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Abstract

Semantic gap, high retrieval efficiency, and speed are im-
portant factors for content-based image retrieval system
(CBIR). Recent research towards semantic gap reduction
to improve the retrieval accuracy of CBIR is shifting to-
wards machine learning methods, relevance feedback, ob-
ject ontology etc. In this research study, we have put for-
ward the idea that semantic gap can be reduced to im-
prove the performance accuracy of image retrieval through
a two-step process. It should be initiated with the identifi-
cation of the semantic category of the query image in the
first step, followed by retrieving of similar images from
the identified semantic category in the second step. We
have later demonstrated this idea through constructing a
global feature vector using wavelet decomposition of color
and texture information of the query image and then used
feature vector to identify its semantic category. We have
trained a stacked classifier consisting of deep neural net-
work and logistic regression as base classifiers for iden-
tifying the semantic category of input image. The image
retrieval process in the identified semantic category was
achieved through gabor filter of the texture information
of query image. This proposed algorithm has shown bet-
ter precision rate of image retrieval than that of other re-
searchers work

Keywords: image retrieval, wavelet decomposition,
Gabor filter, semantic gap, stacked neural network

1 Introduction

Content-based image retrieval (CBIR) systems present
a growing trend in all kind of applications including
medicine, health care, internet, advertising, entertainment,
remote sensing, digital libraries and crime detection. For
example in medical domain, it is important to find simi-
lar images in various modalities acquired in various stages
of disease progression to assist clinical decision-making
process. Likewise, often during a criminal investiga-
tion, an analyst wishes to identify a digital piece of in-
formation such as unsubstantial images, tattoos, a crimi-
nal sketch generated from the details given by eyewitness
or a crime scene from the huge database including both
static and video images. Finding images that are percep-
tually similar to a query image is a challenging task in the
dense database environments. There is a need for a better
methodology for identifying the culprits from those im-
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ages. Content-based image retrieval systems facilitate this
process of image searching from large databases.

CBIR use the visual content of the query image to re-
trieve the best-matched image from the huge collection in
the image database. The search is based on image fea-
tures such as texture, shape, and color. A typical CBIR
solution requires the construction of an image descriptor,
which is characterized by (i) an extraction algorithm to en-
code image features into feature vectors; and (ii) a similar-
ity measure to compare two images. The image retrieval
system process is started by a user provided query image,
followed by feature extraction of the image based on any
appropriate feature selection method. A comparison of
these features is then made with the features of the im-
ages in the database using some similarity measure. The
matched images from the database are marked based on
the value of the similarity measure, and the one having the
highest value of the similarity measure is given to the user.
Commonly used similarity distance measurements are Eu-
clidean distance, Manhattan distance, Canberra distance
matrix and histogram intersection distance. Researchers
(Arevalillo-Herrédez et al., 2008) have also suggested an
algorithm to combine the similarity measurement distance
based on the Bayes rule.

Previous studies on CBIR systems have focused on the
global and local feature descriptor of the image. The com-
monly used visual descriptors are color, texture, shape and
spatial relationship of the neighboring pixels in the pic-
ture. The feature extraction through a color descriptor de-
pends on the selection of the appropriate color space. The
commonly used color spaces are RGB, CIE CIE and HSV
(or HSL, HSB).Color moment (Huang et al., 2010), color
histogram (Sergyan, 2008) has also been used as feature
descriptors in CBIR. However, a color descriptor for an
image is not effective when there is a high spatial color
variation. Thus, the researchers have investigated other
low-level descriptors such as texture, which characterize
the spatial distribution of gray levels in the pixel neigh-
borhood.

The texture features of an image are identified by sta-
tistical, structural and spectral methods. The statistical
methods for texture determination include power spectra,
co-occurrence matrices, shift-invariant principal compo-
nent analysis (SPCA), fractal model, and multi-resolution
filtering techniques such as wavelet decomposition. How-
ever, (Selvarajah and Kodituwakku, 2011) have reported
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that the first order statistical method of determining image
textures are less effective in image retrieval, with an av-
erage precision rate of 0.34. Their findings showed that
the second order gray level co-occurrence matrix method
performed better with an average precision rate of 0.44 .
The same authors have also used the coefficients of Ga-
bor, filtered as feature vectors to retrieve the images, and
reported a precision rate of 0.76. (Zheng, 2015) proposed
image retrieval system named as SIMPLlIcity:(Semantics-
sensitive Integrate Matching for Picture Libraries). They
used histogram, color layout and coefficients of wavelet
transform as feature vector over 600 medical images from
Six categories.

