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Abstract

This paper presents the potential use of the 3D virtual
world of fish population for training and educational
purposes, especially for who are new to fish farming
industry. Virtual Reality is the proven technology
which is emerging everyday with new methods and
implementation. We simulate the fish swimming
behavior based on the social rules that are derived from
flocking behavior of birds. The simple relation we
proposed to represent fish birth and death resembles
the biological ecosystem of fish in the sea. The
experiment results from different case studies we
carried out shows the realistic fish population
dynamics. The system user interface gives the users the
ability to change the system parameters for different
cases to see the real-time effect. Through different case
studies carried, our framework can be used to simulate
different environments.

Keywords: 3D, virtual reality, fish farming, virtual
world

1 Introduction

Technology is emerging and becoming more advanced
with the time span. With the development of
technology, more and more resources are easy to
access from home and school. The distance-learning
concept is now proven technology and accepted
worldwide. The teaching methodology in school,
training and learning methods have been changing in
large scale with the use of new technology. One of the
most popular technology, which have very great scope
in the coming days is to adapt virtual worlds in many
sectors including learning and educational sectors. 3D
Virtual World (VW), which provides realistic three-
dimensional environments and offer engaging,
interactive and immersive experiences, creates new
opportunities for teaching and learning (Sampson,
2011). These opportunities are related to the realism of
the educational activities representation within 3D
VWs and to the enhanced aspects of interactivity
provided within them. In the recent years, different
researchers have recognized the educational and
training potential of 3D VWs due to their unique
features, such as the recreation of the sense of
presence, their immediateness, the real world
simulations provided, and the new experiences that
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may not be possible, non-cost effective and even
dangerous to represent in the real world (Molka-
Danielsen and Mats, 2009).

In the adult sector large multinationals companies
are using virtual worlds to educate their employees,
and hospitals (e.g. St George's London), Governments
(e.g. Canadian Border Security) and the Military (e.g.
USAF MyBase in Second Life and TRADOC in
Active Worlds being just two of many examples) are
also exploring the use of this technology (Dalen.co.uk,
2010). The need of training simulator is demanding
due to cost, safety and environmental purposes. We can
use virtual world simulators to model any complex
modules in which we can test any danger situation
without affecting the life of human and physical
damages. Innovative use of virtual reality technologies
for the education and training offer new opportunities
that can address needs for modular design that are
adaptive, safe, flexible and reusable. There have been
already another study on the reliability and potential of
virtual fish farming as discussed on this paper
(Hiemstra, 2015).

This study is primarily for education and training
purposes especially in fishing industry. Aalesund is the
capital city of fishing industry in Norway. Most of the
people are engaged in this business and are willing to
do. There are many stages, which needs to be finished
in order to step into this industry. People are required
to go through several training courses in order to start
their fishing business of their own. It is well known
that a real life training that involves experiment with
alive fish, ocean and environment is quite impractical
and not suitable. The testing for training such as what
makes the breeding of fish faster, what may cause
death of fish, what will happen to the fish environment
if we change the parameters of sea (light, quality of
ocean water, pollution, ship traffic) will be quite
complex and nearly impossible in real life. Our project
gives the complete framework to cope with this kind of
problems for the fish farmers who are willing to start
their own business. The virtual world we have made is
completely immersive which plays a great role for
giving real feeling to the trainers. In virtual world, they
can experiment any parameters and see the effect
directly. After going through several hours on training,
they will achieve the professional skills which help
them to start working in the fish industry.
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Our model provides the framework for completely
immersive training simulator for fish farmers. The
framework uses mathematical modeling such as fish
breeding rate, death rate and external factors in terms
of mathematical modeling. Steering behaviors of fish
such as following leader, changing the heading towards
coworkers, maintain the speed of flocks is used to
show the movement of fish in a realistic manner
(Reynolds, 1999). In this paper, we use the term boids
(Boids are bird-like objects that were developed in
1980s to model flocking behavior) to represent the
flock of fish. 3D models are used to represent fish,
environment, ocean, rocks and other objects to get a
virtual world similar to the real life. The materials are
used for 3D models, lighting and camera effects to add
more realism to the model. In addition, the important
part is User Interface (UI) that gives the user easy
access to change any parameter such as fish death rate,
birth rate, velocity and others that will show direct
effect on our simulation. Also, we can add, modify for
other complex scenario based on the requirements. Our
framework is quite flexible, cost effective and easy to
start.

