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Abstract
The paper presents several unconventional models of

residuary resistance based on fuzzy logic and neural

network techniques. First, two fuzzy models are built

based on different hull parameters and different Froude

numbers. These models are identified by a modification

of Sugeno and Yasukawa identification algorithm. Next,

a neuro-fuzzy model of residuary resistance is build,

based on statistical learning theory. The model presents

a fuzzy inference system of Takagi and Sugeno type that

uses an extended relevance vector machine for learning

its parameters and number of fuzzy rules. Finally, a

neural network approach is applied to build four

different models of residuary resistance. Two of the

neural models apply classic extreme learning machine,

and the other two implement incremental extreme

learning machine philosophies. The obtained models are

validated for their generalization and approximation

performance, and although they all possess excellent

approximation capabilities, our neural models based on

extreme learning machine have shown the best

simulation results.

Keywords: residuary resistance, fuzzy modeling,

neuro-fuzzy model, extreme learning machine, random

nodes

1 Introduction

Obtaining a hydrodynamic model of a sailing yacht is an

important step in its initial design, because the model

can be used for calculation of the most important

hydrodynamic forces acting upon the yacht, evaluation

of yacht performance and estimation of its required

propulsive power. Within these efforts, Delft Ship

Hydromechanics Laboratory at Delft University of

Technology in Nederland has produced several series of

yacht models, known together as Delft Systematic

Yacht Hull series (DSYHS). This large data base of

sailing yacht models today consists of 7 series with a

total of approximately 70 models and can be accessed

through DSYHS Data Base. According to (Keuning

and Katgert, 2008), it is probably the largest series of

yacht hulls systematically designed, built, and tested up

to now and the series is still expanding. DSYHS is

elaborated in much detail in (Keuning and Sonnenberg,

1998). DSYHS has been used for extensive research of 

sailing yacht hydrodynamics and performance over the 

past five decades (Keuning and Katgert, 2008; Keuning 

and Sonnenberg, 1998; Kerwin, 1978; Gerritsma et al., 

1981; Gerritsma and Keuning, 1988; Gerritsma et al., 

1992; Keuning et al., 1996; Keuning and Binkhorst, 

1997). The research presented in this work is based on 

DSYHS also and deals with prediction of residuary 

resistance in sailing yachts.  

The prediction of total yacht resistance, and 

particularly its residuary resistance, is very important 

because of its influence on ship hull design. This 

prediction should be done with the highest possible 

accuracy to ensure that the ship operates at optimal 

speed under most efficient and cost-effective conditions. 

There are several models for residuary resistance 

prediction presented in the literature and obtained 

through regression analysis (Keuning and Katgert, 

2008). The variables in these models are different 

parameters describing hull geometry, and the models are 

given as sets of polynomials of rather complex structure. 

Their coefficients are valid only for a specific ship 

speed, described by a corresponding Froude number. 

Thus, large look-up tables must be built for each model 

for different discrete values of Froude number.  

This paper proposes and describes several 

unconventional models for residuary resistance 

prediction in sailing yachts. The modeling is done on the 

Yacht Hydrodynamic Data Set available at (Lichman, 

2013). The set includes 308 full-scale experiments 

performed at Delft Ship Hydromechanics Laboratory, 

which consist of 22 different hull forms. The supplied 

input parameters are different coefficients concerning 

the hull geometry and yacht speed: longitudinal position 

of the center of buoyancy, prismatic coefficient, length 

to displacement ratio, beam to draught ratio, length to 

beam ratio, Froude number. The measured variable, i.e. 

the output, is the residuary resistance per unit weight of 

displacement. 

2 Fuzzy Models of Residuary 

Resistance 

The paper presents two fuzzy models of residuary 

resistance: a position type and a position – gradient type 

fuzzy model. The identification of these models is based 
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on (Sugeno and Yasukawa, 1993). The obtained 

position type fuzzy model of residuary resistance is of 

the following form: ��: ��	��		
	��� 	�
�	��		
	��� 	����	�		
	��; 	 � 1,2,⋯ ,5 
(1) 

and is shown in Figure 1. It has two inputs �� and	��, 

one output � and five fuzzy rules ���	 � 1,2,⋯ , � � 5�; ��� , ��� ,	�� are fuzzy variables with trapezoidal 

membership functions, and � is the number of clusters. 

