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Abstract
Simulator training with Virtual Reality Simulators

deeply engages the operators and improves the learning

outcome. The available commercial 3D and Virtual

Reality Simulator products range from generic models

for laptops to specialized projection rooms with a great

variety of different audiovisual, haptic, and sensory

effects. However, current virtual reality simulators do

not take into account the physical and psychological

strain involved in field operators’ work in real process

plants. Collaborative training using Extreme

Environments Training Simulators could enhance the

learning process and provide a more realistic perception

of the time and effort needed to carry out demanding

operations in Extreme Environments. We suggest

developing the following features for an optimal ETS

experience and safe learning environment: immersive

3D virtual environments, mixed-reality features,

automated assessment, and a monitoring system for the

physiological and psychological condition of the

trainees.

Keywords: training simulators, extreme environments,

condition monitoring, performance assessment

1 Introduction

1.1 Training simulators for process

operators

Dynamic process simulators have been used since the

1980s for control room operator training (Cameron,

2002; Nazir and Manca, 2014). In Norway, the

government requires simulators to be used in operator

training (Petroleum Safety Authority Norway, 2012).

The benefits of operator training simulators are well

documented (Ayral and Jonge, 2013; Cheltout et al.,

2007; Fiske, 2007; Komulainen et al., 2012; Nazir et al.,

2015; Sneesby, 2008). Typically, simulator training is

organized with one instructor for a team of 2-5 control

room operators. The simulation scenarios include for

example shut-downs, start-ups, abnormal situations, and 

new procedures (Komulainen and Sannerud, 2014). In 

these scenarios, the simulator instructor plays the role of 

field operator and performs all the necessary actions 

instead of the field operator using the instructor 

computer. Operator training with high-fidelity control 

room simulators represents the most effective transfer of 

knowledge and skills: there is a strong 

correlation/overlap with reality and the simulation 

situation is almost identical to reality. Thus, simulator 

training effectively increases trainees’ learning 

outcome. (Kluge et al., 2014; Spetalen and Sannerud, 

2013; Tuomi-Gröhn and Engeström, 2003) 

One of the aims of Virtual Reality (VR) is to evoke 

photo-realistic and immersive feelings and emotions 

that ensure the user is deeply engaged and involved in 

the simulation scenario. There is a close relationship 

between physical perception and learning capability 

(Bergouignan et al., 2014), (Medical Xpress, 2014). The 

physical manifestation of feelings enables us to store 

new information and improve our ability to memorize 

and remember. It has been proven that emotions are 

linked to memory processes and thus improve both 

learning and training (Neuroscience News, 2015), 

(Tendler and Wagner, 2015). The more intense the 

emotion, the stronger the record saved in the memory. 

Furthermore, stress emotions stimulate memory and the 

learning retention rate. Hence, VR simulators are 

considered an effective training tool. It has been 

experimentally demonstrated that VR training is more 

effective than conventional lectures with figures and 

videos (Nazir et al., 2013). Trainees memorize hands-on 

practice, even virtual, better than learning in classrooms 

by means of slides or videos (Nazir et al., 2015). Field 

operators can use VR simulators to train routine 

operations, procedures, abnormal conditions, start-ups, 

shut-downs, and emergency situations. 

A combination of Operator Training Simulators 

(OTS) and Virtual Reality Simulators is used to train 

communication skills and team work between control 
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room operators and field operators (Colombo et al., 

2014; Manca et al., 2013; Nazir et al., 2014). Control 

room operators use a dynamic process simulator (OTS) 

that is connected to the Virtual Reality Simulator used 

by the field operators. The Virtual Reality Simulator is 

an immersive environment where the work site is 

represented in 3D with stereoscopic vision and spatial 

sounds (Manca et al., 2013). 

1.2 Extreme environment training 

simulators (ETS) 

Current VR simulators do not take into account the 

physical strain and effort involved in field operators’ 

work in real processing plants. The environment and 

wearing protective gear increase the field operator’s 

physical workload, and to some extent impair his /her 

perception (Manca et al., 2016; Nazir et al., 2015). 

Collaborative training using an Extreme Environment 

Training Simulator (ETS) can enhance the learning 

process and can give a more realistic perception of the 

time and effort required to carry out demanding 

operations in extreme environments. 

1.3 Research questions 

This paper surveys and discusses recent use of 3D and 

VR simulators for operator training in the process 

industry and team training between control room 

operators (CROP) and field operators (FOP). We 

propose the following research questions: 

What kind of Virtual Reality Simulators are 

available to the chemical process industry? Which 

features are included in the Virtual Reality Simulators? 

