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Abstract
One of the fastest and richest methods, which represents

emotional profile of human beings is speech. It also

conveys the mental and perceptual concepts between

humans. In this paper we have addressed the recognition

of emotional characteristics of speech signal and

propose a method to model the emotional changes of the

utterance during the speech by using a statistical

learning method. In this procedure of speech

recognition, the internal feelings of the individual

speaker are processed, and then classified during the

speech. And so on, the system classifies emotions of the

utterance in six standard classes including, anger,

boredom, fear, disgust, neutral and sadness. For that

reason, we call the standard and widely used speech

database, EmoDB for training phase of proposed

system. When pre-processing tasks done, speech

patterns and features are extracted by MFCC method,

and then we apply a classification approach based on

statistical learning classifier to simulate changes trend

of emotional states. Empirical experimentation indicates

that we have achieved 85.54% of average accuracy rate

and the score 2.5 of standard deviation in emotion

recognition.

Keywords: emotional speech modelling, speech

recognition, human-computer interaction (HCI),
gaussian mixture model (GMM), Mel frequency
cepstral coefficient

1 Introduction

The manners of speaking have eminent role in human

communications, which are the natural methods to

express the emotion and feeling in conversation. Equally

important, the tone of voice is a method to express the

state of emotion of the speaker. Once, an utterance

expresses the word with an emotion that makes his tone

of speech change, the meaning of the word is

accomplished. Up to date, Emotion recognition of

speech is one of the challenging fields in modeling

systems which are based on human computer user

interface. These systems could simulate the feelings

including uttered speech, if equipped with intelligent

emotional recognition techniques and algorithms

 

(Cowie et al., 2001). Using this kind of systems would 

outline the attributes of uttered speech including 

psychological and cognitive background, and the 

emotions of speaker. This approach provides the 

possibility for intelligent or adaptive system designers 

to design machines, which make suitable automatic 

reactions in accordance with natural human needs at 

different situations. Evidently, one of the major areas 

has attracted loads of attentions to these systems is 

automatic emotion recognition (AER) of human speech.    

Scientists, who have been working on voice and 

speech technology for the past four decades, have now 

good understandings of the voice analysis, human 

speech modeling and speech processing-based systems; 

this leads them to develop various practical applications 

in this field. With regard to the capabilities which 

provided by speech signal analysis, researchers in the 

field of artificial intelligence, robotics and human-

computer interaction (HCI) could design machines 

which would be useful to develop tools and systems, 

which are related to human natural behavior. Some of 

these systems would be similar to responsive and 

adaptive systems, speech production, speech simulation, 

evaluations systems, security and surveillance systems, 

speaker recognition systems, human-robot interactive 

systems (HRI), and generally the environments which 

are equipped with smart workplace systems. To achieve 

this purpose, it is needed to automate data collection 

from users to get optimal performance of these systems 

and could perform services real-time and compatible 

with user’s needs.    

In this paper, we propose an approach which could 

acquire the attributes of the utterance and his emotional 

changes by studying the patterns of speech signal. This 

information is used to recognize the conceptual 

characteristics of speech which wrapped in the voice of 

humans by an intelligent machine. In this study we apply 

speech corpus of utterances from EmoDB as input, and 

then processing of speech signal recognition begins, 

some pre-processing tasks are performed on raw speech 

signal, and then desired features are extracted by Mel 

Frequency Cepstral Coefficient (MFCC) method. Then, 

the attributes of each uttered word of speech is elicited 
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separately by the Learning Gaussian Mixture Model 

(LGMM), as the innovative classification approach. 

These emotional states, which stand for the emotional 

state of speaker for each word during speech, are labeled 

and arranged side by side in according to speech stream. 

To end with, we could delineate the trend of emotional 

states of speaker during speech or conversation.   

By using the proposed approach, the emotional states 

of utterance are classified in six standard emotional 

classes. These classes include, anger, boredom, fear, 

disgust, neutral and sadness. Despite the context of 

expressed talk during the speech, the system could 

detect and track the trend of credible internal emotional 

states of utterance. Emotional speech recognition using 

this method of classification provides the precise results 

and high accuracy in emotion recognition and its 

changes trend. The most prominent goal of this article is 

to propose an approach based on an innovative learning 

method of Gaussian Mixture Model in emotional 

recognition of speech to extract internal emotions and 

feelings of the speaker. This, is performed by processing 

the speech signal, and then represent changes trend of 

emotional states. This approach of speech patterns 

processing, could be used in intelligent systems which 

closely interact with users to predict the emotional states 

of them. The systems which equipped with this 

capability could be used in the fields like medical, 

educational, surveillance systems or intelligent work 

places.    