The feature descriptors, whether color, texture or shape,
are all low-level features and are not able to truly exem-
plify the high-level concept in the user’s mind. This prob-
lem is known as a semantic gap in the CBIR domain and
is the main hindrance in the performance of the CBIR.
Image annotation, Region- Based Image Retrieval (RBIR)
approaches and relevance feedback have received more at-
tention in recent years to overcome this gap. One of the
approaches used to reduce the semantic gap is image an-
notation. The work presented in this paper, however, is
based on class based annotation, representing the image
retrieval as a multiple label classification problems where
each class is defined as the group of database images la-
beled with a single semantic label.

We have proposed in this paper, that a categorical iden-
tification based on the semantic of the query image should
first be established, before the retrieval and ranking pro-
cess of the similar images from the identified semantic
category of the given query image. Additionally based
on the fact as reported by (Cleanu et al., 2007) that hu-
man eyes use of multi-scale linear decomposition for im-
age texture, we used multi-resolution analysis techniques
to extract the feature vectors of the query image. We con-
structed a global feature vector using both the color and
texture information of the query image through its wavelet
decomposition and used this feature vector to identify the
semantic category of the query image. The local texture
feature of the query image was then employed through
gabor filtering to create a feature vector for retrieving
and ranking the similar images from the identified class.
Also in order to improve the accuracy of the identification
of the semantic category of the image, we have utilized
the combined classifier technique consisting of deep neu-
ral network and logistic regression. This approach was
later compared with the previous research studies and was
found to improve the precision rate of retrieved images.
This approach thus may also be helpful in the research of
reducing the semantic gap, assuming that the images are
labeled into classes according to the semantics of the im-
ages.

The rest of the paper is structured as follows. We
present the summary of related work in section 2 fol-
lowed by proposed algorithm for image retrieval in sec-
tion 3. Section 4 presents feature vector extraction based

DOI: 10.3384/ecpl7142473

Proceedings of the 9th EUROSIM & the 57th SIMS

on daubechies wavelet decomposition and gabor filter fol-
lowed by the algorithm for combining the classifiers for
image semantic identification in section 5. We compare
the performance result of our proposed algorithm in sec-
tion 6 and paper is concluded in the concluding segment.

2 Related Work

(Hiremath and Pujari, 2007) have combined color and tex-
ture features using wavelet-based color histograms for im-
age retrieval from the image databases of WANG. They
have used the histogram intersection distance for deter-
mining the similarity between the query image and the
database image. However, an image retrieval process de-
fined in their work uses the algorithm to retrieve the im-
ages from the whole database without any identification
of image category. The performance evaluation measure-
ment precision for image retrieval for all the categories as
reported in their paper falls between 7.2 and 7.5. (Wong
et al., 2007) have used support vector machines and shape-
based feature extraction for image classification.

Another emerging technique in CBIR is the use of deep
learning neural network. (Krizhevsky et al., 2017) has
used convolution neural network consisting of five convo-
lution layers and pooling layers having 60 million param-
eters and 650,000 neurons to classify the 1.2 million high-
resolution images in the ImageNet LSVRC-2010 contest
into the 1000 different classes. (Karande and Maral, 2013)
have shown relevance feedback technique using artificial
neural network trained feature vectors obtained from HSV
model and texture to reduce the semantic though used
the cloud computing to meet the challenge of comput-
ing power. (Wan et al., 2014) have investigated towards
the effective role of deep learning in reducing the seman-
tic gap their empirical study on Caltech256 dataset has
revealed that pre-trained (convolutional neural networks)
CNN model on large scale dataset are able to capture high
semantic information in the raw pixels and can be di-
rectly used for features extraction in CBIR tasks. They,
however, concluded that features extracted by pre-trained
CNN model may or may not be better than the traditional
hand-crafted features.

