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Abstract
In this work, the effect of the 2-D Optical Orthogonal 
Spatial Pattern Codes (OOSPC) is evaluated 
quantitatively for the transmission of medical images 
over Multi-core optical fiber using a double blind 
CDMA technology. The implemented method assumes 
that P medical practitioners or users are working 
simultaneously and transmitting images from one site 
to another. The transmitted images are encoded using a 
two-steps procedure: 1) coding the pixels (users) using 
a particular OOSPC and 2) coding the bits using time 
orthogonal basis functions. The encoding procedure 
follows the decomposition of an image into its bits to 
increase the transmission rate by performing a parallel 
transmission. Then, the encoded information from 
different images is combined using a multiplexer and is 
transmitted over the multi-core optical fiber. The 
transmitted information is de-multiplexed at the 
receiver side to identify the user that is transmitting the 
information and consequently, to reconstruct the 
original image i.e. is decoded using the same double 
blind Orthogonal Signatures. The performance is 
quantitatively evaluated using Monte-Carlo simulation 
techniques using different criteria, namely, the 
Performance Test, The Bit Error Rate, the Root Mean 
Square Error and the Pixel Error Rate. 

Keywords: medical image transmission, CDMA, bit
error rate, orthogonal spatial signature, fiber optics

1 Introduction
Over the past years, the transmission of image data 
over various transmission or link mediums (such as 
cables, local area networks, wide area networks, 
wireless communications and Fiber optics)  has gained 
a big momentum [Kohli, 1989;Tsiknakis et.al., 1996]. 
The transmission of data, especially of a large number 
of images, within the same medical facility or between 
facilities from one site to another is of great importance 
in order to visualize, process and/or analyze the 
medical information and consequently to achieve a 
better diagnosis by various medical practitioners. In 
this context, the exchange of information will lead to 

the improvement of the health and the quality of the 
patient’s life.  Besides, the cost of the health care can 
be reduced, especially for patients who live in rural 
regions.  
These reasons have given the impetus and the driving 
force to research groups and data service providers to 
concentrate their works in this area.  Furthermore, the 
research has been geared toward the transmission of 
data using multiple access transmission technologies 
such as Time Division Multiple Access (TDMA) and 
Frequency Division Multiple Access (FDMA) [Kohli, 
1989; Tsiknakiset.al. 1996]. However, the latter 
techniques require very sophisticated network 
management and scheduling approaches [Kohli, 
1989;Tsiknakiset.al., 1996]. Thus, Code Division 
Multiple Access (CDMA) approach has been used in 
image transmission to mitigate and/or to reduce such 
complexities [Tsiknakis et.al., 1996; Chang et. al., 
1998; Abtahi et.al., 2002; Kitayana, 1994; Lisimachos 
et. al., 2005; Chang et. al. , 1996; Kamakura et. al., 
2003; Peng et. al. , 2008; Yang et.al., 2011]. The 
techniques introduced in references [Tsiknakis 
et.al.,1996; Chang et. al., 1998; Abtahi et.al., 2002; 
Kitayana, 1994; Lisimachos et. al., 2005; Chang et. al. 
, 1996; Kamakura et. al., 2003] have used a spatial 
CDMA approach which in turn ensures a fast 
transmission. However, they have failed to preserve the 
pixel’s intensities of the transmitted image at the 
receiver.  The quality of the reconstructed image is of 
great importance in healthcare and medical 
applications in which a large number of images can be 
transmitted between various sites. That is because any 
distortion or error in the associated received images 
would lead to an inaccurate diagnosis and analysis. 
Consequently, wrong decisions will be made by 
various medical practitioners and could greatly affect 
the patient's life. 

The CDMA-based approach has several advantages. 
The same range of time or the same frequency 
bandwidth can be occupied by several users 
simultaneously.  Therefore, high quality images can be 
reconstructed using the highest spectrum efficiency in 
conjunction with several spatial Optical Orthogonal 
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bits are converted from parallel-to-serial to form the 
pixels’ intensities. 