The reminder of the paper is structured as follows, 

Section 2, delineates some of recent related works in this 

field and their specifications. Section 3, illustrates the 

overall view of methods and concepts using in this 

article; including Emotion recognition; feature 

extraction method, MFCC; and the Gaussian Mixture 

Model. Section 4 introduces the database we have used 

during the test and train phases (Burkhardt et al.,2005). 

In Section 5, the computational architecture of proposed 

approach is presented and described the structure of 

method. Section 6 provides tentative results and 

performance measurements, and finally Section 7 draws 

conclusion remarks. 

 

2 Related Works 

Recognition of emotion in speech and tracking its 

changes trend to disclose internal feelings of speaker is 

the current topic in the field of artificial intelligence, 

signal processing, and human-computer interaction in 

the recent years. To the best of our knowledge, some 

researchers have focused specifically on localizing 

emotion transition wrapped in speech. Most of them 

focused on acoustical features of the speech signal. For 

example, using troughs and peaks in the profile of 

fundamental frequency; intensity and boundaries of 

pauses; and energy of signal were the popular clues to 

design emotion classifiers. So, we are focusing on some 

of recent outstanding researches in this field and briefly 

investigate their specifications.   

Anguera et al. (2011) proposed an approach to detect 

speaker change, which using two consecutive fixed-

lengths windows, modeling each by Gaussian Mixture 

Model and distance-based methods, such as Generalized 

Likelihood Ratio (GLR), Kullback-Leibler (KL) 

divergence, and Cross Log Likelihood Ratio (CLLR) 

have been investigated. In 2013, another study 

performed by C.N. van der Wal and W. Kowalczyk who 

proposed a system to measure changes in the emotional 

states of the utterance automatically by analyzing voice 

of speaker. They represented the obtained results by 

visualizing them in 2-D space. In this study the Random 

Forest algorithm was applied for classification and 

regression problems. Their results show some 

improvements in performance and error reduction in 

compare with similar studies which focused on 

predicting changes of intensity measured by Mean 

Square Error (MSE). They also claimed that the 

proposed system performs to classify negative emotions 

and provides better performance.   

Besides, in the other studies for extracting emotion 

from speech, a number of useful methods like SVM 

(Fergani et al., 2008), Variational Bayes free energy 

(Valente, 2005) and factor analysis (Kenny et al.,2010) 

have used. However, it seems that these methods require 

large databases for testing and training phases to be 

effective. 

 

3 Preliminaries 

3.1 Emotion Recognition 

Different moods and emotional feelings reflected in the 

voice of speakers are represented by the special patterns 

of acoustical features in speech signals. This means that 

the worthwhile information wrapped with emotional 

states of the utterance is encoded in acoustical speech 

signal of the voice of speaker. This information would 

be decoded and then embedded emotions disclosed and 

could be perceived and feel once receiving by 

audiences. Therefore, the first step to design the 

automatic emotional recognition systems is to find out 

how to encode the emotional states which expresses by 

the speaker in the speech. This work is done by 

extracting the most discriminator features from speech 

samples in training phase. Then the classification 
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method resolves this issue and decodes the data in order 

to recognize the class of particular emotional state 

(Yang and Lugger, 2009). 

 

3.2 Feature Extraction (MFCC) 

Cepstrum coefficients of Mel frequency is the 

representation of the speech signals which extracts the 

non-linear frequency components of the human auditory 

system. This method converts linear spectrum of speech 

signal to non-linear frequency scale which is called 

“Mel”.  At the first stage of our proposed method, pre-

processing tasks are performed on the raw speech input 

signal using windowing techniques (Kowalczyk and van 

der Wal, 2013). The windowing is done after providing 

Discrete Fourier Transform (DFT) of each frame to 

obtain the spectrum scale of speech signal (Motamed, 

2014). Then, frequency wrapping is used to convert 

spectrum of speech to Mel scale where the triangle filter 

bank at uniform space is achieved (Rahul et al., 2015). 