The research work presented in this paper is however,
based on prior identification of the semantic category of
input query image through a deep neural network, fol-
lowed by retrieving closest similar image from the iden-
tified semantic category of the image. The detailed of the
proposed algorithm is presented in the next section.

3 Methodology

The proposed algorithm of the CBIR as shown in Figure 1
uses the global descriptors to extract the characteristic of
the image. The algorithm works in following steps:

e Create a global features space using wavelet decom-
position of HSV color space of all the images in the
database.
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e Identify the semantic category of the query image.
This is performed through training a combined clas-
sifier consisting of a Deep Neural Network and lo-
gistic regression under supervised, using the feature
vector obtained in the first step.

e In the retrieving phase of image retrieval, extract
global feature vector of the query image through ga-
bor filter.

e Retrieve and rank similar images from the identified
semantic category based on the euclidean distance of
gabor feature vector of the query and similar candi-
date images.

3.1 DataSet

For testing our proposed algorithm we have used the im-
age data set from the Wang image database and semanti-
cally divided into 10 categories such as horse, elephants,
and beaches, dinosaurs, building, food, flowers, Africa,
buses, and mountains. Each division was made of approx-
imately 100 images of the same class. We divided these
image data sets into two equal training and testing data set
each consisted of 500 images and used them in training
and testing the classifier.

4 Semantic Identification Through
Multiple Classifiers

We then created a global feature vector space of all the
images in the dataset. The feature vectors were extracted
using the wavelet decomposition of 2D image signal dis-
cussed below:

4.1 Global Feature Extraction
Wavelet Decomposition

through

Wavelet transform plays a wide role in image process-
ing and computer graphics due to its sub-band and multi-
resolution decomposition ability for describing the im-
age features and characteristics and thus one of our rea-
sons to use it for image decomposition and feature ex-
traction. Discrete Wavelet Transformation (DWT) uses

Figure 1. Proposed algorithm of the CBIR.
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a short life mathematical wave function (¢) as its base
function known as wavelets to represent a continuous time
signal into different scale components. The (Daubechies,
1988) has given the following mathematical equation of
the Daubechies wavelet function (¢) :

W, i (x) = 20599, (2/x — k), j,kreZ

Where j is scale,k is a translation and r is filter.

Due to Daubechies wavelet, efficiency in separating
different frequency bands and reflecting all the changes
in the neighboring pixels, we chose it to extract the fea-
ture vector image signal using (HSV) color space. The
Daubechies wavelet filters were convoluted with each of
the images in the database using two levels of resolution,
generating high- and low-frequency bands of input im-
ages. We calculated this two-dimensional wavelet image
transformation by computing row by row one-dimensional
wavelet transformation in a horizontal direction, and then
a column by column one-dimensional wavelet transforma-
tion in a vertical direction as shown in Figure 2. This
produced the first level of decomposition. For the second
level decomposition, we used this same process,however,
using the low-level frequency component obtained in the
first level decomposition. This finally yielded two levels
of high and low-level frequency components generating
four sub-images, which are labeled as LL, LH, HL and
HH in the Figure 2, where

e Sub-image LLLL1 and LL2 represent the horizontal and
vertical low-frequency part of the image at level 1
and 2 respectively and are recognized as an approxi-
mation.

e Sub-image HHland HH2 represent the horizontal
and vertical high-frequency part of the image at level
1 and 2 respectively and are called diagonal.

e Sub-image LHI1 and LH2 represent the horizontal
low and vertical high-frequency components at level
1 and 2 respectively and are known as horizontal.

e Sub-image HL1 and HL2 represent the horizontal
high and vertical low-frequency components at level
1 and 2 respectively and are called vertical.