2 Related Work

Virtual Reality (VR) has been studying for many years
and is implemented successfully in many different
sectors. The first practical use of VR was done by
William Winn in 1993 (Youngblut, 1998). Winn
discussed the importance of immersive VR technology
in three different aspects which are not available in the
real world (Winn, 1993). The three aspects he
suggested are size, transduction, and reification. In
1994 Jonassen proposed that learners construct their
own reality, or at least interpret it based on their
perceptions of experiences, so an individual's
knowledge is a function of one's prior experiences
(Jonassen, 1994). There are plenty of works
accomplished on VR in many areas. Some of them are
discussed in this section.

Sandra Tan and Russell Waugh mentioned the use
of VR in teaching and learning Molecular Biology. She
discussed that her project helps students to give a better
understanding in visualization for example (DNA)
instead of drawing, models and other molecular
dynamics on the board. It was easier for students to
understand the transcription process in molecular
biology (Sandra Tan, 2003).

The company called “minecraftedu” has already
implemented Virtual learning in school. They believed
this helped kids to explore planets and historical place
(Miller, 2012).

Damian Schofield have discussed on effectiveness
of advanced three-dimensional (3D) VR technology in
chemical engineering and simulates the configuration
and operation of a polymerization plant (Scholfield,
2012).
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Chih-Kai Huang and his co-authors discussed the
implementation of a Virtual Fishing System. They
mentioned how the user can incorporate a boat
simulator, an interactive fishing rod, and virtual reality
fishing scenes. This system creates a spontaneous and
interactive environment, and offers the thrill and fun of
sea fishing at home or at the amusement park (Chih-
Kai et al, 2004).

Seungho Park has discussed in his article about the
virtual fishing system through digital image sensing.
He proposed the system that simulates fishing in a
virtual space with changing baits (Park, 2003).

3 Modeling

This section is the core of the whole scheme. It bridges
the gap between user interaction and the simulation
result directly, which gives the users completely
immersive to their result to understand the effect of
what they want to simulate.

We have implemented individual agent based
system. According to Yndestad (Yndestad, 2015),
System is composed of a set of partners collaborating
on a common purpose. Agents are related to the
landscape. System model in terms of agent-based
model can be represented by

S(H={A(), L(H), N} (M

where, A(t) represents a set of agents, L(t) is a
landscape and N(t) is the relationships between the
agents them self and between them and the landscape.
Yndestad represents the individual agents in his system
model as

S(Agent ,t) =
{A(Arc,t), A(Dyn,t), A(Eti, t), A(Lea,t) } (2)

where A(Arc,t) represents the agent's architecture,
A(Dyn,t) is the agent’s dynamics, A(Etit) is the
agent’s ethics and A(Lea, t) is the agent’s learning.

In our framework, we assumed ecach fish as an
individual agent, ocean as the environment and
dynamics such as birth, death, and scaling rates are
used to formulate the relations. The agent learning
means each fish can adapt its swimming behavior by
following steering behavior rules that will be discussed
in this chapter in section 3.3. We will describe the
model in details in the following sections.

3.1 Fish Modeling

We have divided fish model into fish model and shark
model. Also made seven assumptions as in Algorithm
L
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3.2 Environmental Modeling

The environment model is very important to give a
good realistic system and to simulate the effects of
changing the environment parameters on the fish
behavior. Some parts of the environment are fixed;
others can be changed in the UI directly, while the
remainders are changing by simple dynamics
equations. We have added trees, bushes and rocks to
our model. We have assumed the trees, bushes
growing, and decay. In addition, the shifting of rocks is
also added. We have defined some rates that are
function of time for trees, bushes and rocks objects
similar like we defined in the fish model. Besides, we
generate a random number and check if this number is
less than the rate we define, and then we assume
objects are decaying, growing or shifting of rocks.