3 Method of Evaluation 
The performance of the implemented OCDMA 
approach is quantitatively evaluated using Monte-Carlo 
simulation techniques. The simulated images (desired 
and the interfering) are generated randomly.  The 
intensity of each pixel is represented by 8-bits and each 
bit is generated uniformly and randomly. That is 
followed by decomposing each image using the BPD 
approach into 8 binary images and a temporal coding is 
generated according to the Galois Field (GF(11)).  
Then, the image is encoded spatially using a 2-D 
OOSPC which is selected randomly from a pool of 
generated signatures. The OOSPCs are generated by 
assuming the size of the core fiber to be p by p (in this 
work p=7) [Yang et. al., 1998].  The pool consists of 
OOSPCs with a Cross Correlation (CC) and an Auto-
Correlation (AC) of zero, one and/or two. Each 2-D 
signature is assigned to a specific image i.e. user. 
Having combined the information from the desired and 
interfering images, the results are transmitted over the 
optical fibers. At the receiver, the information is 
collected and the user is identified by performing the 
correlation of the desired and received patterns. Then, 
the coded bit stream is extracted by correlating the 
received data with the temporal codes that are 
implemented at the transmitter.  Subsequently, the 
transmitted image is reconstructed and is evaluated 
quantitatively by comparing the latter with the original 
image because it is hampered by users’ interference. 

In this work, various 2-D spatial patterns are 
implemented to compare their effects on the 
transmission of medical images: the Yang &Kwong 
approach [Yang et. al., 1998], the Extended Hyperbolic 
Congruential Hop Code (EHC) [Wronskiet.al., 1996] 
and several versions of The Frequency-Hopped Spread 
Spectrum (FHSS) code [Shaar et. al., 1984.].   The 
performance of the presented approach is quantitatively 
evaluated using several similarity measures: the Bit 
Error Rate (BER), the pixel Error Rate (PER), the Root 
Mean Square Error (RMSE) and the Performance Test 
(PT). 

3.1 Bit Error Rate (BER) 
In image transmission, the BER can be defined as the 
percentage of bits that are transmitted in error with 
respect to the total number of bits.  For example, a 
transmission with a BER of 10–6 means that one bit is 
in error when 1,000,000 bits are transmitted. 

3.2 Pixel Error Rate (PER) 
As it is mentioned earlier, an image consists of MxN 
pixels and each pixel consists of several bits. 
Therefore, if one bit is transmitted in error, the 
corresponding intensity value of the pixel will differ 

from its original value.   In medical applications, the 
quality (integrity) of the received image is of great 
value and importance because any variation of the 
pixels' intensities can lead to a different appearance 
and consequently medical practitioners can provide an 
inaccurate diagnosis.  Therefore, if the pixel’s intensity 
is transmitted with an error; the reconstructed values of 
the received image will vary from the corresponding 
original intensity values.   Besides, the error’s severity 
depends on the bit’s location that is transmitted in error 
over the multi-core optical fiber (bit 0-the least 
significant bit, bit 1… bit n -the most significant bit). 

3.3 Root Mean Square Error (RMSE) 
The RMSE is a quantitative criterion to measure the 
performance of a particular approach [Gonzalez et. al., 
2008]. The measure is defined in terms of the 
difference between the original image (I(i,j)) and the 
reconstructed image ( Irecons(i,j) ) at the receiver end: 

 (1) 

3.4 Performance Test (PT) 
The Performance Test (PT) is a quantitative measure to 
evaluate the similarity of two images.  It is defined in 
terms of two reference images: "a high quality image 
(Ifull) and a low quality image (Iworst)”.   The high 
quality image is assumed to be the original image and 
the latter is the objective of the transmission approach.   
On the other hand, the worst image is defined as to be 
an image where all transmitted bits are wrong. The PT 
is defined as [Fuderer, 1989]: 

2
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If the reconstructed image is similar to the original 
image, it is evident that the PT measure yields a value 
of 1. If the reconstructed is similar to the worst image, 
the PT has a value of 0.  Therefore, the closer the 
reconstructed image is to the original image, the closer 
the PT value is to 1 and the better is the performance of 
the tested approach.  Thus, the PT measure varies 
between 0 and 1 depending on the accuracy of the 
reconstructed image. 

4 Results and Discussion 
In this section, the results of the performed simulations 
are presented. The study is performed quantitatively 
using Monte-Carlo simulation Techniques. First, the 
principal 2-D Optical Orthogonal Spatial Pattern Codes 
(OOSPC) are generated by implementing the 
appropriate equations for each code-generation 
approach. Then, a pool (or pools) of 2-D spatial 
patterns can be constructed from the initial principal set 
by performing a row and/or a column shift.  At this 
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