Which features should be developed in order to provide 

physically and psychologically realistic operator 

training in Extreme Environments?  

1.4 Research methodology and scope 

The literature search included companies that provide 

3D/VR simulators for the chemical process industry. 

Other industries were outside of the scope of the search. 

The literature study is mainly based on the product 

datasheets available on the companies’ websites. 

2 Review of current 3D and virtual  

reality simulators 

In the following, we review the main features of nine 

different 3D/Virtual Reality Simulators that are 

available to the chemical process industry. A summary 

of this review is presented in Table . 

The companies and their 3D/VR products included in 

this study are:  

 EON Reality: I3TE - Immersive 3D Operator 

Training Simulator (EON Reality, 2015; World Oil, 

2015) 

 GSE Systems: Activ3Di (GSE Systems, 2013; GSE 

Systems, 2014) 

 Illogic: VR Star (Illogic, 2016) 

 Kairos 3D: Gilgamesh (Kairos3D, 2016) 

 MMI Engineering: QUARTS - Quantitative Real 

Time Hazard Simulator (MMI Engineering) 

 Schneider Electric: SimSci-EYESIM (Schneider 

Electric, 2015; Schneider Electric Software, 2015) 

 Siemens: COMOS Walkinside ITS (Siemens AG, 

2013; Siemens AG, 2016) 

 Simtronics: Virtual Field Operator (VFO) 

(Simtronics, 2016) 

 Simulation Solutions: 3D Virtual Reality 

Outside Operator (Simulation Solutions Inc., 2016) 

2.1 VR projection tool and audiovisual 

immersiveness 

The visual features of the virtual reality plant are 

projected to the user by means of a computer screen, a 

pair of 3D glasses, a head-mounted-display (HMD) or a 

VR projection room. The virtual reality audio can be 

provided by computer speakers, a stereoscopic headset 

or the audio system in a VR projection room. An 

example of the projection room is shown in Figure 1. 

Computer screens with loudspeakers are inexpensive 

and computationally less demanding than other 

alternatives. Five of the companies included in this 

study use 3D glasses or a head-mounted-display such as 

the Oculus Rift (Oculus VR, 2015).  

The VR projection room is a quite expensive 

solution, although there are many different alternatives 

on how to implement such rooms, also known as Cave, 

Dome or Cube (Muhanna, 2015). Only one of the 

companies included in this study uses a VR projection 

room –EON Reality with its EON Icube(EON Reality, 

2016).  

2.2 VR avatar control 

The movements of the trainee in the virtual reality 

environment, e.g. the avatar, can be controlled using a 

keyboard, a mouse, a gamepad, voice commands, or a 

gesture tracking device (Leap Motion, 2016). 

Gesture-tracking devices used in Virtual Reality 

solutions include Microsoft Kinect, Leap Motion’s 

Orion (Leap Motion, 2016) and VICON Bonita B10.  

2.3 Features: Immersiveness  

An immersive system evokes photo-realistic and 

immersed feelings/emotions of being deeply engaged 

and involved. A good immersive effect can be achieved 

by using affordable, high-quality head-mounted-

displays combined with directional and surround sound 

effects. Immersive Virtual Reality training is more 

effective than conventional training. 

Simulators that use computer screens for 

visualization, loudspeakers for sound, and a keyboard or 

mouse for avatar control are not Immersive Virtual 

Reality simulators, but 3D simulators. 
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Simulators that use more advanced hardware tools can 

be classified as VR simulators, the degree of 

immersivity depends on the different 

visual/audio/haptic effects projected to the user (EON 

Reality, 2015).  

2.4 Features: View and multi-user 

capabilities  

All of the 3D and VR simulators only have a first person 

(1p) view, but two of the products have a third person 

view (3p).  

   Most of the Virtual Reality simulators can have  

multiple users in the same scenario, which is very 

realistic for many scenarios including emergency 

situation training.  

2.5 Features: 3D objects and graphic effects 

All of the VR products allow the trainee to interact with 

the equipment and to see the status / position of the 

equipment in the VR plant, such as valve opening and 

measurement values. Four of the VR producers have 

implemented seamless motion effect for the equipment 

changing from one state to another. This feature 

increases the transfer outcome between the simulated 

situation and the workplace situation, and improves the 

learning effect. 