Algorithm 1. Fish and shark modeling.

Foreach fish and shark agent
Initialize {fish birth rate {k1), fish death rate (k2), fish scaling rate
(k3), shark birth rate (k4), shark death rate (k5), shark scaling rate
(k6), shark eating fish rate (k7) }
Calculate probabilities
{
Prob. of fish birth (p_k1)=1/kl
Prob. of fish death (p_k2) = 0.00001* k2
Prob. of fish scaling (p_k3) = 0.00001* k3
Prob. of shark birth (p_k4)=1/k4
Prob. of shark death (p_k5) = 0.00001* k5
Prob. of shark scaling (p_k6) = 0.00001* k6

}
End Foreach

Do
Generate random number (R)
Foreach fish agent
IfR<p kil
New fish is added
End If
IfR<p k2
Fish is treated as dead and removed from the world
End If
IfR<p k3
The size (length, breadth and height) of fish is
End If
End Foreach
Foreach shark agent
IfR<p k4
New shark is added
End If
IfR<p k5
Shark is treated as dead and removed from the world
End If
IfR<p k6
The size (length, breadth and height) of shark is increased
End If
End Foreach
Foreach fish and shark
IfR <k7
Fish is killed by shark and fish is removed
New shark is born
End If
End Foreach
While user halt the program.

increased
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3.3 Steering Behavior Rules

Craig Reynolds proposed the famous steering behavior
rules to represent the social behavior movement
models in 1996. The basic flocking model consists of
three simple social steering behavior rules that describe
how an individual boid maneuvers based on the
positions and velocities its nearby flock mates
(Reynolds, 1999). The three main parameters are
summarized below.

Separation: Steer to avoid crowding local flock mates
(Figure 1 (a)).

Alignment: Steer towards the average heading of local
flock mates (Figure 1 (b)).

Cohesion: Steer to move toward the average position
of local flock mates (Figure 1 (c)).

4

Separation: Steer to avoid
crowding local flock mates.

Alignment: Steer towards the
average heading of local flock

}x \l> mates.

A Cohesion: Steer to move toward
the average position of local
4 flock mates

©

Figure 1. The Reynolds steering behavior rules
(Reynolds, 1999).

The proposed steering behavior rules are not
enough to adapt the complex environment. Therefore,
Reynolds proposed adding individual based rules
which will help each individual to adjust steering
behaviors even in a complex dynamic environment
(Reynolds, 1999). This will eventually help boids to
finish specific task. The two important methods he
included are:

e Obstacle avoidance (Figure 2(a)): This
behavior allows boids to find path against
obstacle in cluttered environment situation.

e Leader following (Figure 2(b)): Boids will
adapt this behavior to follow the leader for
specific task.

We have implemented the steering behavior rules
proposed by Reynolds in Unity3D. The program is
written in MonoDevelop Unity - C#
(www.unity3d.com). The main reason behind
implementing this model is to simulate the behavior for
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the school of fish. Five rules are implemented in our

model (Alaliyat et al, 2014).
P
% v

O

O v~ kd
(a) ()

N

Figure 2. The Reynolds extended steering behavior
rules (a) obstacle avoidance (b) leader following
(Reynolds, 1999).