These filters multiplied by the size of spectra and 

eventually obtained MFCCs. In this paper 20 filter 

banks and 12-MFCC are used for feature extraction. 

Mel-scale frequency conversion equation is determined 

in 

M (f) = 1125 ln(1 + 
𝑓

700
)  (1) 

and the transpose equation of Mel frequency 

transformation is showed in 

M-1(f) = 700 (exp (
𝑚

1125
) – 1)  (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Gaussian Mixture Model (GMM) 

In statistical sciences, the mixture model is considered 

as a probabilistic model which is used to represent 

existence of the subsets of classes which belong to the 

larger population. A Bayesian model like GMM is one 

of the special cases of these statistical models. GMM 

modeling technique is straightforward but so efficient. 

Therefore, these capabilities are significant due to its 

ability of forming soft approximations and curved 

shapes of any form of distribution in random data.  This 

model is used as a successful model in different systems, 

especially in the field of speech recognition and speaker 

identification systems.  

Accordingly, the Gaussian Mixture Modeling first 

invented by N. Day and later by J. Wolfe at the late 60’s 

(Wolfe, 1970) known as Expectation-Maximization 

(EM) algorithm (Ververidis and Kotropoulos, 2005). 

Hence, the main reason of using this model in the wide 

range of intelligent systems is the ability of this 

technique to model the data classes or the distribution 

form of acoustical observations of the speaker (Alaie et 

al., 2015).  According to  

𝐹(𝑥|𝜆𝑘) =  ∑𝑐𝑖𝑓𝑖(𝑥) = 

𝐾

𝑖=1

∑𝑐𝑖𝒩(𝑥|𝛷𝑖) 

𝐾

𝑖=1

 

= ∑𝑐𝑖𝒩(𝑥|µ𝑖 , 𝛴𝑖) 

𝐾

𝑖=1

 

 

(3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Block diagram of emotional speech recognition routine.
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in the GMM likelihood function which has been used 

for D-dimensional feature vector, x is a weighted sum of 

K multivariate Gaussian components, fi(x), is D×1 for 

each mean vector (µi) and D×D covariance matrix (Σi). 

In (3), λk represents parameters of GMM and include K 

components in order to the restricted states, in which the 

combined weights should be satisfied by the following 

two conditions; ci≥0 for i=1,…,K and ∑ 𝑐𝑖 = 𝐾
𝑖=1 1. i-th 

component could be written as 

 

𝑓𝑖(𝑥) =  𝒩(𝑥|𝛷𝑖) =  𝒩(𝑥|µ𝑖 , 𝛴𝑖) 

=
1

(2ᴨ)
𝐷
2 |𝛴𝑖|

1
2

× exp (−
1

2
(𝑥 − µ𝑖)

𝑇𝑟  ∑(𝑥 − µ𝑖)

−1

𝑖

) 

 

(4) 

 

In (4) Φi= (µi,Σi) represents the parameters for i-

th Gaussian density and ATr is the inversion of 

matrix A. In general, GMM could be identified 

with its associated parameters, the parameters 

are;     λk = (ci,Φi, i=1,…,K) . 

 

4 Database 

The emotional speech database which is provided by 

Berlin University is a standard collection of speech 

corpus, which is used widely in voice sciences and 

speech processing scientific resources. This database 

includes audio recordings of ten actors and actresses 

(five males and five females) who have pronounced 

sentences with seven standard classes of emotions in 

German. These seven classes of emotions include anger, 

disgust, fear, happiness, neutral, sadness and boredom. 

In this process, each actor has been asked to express one 

out of ten predetermined sentences which has more 

vowels with dedicated emotion (Burkhardt et al., 2005). 

Approximately 800 recorded sentences are used to 

prepare this database, and then 500 samples of them 

selected to choose precisely with respect to emotion 

recognition by human factors. This method makes it 

possible to select best sentences which represent the 

most similar emotions to real natural emotions of 

speakers with particular emotional states. Also, it 

performs more accurate recognition with precision 

higher than 80% and natural selection with more than 

60% of choices to increase performance and accuracy of 

this database (Burkhardt et al., 2005). In this experience 

we have used 454 enounced emotions with respect to 

sextet standard emotions which exist in EmoDB. 

