the
optical encoding (temporal and spatial) and the optical
decoding of the images. The performance is
quantitatively evaluated using Monte Carlo simulation
techniques. Several measures (Bit Error Rate, Pixel
Error Rate, Root Mean Square Error and Performance
Test) are computed for comparison purposes. The O-
CDMA transmission technique yields better results
when the 2-D spatial FHSS-3 or FHSS-2 signatures are
incorporated and are assigned to the medical
practitioners who are transmitting the corresponding
information.  The latter conclusion is reflected in
lower values of BER, PER and RMSE and a higher
value of PT for a given number of interferers as well as
in the number of users for which the error of
transmission is  zero. Besides, it is highly
recommended to select first the signatures from a pool
that are characterized by a correlation value of 0 and 1,
followed by a selection from a pool characterized by a
correlation of 2. Subsequently, this will lead to the
transmission of images without an error with more
users using any 2-D spatial encoding scheme in
general, and the FHSS-2 or FHSS-3 in particular.
However, it has to be mentioned that the approach
based on FHSS-3 encoding scheme yields a better
performance than the FHSS-2 based O-CDMA
approach.
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