Cohesion: This rules is responsible for fish agent to
get closer to the center of neighbor fish. Hence the
school of fish are formed. This rule can be seen as
attraction rule i.e. acts opposite of separation rule.
Assume cohesion of boid (b;) as (Coh;). It can be
calculated in two steps. First we calculate the center of
flock (f) represented as (FTJ, which can be obtained by

FC= e 3)
where, j is the position of boid j and N is the total
number of boids. Then, the gravity of boids to lean
toward the center of density of the flock is called as
cohesion displacement vector as indicated by

Coh, = Fc,- p1 4

Alignment: This is the rule for boids (fish) to steer
towards the same direction with neighboring fishes.
There is a certain range of threshold distance of
alignment for the fish which are counted as neighbors
and average of their velocities are calculated. We can
calculate alignment (Ali;) in two steps. First we find the

average velocity vector of neighboring fishes (F—vl) by

F—Vlzzvbjef% (5)

Then displacement vector of Alignment (Ali;) can be
calculated by

AlL,=Fv, - v, (6)

where v, is the velocity vector of boid i without this
rule there will be no formation of nice flocking
behavior of fish rather than bouncing each other
randomly.

Separation: This is the rule for boids to make some
distance from neighboring fish. The rule can be seen as
type of repulsion rule. It’s important to note that the
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distance from which the boids start to avoid each other
must be less than the distance from which the boids
attract each other (due to the cohesion rule). Otherwise
no flocks would be formed. We have implemented
separation (Sep;)) rule by (7). The self-position of boid
b; and neighboring visible boid b; vectors are summed

together. Then separation steer (Sep,) can be calculated
by

Sep, =X, (P: — Py) (7)

Leader following: This is the rule to follow nearby
moving boid chosen as leader (p;). The leader
following (Led;)) is calculated by

Led, =L * (p; — p;) (8)

where L is a leading strength factor. (Note: the moving
vector (velocity) has limits, minimum and maximum.

Random movement: This rule is to add some
disturbance in the movement of fish to make realistic.
Random number generator of Unity is used for this
purpose. The random movement (Rand;)) is calculated
by

Rand, = —f factor * 7 9)

where r is a unit sphere random vector and f factor is a
flock random strength factor.

Then the moving vector (V;) is for boid (b;) is
calculated by combining all the steering behavior
vectors as by

Vi=w; + Cohﬁrwzﬁlﬁrwﬁep1 + w,Led,+wgRand,

(10)

where w; are the coefficients describing influences of
each steering rule and used to balance the five rules.

The simulations of fish with all these rules are
implemented in Unity3D game engine. The choice of
game engine has been more important due to its better
visual representation. We imported the 3D model fish,
shark and other sea materials from third party instead
of wasting time on building 3D models in which we
are not interested. The animation such as movement of
fish tail and fins make more realistic. All the 3D
models are rigid solid object with dynamics of physics.
This is important to keep away from collision of
objects. We have used box collider and cylinder
collider of game engine according to the necessity.
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4 3D Modeling and Visualizations

3D model is the presentation of object used in VW
which is similar in real life. The basic components of
3D models are cubes, polygons, sphere, cylinder and so
on (Cudworth, 2014).

We can model, build, or create whatever we can
visualize if that visualization is based on careful,
complete observations of what you see in the real
world. With scripting, we can change the size, position,
color, texture, and visibility of any 3D models and
transform them as they are approached and viewed, a
great way to keep the experience fresh and interesting.

In the real physical world, we perceived 3D objects
and their relationship to each other in space through a
variety of “depth cues”. Our brains observe the relative
size of two objects, and we often assume the larger one
is closer to our position in space. By using the time-
honored technique of forced perspective by building
objects some distance away in a smaller scale, or
diminishing these objects in actual scale as they
progressively become distant, we can fool the brain
into thinking these objects are even farther away
(Cudworth, 2014). The 3D models used in our
framework are:

4.1 Fish

The 3D model of fish is made of polygon meshes. The
fish model has meshes defined with name “fish” and
several joints are merged to make one solid 3D fish. It
holds the information of animation of fish, i.e. waving
the fins when they move. The general procedure of
making 3D model fish is similar to shark as shown in
Figure 3.

4.2 Shark

The shark model is also a collection of polygons
formed in meshes. The mesh information is stored in
“humpback” as mesh. The shade used for shark is
Bumped Specular. The steps for the formation of shark
are shown in Figure 3.