 

5 Proposed Approach 

The approaches, which commonly are used for speech 
processing, have derived from the methods that are 
known as pattern recognition. In particular, each 
moment of speech signal stream, represents the encoded 
data which leads to that the analytic works on speech 
emotion recognition (SER) are closely similar to pattern 
recognition cycle. To begin with, the words uttered in 
the input speech signal are analyzed separately and 
performed the routine to emotion recognition. Then the 
changes in trend of emotional states determine the 
prevailed emotional feelings of utterance during the 
lecture or conversation. This result is performed by the 
probabilistic filtering method to boost up classification 
accuracy. The overall view of the proposed approach 
illustrated in the Figure 1. 
 

5.1 Emotion classification (LGMM)

By using this method, the emotion that is laid in uttered

single word, is determined. The main purpose of speech

processing by this approach is to recognize emotional

states of the speaker, and model the trend of its changes

during the long speech. The first level of emotion

recognition cycle represents in Figure 2.

At this stage, the pre-processing tasks, including

windowing are performed and also silent frames are

removed from the input speech signal, and then required

features of speech signal are extracted using MFCC

method for each single word. In the next step, feature

selection is performed to convert obtained coefficients

into the required coefficients. This causes to decrease

the size of feature vector and prevents curse of

dimensionality at the classification process. Then these

features are used as an input vector to the classifier. We

use a type of Gaussian Mixture Model, which we have

modified it to perform learning as the leaning-based

GMM. We have called this method as LGMM.

In this paper we propose an expanded derivation of

Gaussian Mixture Model to provide classes of emotions

using combination of Gaussian densities.  The

motivation which convinced us to use this type of GMM

was that Gaussian components can represent some of

spectral shapes of speech signal which depend to general

emotions of utterance. Another reason is that the

capabilities of Gaussian combinations are so reasonable

for stochastic density modeling similar to modeling of

speech signals.

To describe mathematically, a Gaussian Mixture

Model is generally a weighted sum of several Gaussian

components. In other words, Gaussian Mixture Model is

a linear combination of M Gaussian densities, which is

represented in

P(�⃗� |𝜆) = ∑ 𝑝𝑖𝑏𝑖(�⃗� )
𝑀
𝑖=1        (5) 
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Figure 2. Block diagram of emotion recognition of 

proposed method for single word of speech. 
 

 
 

According to the recent equation, �⃗�  is a D-dimensional 

stochastic vector, 𝑏𝑖(𝑥 ) are density components for 

i=1,...,M  and pi are combined weights for i=1,..,M . 

Each component of Gaussian function is D-dimensional 

and in the form of 

 𝑏𝑖(�⃗� ) =  
1

(2ᴨ)2|Σi|2
exp {−

1

2
(�⃗� − µ⃗ 𝐢)

𝑇 ∑ (�⃗� − µ⃗ 𝐢)
−1
𝑖 }     (6) 

 

the µ⃗ 𝐢 represents the mean vector and Σi determines the 

covariance matrices.  Also, combined weights of general 

probability rule, emphasize the concept that sum of 

probabilities is equal to 1 and satisfy the main statistical 

rule which is  ∑ 𝑝𝑖
𝑀
𝑖=1 = 1. 

The mathematically flexibility is the prominent 

advantage of using this method of speech modeling. 

Intuitively the density of complete Gaussian 

components can only be shown by mean vectors and 

covariance matrices. These components are obtained 

from combination of weights of all density components. 

Also, probability density functions of destructed 

features which are affected by differences exist in 

emotional specifications of those functions. As a result, 

we could use a set of GMMs to calculate probability of 

particular emotion which are prevailed by utterance. 

This method also concludes maximum likelihood 

estimation which should be determined a class-

condition probability density function by providing a 

Bayesian classifier. For instance, the selection of initial 

model could be done by using test data, but parameter 

configuration of this model needs some measures of 

optimality such as the degree of accuracy when the data 

distribution is fitted to the observed data. Accordingly, 

the value of data likelihood is an optimality measure. 