   Many of the VR simulators allow the user to see 

through the equipment in the VR environment, for 

example the liquid level in the tanks. Two of the VR 

simulators provide visualization of fire and smoke, and 

use CFD-like simulations to predict the spread of gases 

and liquids, see Figure 2.  

2.6 Features: Augmented Virtual Reality 

(AVR) 

Another feature that some of the advanced VR 

simulators have adopted recently is Augmented Virtual 

Reality. As the name suggests, additional information is 

imposed in the virtual environment to improve the user’s 

learning. Figure 3 represents this feature.  

2.7 Features:immersive 4D sensory effects 

The EON reality I3TE reports enhanced 4D immersive 

sensory effects, including tactile feedback, odors, 

vibration, and wind simulation (EON Reality, 2015). 

The vibration is generated by a motor under the floor, 

and the wind is generated by directional fans.  

2.8 Features: Learning management system 

Some of the 3D/ VR simulators include a learning 

management system (LMS) that gives an automatic 

score to the trainees after the simulation scenario. The 

learning outcome can thus be quantitatively assessed. A 

VR simulator with LMS can be used for (periodic) 

verification of the operators’ competencies. This feature 

enables the user/trainee to continuously improve his/her 

performance. Generally, the assessment of performance 

is made by an expert assessor, which can easily be 

biased by his/her experience and knowledge. Therefore, 

objective performance measures ensure more robust, 

consistent, and unbiased assessments of performance. 

 

 

Figure 1: Process simulator by TSC Simulation is 

connected to the virtual reality environment I3TE by EON 

reality. 

 

 

Figure 2: Emergency situation, Visualization of fire in 

COMOS Walkinside simulator (Siemens AG, 2013). 

 

 

Figure 3: A simulation of an accident where AVR is used 

to impose additional information (graph on left top 

corner) (Nazir and Manca, 2014). 
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Figure 4: Omnidirectional treadmill with embedded IR 

lamps and fans. 

3 Extreme environment training 

simulator (ETS) 

The aim of the ETS is to improve the immersiveness of 

VR simulators by including all of the physical strain and 

effort involved in field operators’ work in real 

processing plants. The environment and wearing 

protective gear increase the physical workload of the 

field operator, and to some extent impair his/her 

perception (Manca et al., 2016; Nazir et al., 2015). In the 

following subchapters, we summarize the current VR 

features required by the ETS simulator, and propose 

features that need to be developed together with the 

required safety and health measures 

3.1 Existing features 

The existing features in VR simulators include: 

• Audio effects: noise, equipment-specific sound 

patterns, process-specific sound patterns, weather-

specific sounds such as wind  

• Visual effects: light, weather patterns, spread of gases 

and liquids. Fire, smoke, assembly/disassembly of 

equipment, see- through (X-sec) view 

•Visual effects in Augmented Reality: 

Thermal/Radiation/Toxic exposure 

• Sensory/ olfactory effects: odors (low H2S). 

• Sensory/ haptic effects: wind (directional fans), 

vibration feedback (motor under floor) 

• Sensory/ thermal effects: heat 

• Collision detection (optical motion capture) 

• Learning management system  

3.2 Features to be developed 

In addition to the existing VR simulator features, the 

following features should be developed in order to 

provide fully immersive training sessions (Manca et al., 

2016). A greater degree of immersion is expected to 

improve Key Performance Indicators (KPIs) and 

Distributed Situation Awareness (DSA). 

 Environmental factors that need to be implemented 

in the ETS in a safe manner: temperature, pressure, 

gravity, elevation/height. 

 Environmental factors requiring protective gear: 

harsh conditions, low oxygen, high exposure to 

radiation, acids/bases/salts, water deficiency, 

polluting/toxic substances. 

We propose the following equipment be used in ETS 

sessions: 

 Audiovisual equipment: Smartphone VR headsets 

represent an attractive and low-cost alternative to 

the self-contained PC HMDs. Utilizing 

smartphones is a versatile, mobile and untethered 

VR solution. For VR rendering, it employs the 

smartphone’s display, GPU, CPU, memory, 

sensors, and other embedded features. The 

embedded sensors, i.e. MEMS gyroscope and 

accelerometers, are used for head tracking and data 

logging. 

 Physical equipment representing the distance and 

elevation changes in the processing plants: the 

Steward platform or the Omnidirectional treadmill 

(Virtuix, 2016) presented in Figure 4. Enables the 

trainee to walk, run, crouch, jump, and freely rotate. 