Add Material

Polygon Mesh

Final Model Apply Texture

Figure 3. Steps involve in making 3D model of shark.
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4.3 Other Models

The other objects models that we have used in our
project are:

* Rocks
*  Water bubbles
*  Water creatures like crab, trees.

4.4 Lighting

There are three basic things that lighting should do
within a virtual environment and they are (Cudworth,
2014)

¢ [lluminate the meaning (or purpose) of this
environment

*  Support the mood(s)

* Augment the visual style Abbreviations and
Acronyms

Even though we have nice textures and structures if
there is no light that is meaningless. We have used
point light, directional light and spot light.

4.5 Viewing

A Unity scene is created by arranging and moving
objects in a three-dimensional space. Since the
viewer’s screen is two-dimensional, there needs to be a
way to capture a view and “flatten” it for display. This
is accomplished using Cameras (Unity3d.com, 2016).
We have installed several cameras in different areas in
the scene, a camera to follow the leader, a camera to
visualize the dynamic behavior of trees and rocks and a
camera for bushes.

|
Figure 4. Human Machine Interaction.

4.6 Human Machine Interaction (HMI)

HMI as shown in Figure 4, is necessary to facilitate the
user to select various parameters such fish birth rate,
death rate, camera selection and so on to see the real
time effect on the scene. We have used different types
of controlling mechanism for the scene which are as
below.

e Label - Display the information related to
specific variables.

* Horizontal Slider - Slider has been
implemented to facilitate for changing the
dynamics of fish and shark populations. It will
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easily let the users to change the birth rate, An experiment has been carried on the system we
death rate and so on. have built to verify the feasibility of the proposed

» Toggle Button - This is Boolean option for flexible structure. The case studies aim to extract and
changing the case. It has been implemented for verify the fish behaviors upon the time changing with
changing the position of camera. For example, some parameter settings. The initial parameters’
the user can easily check the option in the settings before we run the model are shown in
screen to switch the camera from rock area to following Table 1.

bushes area or fish flock area. ) )
First, we set the parameters as shown in Table 1,

. . . and try different changing in the parameters in control
5 Exper imental and Simulation setting of the application. We have done some cases as

Results below:

For simulation of fish behavior and other dynamics we
have made 3D virtual world in Unity3D game engine.
We have made a school of fish based on the steering
behaviors rules. The movement of fish can be obtained
by (10), and the initial number of fish and shark is
shown in Table 1. Figure 5(a), Figure 5(b), Figure 5(c)
and Figure 5(d) are the simulation results of steering (a) (b)

behavior rules respectively for separation, cohesion, Fish vs Sharlcat high fish death rate Fish s Sharlcat high shark death rate
alignment and avoidance.

Fish vs Shark at high fish birth rate FishVs Shark at high Shark Birthrate

(c) ()

Fish Vs Shark with increasing eating rate

(a) (b)

© ®

Figure 6. Fish vs Shark on different cases.

Case 1: Changing fish birth rate

We changed the fish birth rate from 100 to 10
making all other parameters constant. The output is
shown in Figure 6 (a).

(© (d

Case 2: Changing shark birth rate

We changed the shark birth rate from 100 to 10
making all other parameters constant. The output is
shown in Figure 6 (b).

Figure 5. Fish movements’ rules. a) Separation b)
Cohesion c¢) Alignment d) Avoidance

Table 1. Parameter Settings.