This two-level wavelet decomposition process gener-
ated approximation coefficients along with the detail co-
efficients in horizontal, vertical and diagonal direction at

Digital
Image

Columns

Figure 2. Wavelet Decomposition of 2D-image signal.
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each level. We then constructed an image feature vector
consisting of 33 elements for each of the images in the
database. Each image feature vector consisted of stan-
dard deviation, mean, skewness and kurtosis of the his-
togram of the detail coefficients and energy vector of both
the approximation and detail coefficients obtained in the
two-level decomposition of the input signal. This image
feature vector was later used to identify the semantic class
of the query image.

4.2 Deep Learning of Neural Network

We then used the extracted global feature vector to train
classifiers for identification of the semantic category of
the query image. To achieve this we defined an image do-
main space consisting of N samples of images, each rep-
resented by a global feature vector q (f1, 2, f3....f33) to
be used as input feature vector to the classifier. The goal
was set to assign every input query image a semantic class
label Ci from the class labels space C (C1,..C10) using
these trained classifiers. We employed the deep learning
approach in training the classifier to identify the seman-
tic category of the query image. Two classifiers were ex-
plored i.e. deep neural network and logistic regression.
Deep learning refers to a class of machine learning tech-
niques that employ deep architecture, unlike their shal-
low counterpart processing information through multiple
stages of transformation and representation. Deep learn-
ing neural network architectures are different from "nor-
mal" neural networks because they have more hidden lay-
ers.

A Deep Neural Network consisting of one input layer,
three hidden layers, and one output layer each having sig-
moid activation function was constructed. The choice of
the activation function was made following the research
work of (Shenouda, 2006). They have performed a quan-
titative comparison of the four most commonly used ac-
tivation functions, including the Gaussian RBF network,
over ten real different datasets to show that the sigmoid
activation function is a substantially better activation than
others. Back propagation training algorithm was em-
ployed, to 10 fold classification. Feature vectors gener-
ated through the process of Daubechies wavelet decom-
position were used as external inputs to five layers deep
learning neural networks during the training phase. Fol-
lowing equation was used to calculate network output af-
ter each layer of the selected neural architecture.

A1) — S (WD) gi g pli+D)y

Where i=1,2,3,4

a,, is the output from i’ 1 neural network layer

S+ s the sigmoid function

W+ and b+ are neuron weights The input a°, con-
sisting of feature vector f 1, to f, 33, to the input layer is
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then given as:

X1 X12 X13 Xln

X X X X
aO —g= 21 22 23 2n

Xdl  Xd2 Xd3 Xdn

The network outputs generated by the output layer of the

network are given by
a=C=[Ci C G G

Where n is the number of observations and the training set

in the form (¢ C1), (g1 C1), (gn Cy) were presented to the

feed forward neural network during training.

In addition to these, we also chose logistic regression
as of our second classifier. However, in this case, we es-
timated a probability of a given instance Cj belonging to
semantic class space C=(C1,..C10). The probability for
class j excluding the last class for multi-class problems
was determined by

efi
pi(fj) = m

The probability of the last class was calculated using the
following equation

eli9

k=1
1— (f)) —
j:z‘,lpj(f./) Zl;;i(l +eﬁ9j)
Where k is the number of classes, n is the total number
of observations, f; is the input feature vector and thetais
the parameter matrix, which is calculated using the Quasi-
Newton Method.

The two classifiers were then fused to improve the
classification accuracy. This approach of classification
through fusion is increasingly embraced by researchers
in recent years. (Baskaran et al., 2004) have combined
weighted multiple classifiers consisting of naive Bayes, ar-
tificial neural networks, fuzzy C-mean classifier and vari-
ants of distance classifiers for the remote sensing image
classification. (Qazi and Raza, 2012) has suggested us-
ing combined classifiers for the better classification of net-
work intrusion minor classes.