Just suppose we have a set of independent samples such 

as X={x1, x2,…,xN} derives from a data distribution 

which is represented by probability density function like 

p(x;θ). In this function the θ is the set of parameters of 

PDF. The likelihood is represented in 
 

 L(X; θ)=∏ P(xN; θ)N
x=1      (7) 

 

This equation represents the likelihood of data 

distribution of X, or in a nutshell, it shows the data 

distribution of parameter θ. The main purpose of this 

equation is to find that θ̂ would maximize value of 

likelihood. We also have in 

 

θ̂ =arg𝑚𝑎𝑥θ = 𝐿(𝑋; θ) (8) 

 

This function most often does not reach to its 

maximum value, but the algorithm mentioned in (9) 

analytically and mathematically is evident and clear. 

This equation also called likelihood function:  
 

𝐿(𝑋; θ) = ln 𝐿(𝑋; θ) =  ∑ ln 𝑝(𝑥N; θ)𝑁
𝑛=1  (9) 

 

Due to uniformity of the logarithm function, a 

solution that has mentioned in (10) has similar usage to 

𝐿(𝑋; θ). According to these definitions, implementation 

steps of LGMM classifier is as described underneath. At 

the first point, the parameters are initialized, and then 

mathematical expectation is taken based on previous 

probabilities for i=1,…, n and then k=1,…,K are 

calculated by 

  

𝑃𝑖,𝑘 =
𝑎𝑘

(𝑟)
Ø(𝑥𝑖µ𝑘

(𝑟)
, 𝛴𝑘

(𝑟)
)

𝛴𝑘=1
(𝑟)

𝑎𝑘
(𝑟)

Ø(𝑥𝑖µ𝑘
(𝑟)

, 𝛴𝑘
(𝑟)

)
 (10) 

 

Then maximization likelihood value is provided by 

 

𝑎𝑘
(𝑟+1)

=
∑ 𝑃𝑖,𝑘

𝑛
𝑖=1

𝑛
 (11) 
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µ𝑘
(𝑟+1)

=
∑ 𝑃𝑖,𝑘𝑋

𝑛
𝑖=1

∑ 𝑃𝑖,𝑘
𝑛
𝑖=1

 (12) 

µ𝑘
(𝑟+1)

=
∑ 𝑃𝑖,𝑘(𝑥𝑖µ𝑘

(𝑟+1)
)(𝑥𝑖µ𝑘

(𝑟+1)
)𝑡

(𝑟+1)
𝑘

∑ 𝑃𝑖,𝑘
𝑛
𝑖=1

 (13) 

 

And as long as the data converge, steps of getting 

mathematical expectations and maximizations repeat 

iteratively. Besides, this data distribution is unknown for 

us at first, which in the next step; the features are 

obtained by applying MFCC method. These features are 

in the form of 12-dimensional space. It is also unknown 

for us the mode of this data and the number of peaks in 

its distribution.  

So, in this way we begin using a Gaussian component 

for each emotional class and then calculate parameters. 

This phase of proposed approach called training phase 

which the learning tasks take place. Next, each 

component is divided into two parts and retrained 

repeatedly for each part, same as classical “divide and 

conquer” renowned method.  

Divisions and trainings continue repeatedly until 

they reach the final number of required components. 

Another issue which we had faced using GMM, is that 

there is not any possible solution to train a Gaussian 

mixture model with C components (calculation of 

parameters,𝛴, �⃗� 𝐢, 𝑝𝑖
) as a Closed-form equation.  

The EM algorithm was used to model the Probability 

Density Function (PDF) of the emotional speech 

prosody features in (Schuller, 2004; Lee, 2005). By 

using this method, optimal Gaussian components are 

obtained at last in repeated iterations and training task 

of LGMM performed successfully. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since we do not have enough data to calculate all 

parameters of complete covariance matrix, training of 

GMMs is performed using diagonal covariance 

matrices. It is also worth noting that the training phase 

just performs once when the application begins to run. 

At this stage of emotional classification, all 

previously mentioned steps perform on feature vector, 

which obtained for each single word in uttered speech 

signal separately. Then the emotion of utterance during 

expressing the particular word in speech is recognized. 