Name Minimum Maximum Parameter
Value Case 3: Changing death rate of fish

Fish Birth Rate | 10 1000 100 We increased the population of fish by increasing
Shark Birth Rate | 10 1000 100 the fish birth rate and then make fish birth rate very
Fish Death Rate | 1 1000 30 low around 471. The shark birth rate was made low
ihirk Death | 1 1000 30 around 921. Later the death rate of fish was shifted
F:;he Initial | 0 N/A 10 from 30 to 926 .in slider. We cannot.make simulation
Number for very long time due to complexity of scene and
Shark  Initial 0 N/A 5 rendering freezes. It is shown in Figure 6 (¢).
Number
Eating Rat 0.05 0.5 0.1 .

afing Tate Case 4: Changing death rate of shark
Shark Scale Rate | 10 1000 30 . . . .
Fish Seale Rat 0 1000 20 We increase the population of shark by increasing
15 Seale Tate the shark birth rate and then make shark birth rate very
Shark Velocity 0.001 0.05 0.005

DOI: 10.3384/ecpl7142487 Proceedings of the 9th EUROSIM & the 57th SIMS 492

September 12th-16th, 2016, Oulu, Finland



EUROSIM 2016 & SIMS 2016

low around 471. The fish birth rate was made constant.
Later the death rate of shark was shifted from 30 to 500
in slider. The output is shown in Figure 6 (d).

Case 5: Fish and shark at normal rate
The settings for normal rate, which are set at initial
parameter settings, are shown in Figure 6 (e).

Case 6: Fish and shark with eating rate
The eating rate was changed from 0.01 to 0.3 and
the results obtained are shown in Figure 6 (f).

6 Conclusions

The inception of VR in education and learning can be
tracked back from the 90s. There is lot of potential use
of VR in education such as: immersive technology
helps student to learn the material, it increases
interaction with the world and make feel the user is a
part of that world, learners can integrate theoretical
ideas by manipulating the 3D object to see how it
work. In addition, the learners can create any complex
scenario and test them to see the result easily, which is
not possible in the real world.

The aim of this paper is to help learners who are
interested in fish industry. The learners or students can
get a better overview from the system we proposed.
The testing of fish behavior in real life is very difficult
while it is very simple and easy to understand in 3D
virtual worlds by only changing some parameters from
the user interface. In addition, learners can get the
overview of fish population dynamics based on the
setting they have applied in the application with the
help of the real time graph. This makes the better
understanding when the fish will have high population
or less population. Due to the realistic visual
representation, users feels completely immersive,
which is very important to make the user feel like he is
inside a real world.

We have discussed the 3D models we have used in
our virtual fish farm, the rules and assumption which
we implemented in our system. The simulations of 3D
models are extremely helpful for better visual
representation and this is facilitating the wuser
correlation with real life. The behavior of fish
movement should represent reality which is the main
concern of virtual reality as we discussed in the
introduction chapter. The overall movement of each
individual fish is obtained by summing cohesion,
separation, alignment, leader following and random
factor as we described in section 3.3 of chapter 3. The
fish model such as birth, death, scaling and the
probability of getting eaten by shark is another
important assumption we implemented in our system in
order to understand the ecosystem of fish and shark in
the sea. In addition, to make the environment natural-
looking; growth function of tree, changing the color of
tree to indicate aging and shifting of rock due to sea

waves are also implemented in our system. On top of
these models, HMI will give easy access to the user to
control all the parameters in the system we have
developed and to see the effect instantly. Beside these,
we have cameras in different section to switch the
environment for the user.

The system we proposed here has the necessary

modules for education and training of the people who
are interested to pursue the fish farming business. The
main advantage of using simulation is that the user can
test any complex scenario which has zero impact on
physical properties. After spending several hours in
testing  different scenarios it makes better
understanding and will increase confident for farmers
to start their business.
The challenge in our system is the need of high
computing machine to render complex scenario with
lots of 3D models. The rendering of the scene become
slow if there are many 3D models such as fish and
sharks after continues increase in number. Another
challenge is the correct tuning in the parameters to
resemble the real scenario such as flock formation,
death and birth function. If we have a real life
mathematical formulation of death, birth of fish and
shark it will add more realism to the system. The use of
Genetic Algorithm for self-tuning may help to make
the system more robust. In addition, many works have
worked on integration of devices like Oculus Rift,
Google glass and these are compatible with the Unity
3D.
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