We used the stacking method to combine the trained
classifiers. The stacking of classifiers algorithm is rela-
tively a new approach in classifier combination and con-
sists of classifiers at two levels i.e. base classifiers and
Meta classifier or arbiter. The Meta classifier selects the
best classifier among several base classifiers. We used
linear regression as the training algorithm for the Meta
learner to stack the two base classifiers i.e. deep Learn-
ing Neural Network and logistic regression. The training
dataset was then used to train this fused classifier for iden-
tification of semantic image category.
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5 Image Retrieval

The retrieval phase of the similar images from the matched
semantic category uses textural features of the input query
image. We constructed texture feature vector of the im-
ages using the localized feature of the image through Ga-
bor filter due to its wavelet nature capturing energy at a
specific frequency and a specific direction. The mathe-
matical representation of a 2-D Gabor filter (Gb), hav-
ing wavelength represented by A, orientation angle by
theta, and standard deviation along x and y by oyand
oyrespectively, may be given by the following relation:

Gb(x,y)= Gs (X,y)ej’l (xcosO+ysin®)
Where Gs(x,y) is the Gaussian function given by

o~ 0-5((x/0)>+(y/0,)?)
/2700y

We generated a filter bank consisting of 36 fil-
ters by varying the wavelength A from 2.5 to 3.0
with an increment of 0.1, and the orientation angle
Ofrommn,3/2m,11/6m,25/127,187/607,and 441/180x.
Each of the filters in the filter bank was then convoluted
with the input image finally the feature vector consisting
of 144 elements was constructed by calculating the con-
trast, homogeneity, correlation and energy of the GLCM
(Gray Level Co-occurrence Matrix) for each filtered im-
age in the filter bank.

Gs(x7y) =

6 Performance Analysis

In order to assess the performance of the proposed algo-
rithm, we used the test data set consisting of 250 images
approximately 25 from each category. For each tested
query image two feature vector was extracted , wavelet
based feature vector was used to identify the semantic cat-
egory and then another Gabor filter-based feature vector
of the query image was used to retrieve the smaller images
from the identified category using euclidean distance.
The precision and recall rate of the classification ob-
tained by the combined classifier of deep neural network
and logistic regression for the testing dataset is shown in
Table 1. However, Figure 3 shows precision and recall rate
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Figure 3. Classification accuracy of the combined classifier.
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Retrieved similar images

. i .

Figure 4. Result of visual queries through the proposed algo-
rithm.

for all the semantic categories used in the test data. Some
of the visual queries and retrieved similar images are pre-
sented in Figure 4. The average retrieval rate was found to
be less than 1 minute approx 40 to 50 seconds for retriev-
ing four similar images of the query image. A precision
rate of all the retrieved images using a test data set has
been calculated and shown in Table 2 in comparison with
the algorithms of other researchers. It can be seen that our
algorithm has performed slightly better it is because that
the identifying the right category of query image increases
the probability of the retrieving similar image.

Table 1. Trained classifiers accuracy.

Instances || ANN | Logistics| Stacked
Classifiers

Correctly || 83.5% | 85.9% 87.0%

Classified

Incorrectly || 16.5% | 14.1% 13.0%

Classified

7 Conclusions

It was noted in this research that classification of the im-
ages in the semantic based categories classes may be help-
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Table 2. Performance Comparison With Other Algorithms.

Category | Proposed Ahmed | Mani- | Chen- | M
algor- | J.Afifi | mala Horng | Babu
ithm Wasam | Singha | Lin etal
% Ashour | et al et al %

%o % %

Africa 0.74 0.71 0.65 0.68 0.56

Beaches | 0.90 0.85 0.62 0.54 0.53

Buildings| 0.86 0.83 0.71 0.56 0.6

Buses 0.82 0.85 0.92 0.89 0.89

Dinosaurs| 0.99 0.99 0.97 0.99 0.98

Elephants| 0.76 0.71 0.86 0.66 0.57

Flowers | 0.94 0.93 0.76 0.89 0.89

Horses 0.89 0.57 0.87 0.80 0.78

Mountains 0.86 0.42 0.49 0.52 0.51

Food 0.85 0.97 0.77 0.73 0.69

Average | 0.86 0.78 0.76 0.72 0.70

ful in reducing the semantic gap. It also improves the re-
trieval efficiency because after the related semantic class
of input query image is identified then retrieval of similar
images is performed within the group of more related im-
ages in the same class. We aim to apply the proposed tech-
nique in developing a robust image and video search en-
gine that could assist the analyst in retrieving photographs,
images of the criminals or crime scenes from huge crimi-
nal database such as VALCRI database.
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