It has embedded motion detection sensors, 

including foot tracking in the low-friction baseplate. 

The trainee is safely secured in the harness as part 

of the revolving ring. 

 Weight compensation representing gravity and 

elevation: Adjustable weight compensation such as 

the Counterbalance weight system in the Cyberith 

Virtualizer (Virtual Reality Reporter, 2015). 

 Wearables representing the work tools, protective 

gear including suit, shoes, gloves glasses, masks, 

and oxygen bottles. 

 Haptic gloves providing feedback from the 

interactive process equipment and work tools in the 

VR environment, for example CyberTouch II 

(CyberGlove, 2016). 

 Heat could be simulated to the trainees: Infrared 

lamps could be used as presented in Figure 4 

(Cyberith, 2016) or overalls/garments with 

embedded HVAC features. 

 Wind could be simulated to the trainees: Directional 

fans as presented in Figure 4 (Cyberith, 2016). 

 Pressure could be simulated to the trainees: 

Overalls/garments with embedded HVAC features. 

 Augmented reality could be used to visually 

compensate for the health related factors such as 

low oxygen, water deficiency, polluting/toxic 

substances. These could be implemented as visual 

effects like blurry vision, black spots, flickering. 

 The learning outcome should be assessed using 

automatic assessment system with EE performance 

indicators as described in (Nazir et al., 2015). 

3.3 Safety and health measures for EE 

training 

The trainee is safely secured in the revolving harness 

that surrounds the treadmill (Virtuix, 2016) presented in 
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Figure 4. The cables from the VR headset and other 

equipment are secured by an overhead boom. 

Due to the hard physical strain of the Extreme Training 

Simulation, the health status of the trainees should be 

monitored. We propose monitoring vital signs such as: 

 Body core temperature (headphones) 

 Heart rate (pulse watch) 

 Respiration rate 

In addition to parameters such as: 

 Eye movement tracker (headset) 

 Balance (accelerometer and magnetometer) 

 EMG (strain on the legs) 

 Pulseoximeter (oxygen saturation) 

 Stress indicators such as Cortisol or algorithms 

to calculate the stress level 

   Normal values for the core temperature vary between 

36.7 and 37.5 (Sund-Levander et al., 2002). Several 

non-invasive thermopile sensors can measure the 

temperature of various parts of the body and predict the 

core (intragastric) body temperature, and thus indicate 

the heat stress in industrial applications (Graveling et al., 

2009). These sensors can be integrated into the 

headphones in order to measure the temperature within 

the ear canal, or be placed in the headbands or integrated 

into the clothing. The heart rate and respiration can be 

measured by current chest band devices. The maximum 

heart rate is usually calculated as 220 minus age. There 

are several studies that have reported heart rate 

variability in correlation with stress, see for example 

(Thayer et al., 2012). Regarding the stress level, the 

respiration rate may increase rapidly during stress, 

which causes hyperventilation. During 

hyperventilation,, oxygen saturation increases while the 

level of arterial CO2 decreases. In general, a decrease of 

CO2 in the blood will consequently decrease the 

diameter of the blood vessels, including the main blood 

supply to the brain. This reduction in the blood supply 

to the brain leads to symptoms such as lightheadedness 

and tingling in the fingers. Severe hyperventilation can 

lead to loss of consciousness.  

   Monitoring these parameters continuously during 

training will provide feedback on the physiological, and, 

indirectly, psychological state of the trainees, which is 

important for their safety but also for optimizing the 

learning effect. 

4 Conclusions 

The available commercial 3D and Virtual Reality 

Simulator products range from generic models for 

laptops to specialized projection rooms with a great 

variety of different audiovisual, haptic and sensory 

effects. Over the past few years, VR simulators have 

capitalized on the technology advancement in an 

optimal manner, such that newly integrated features 

have improved their effectiveness/usefulness. 

However, Extreme Environment effects such as 

temperature, pressure, gravity, elevation/height, harsh 

conditions, low oxygen, high exposure to radiation, 

acids/bases/salts, water shortage, polluting/toxic 

substances should be developed in order to provide 

realistic training sessions. Monitoring physiological and 

psychological conditions based on the trainees’ vital 

signs and stress-related factors should be included in 

order to ensure a safe training environment. In 

combination with the performance assessment 

indicators, these parameters may also be applied as 

markers for an optimal simulator experience.  

This article paves the way for research on the 

evolving topic of Extreme Environment Training 

Simulators. 
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