At the final stage of this classification level of proposed 

approach, the labels of emotional classes as the 

emotional states are obtained to the number of uttered 

words in the whole speech. These emotional labels 

could be different for each uttered word due to the 

changes of emotional states of utterance during the 

speech or conversation. Finally, we depict the changes 

trend of the emotional states of utterance during the 

speech. 

 

5.2 Trend of Changes in Emotional States 

Emotional information which is embedded in speech 

signal is derived from expressed speech input or from 

parts thereof, this uttered emotion information being 

descriptive for an emotional state of a speaker and its 

changes (Kowalczyk and van der Wal, 2013).  

Next, we have obtained a trend of emotional changes 

automatically, during the speech using proposed method. 

Modeling and simulation of this trend shows the changes 

of feelings of the speaker when expressing talk or speech. 

The system could measure changes in emotional states 

of the utterance by applying the proposed approach. 

Figure 3 illustrates the trend of an instance speech, which 

shows the changes of emotional states and moods of the 

speaker during expressing speech. In Figure 3, it is also 

 
Figure 3. Sample trend diagram of emotion states of utterance during speech. 
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obvious that the mood of the speaker changes between 

anger, fear, disgust, neutral and sadness during speech. 

 

6 Experiments 

In this paper, we propose a method for emotion 

recognition of utterances during the speech or talk using 

the extracted features of speech signal. Considered 

emotional classes are based on standard classification in 

behavioral and speech sciences. These classes include 

anger, boredom, disgust, fear, neutral and sadness. 

Applying the developed method and test it on the data 

in EmoDB, the results are investigated using Cross-

validation method and represented with evaluation 

parameters in form of accuracy. 

To remind, the recognition accuracy is an evaluation 

method which means how close the measured value to 

the actual accurate value is. This measure indicates the 

percentage rate of emotion recognition accuracy for 

each input speech signal in test phase to total emotional 

speech data in training phase (Yang and Lugger, 2009). 

These assessments are provided for each of six 

emotional states in the domain of emotional classes. The 

results are obtained based on performance of proposed 

method on Berlin emotional speech database (EmoDB). 

The recognition accuracy rates are represented in Table 

1.   

In consequence, we have calculated analytical and 

statistical parameters which stem from obtained result.  

We also do have achieved the score 2.52 as the standard 

deviation for accuracy rates of the six emotional states. 

This result shows that our approach represents high 

degree of stability in emotion recognition from the 

speech. Also, we have achieved scores, 6.34, 0.0294, 

7.42 and 85.50 as variance, dispersion coefficient, 

variation range and geometric mean, respectively. As 

well as, the acquired dispersion coefficient also 

emphasized on the sustainability of system. 

 

 
Table 1. Recognition accuracy rate on EmoDB. 

Emotion Classification 

Angry 83.86 

Boredom 87.56 

Disgust 84.69 

Fear 81.32 

Neutral 87.08 

Sadness 88.74 

7 Conclusions

We have demonstrated an approach for speech emotion

recognition (SER) and modeling its emotional changes

of the speaker using the innovative classification

method, which is based on a probabilistic method. To

this end, we applied a modified version of GMM as a

basis for this approach of emotion classification, which

we have named it as Learning Gaussian Mixture Model

(LGMM). We have used 12-MFCC to extract features

from the raw audio signal of speech. We also have used

Berlin emotional speech corpus database (EmoDB) for

training and testing the proposed method of emotion

recognition. Due to the admissible results in recognition

accuracy rates, which are obtained using the proposed

method, we do offer this method to design and develop

the emotional speech recognition-based systems,

specially the systems which need to anticipate human

behavior. The main motivation of this research is to

simulate the trend of changes in feelings and emotions

of speaker during the speech. A prominent advantage

using this method is to depict a view of emotional

behavior of the speaker regardless to speech context,

instant events or factitious behaviors during the speech

or conversation. Also, we have applied benefits of using

MFCC for feature extraction, which this leads to more

accurate results. This method of feature extraction also

demonstrates good performance in noisy environments;

however, the recognition accuracy could be a little

decreased in the very noisy environments. Compared to

the conventional methods in the field of emotional

speech recognition, despite of the limited number of

train and test samples in the database, the obtained

results using the proposed method allow us to achieve

state-of-the-art consequences in recognition accuracy

and run time.
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