A deffuzification method known as center of gravity is 

used to infer the model output � , and � 	is calculated as 

the weighted average of the centers of gravity 	!�  for the 

consequent membership functions "#$���, with respect 

to the weighting factors %�: 
� � &%�'

�() !� &%� 		'
�()*  

%� � min)./.0 "12$ 3�/4 ; 1 5 	 5 �	 
!� � 6�"#$�����6"#$�����  

(2) 

The output of the position type fuzzy model of 

residuary resistance compared to the actual output is 

shown in Figure 2. The model performance has been 

evaluated through the performance index PI, defined as 

root mean square error (RMSE) of the model output: 

7� � 81�&3�9:;<� = �>?@:<� 4AB
�()  (3) 

The obtained position-gradient fuzzy model of 

residuary resistance is shown in Figure 3 and is of the 

following form: ��: ��	��		
	��� 	�
�	��		
	��� 	����	�		
	�� �
�	 C�C�� 	
	D�� 	�
�	 C�C�� 	
	D�� ; 1 5 	 5 � � 5 
(4) 

 

Figure 1. A position type fuzzy model of residuary 

resistance. 

 

Figure 2. The output of the position type fuzzy model of 

residuary resistance (dashed line) compared to the actual 

measured output (solid line). 

 

Figure 3. A position-gradient type fuzzy model of 

residuary resistance. 

where	��� , 	��� , ��, D�� , 	D��  are fuzzy variables with 

trapezoidal membership functions and C� C��⁄ ,	C� C��⁄  

are partial derivatives of the fuzzy rule outputs with 

respect to the corresponding inputs. The difference 

between the two fuzzy models is since a position type 

fuzzy model cannot be built over the whole input space 

when some data are missing. In these cases, the output 

of the model can be estimated through extrapolation 

based on the local fuzzy rules, which leads to a position-

gradient fuzzy model. The output of this model is 

inferred in the following way: � � ∑ %3��4GH!� I ∑ 3�/� J �/�40/() KL'�() ∑ %����'�()  (5) 

where !� and �/� are values obtained by defuzzification 

of ��and D/�, respectively; �� is the distance between the 

input and the core region of the thi fuzzy rule; �/� is a 

component of �� on the �/ coordinate axis and %3��4 �M�N3=��4 is the weight of the thi  fuzzy rule with 
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respect to distance ��. The performance of the position-

gradient type fuzzy model is evaluated through its PI 

based on RMSE criterion (3) and is shown in Figure 4.  

The applied identification algorithm (Sugeno and 

Yasukawa, 1993) is a very well-known method for 

fuzzy identification. Several modifications of this 

identification method have been presented in literature 

(Tikk, 2002; Haddad, 2008; Kim et al., 1997; 

Lazarevska and Trpovski, 2000). In this research, the 

modification presented in (Lazarevska and Trpovski, 

2000) is used. The performed algorithm includes 

parameter identification at each stage of model’s rule 

structure identification process, thus significantly 

improving the accuracy of the obtained intermediate 

fuzzy models. As a result, a more efficient and more 

accurate selection of inputs to the identified fuzzy 

models is obtained. The parameter identification is done 

both for the premise and the consequent parameters of 

the fuzzy rules. In addition, parameter identification is 

done throughout the process of estimation of partial 

derivatives of the output with respect to the input 

variables. As a result, the two obtained fuzzy models 

very successfully model the given input output data, 

generating the desired output only by two significant 

inputs, opposite conventional polynomial models that 

struggle with many parameters and parameter 

dependent coefficients. The identification of these 

models in much more detail is given in (E. Lazarevska, 

2016). 

 

Figure 4. The output of the position-gradient type fuzzy 

model of residuary resistance (dashed line) compared to 

the actual measured output (solid line). 

3 A Neuro-fuzzy Model for Residuary 

Resistance Prediction 

The neuro-fuzzy model for residuary resistance 

prediction presented in this paper is based on several 

excellent papers (Vapnik, 1998; Tipping, 2001, Kim et 

al., 2006) and is described in detail in (Lazarevska, 

2016). The modeling is done on the available input-

output data O�P , �PQ; R � 1,2,⋯ , � and the model has 

the structure of a Takagi and Sugeno (TS) fuzzy model: 

��: ��	�)		
	�)� 	�
�	�A		
	�A� 	�
�	⋯�
�	�S		
 �S� 		����	T� � ��)�) I ⋯I ��S�S I ��U; 	 � 1,2,⋯ , 
 

(6) 

where	�/ 	�V � 1,2,⋯ ,W�	are inputs to the fuzzy rules  �� 	�	 � 1,2,⋯ , 
�, �/� are appropriate fuzzy sets, ��/ 	are 

consequent parameters, T� is the thi  local output 

variable, 
 is the number of fuzzy rules and W is the 

dimension of the input data vectors. The fuzzy sets �/� 
are represented by Gaussian type kernel functions:  

X3�/ , ��/∗ 4 � M�N Z= 3�/ = ��/∗ 4A2[�/A \ ; 	 � 1,2,⋯ , 
; V � 1,2,⋯ ,W 

(7) 

where 	�/  is the thj feature of the thk input 

variable	�P, ��/∗ 	is the center and [�/ is the variance of 

the Gaussian kernel function X3�/ , ��/∗ 4 and		 � 1, ,⋯ , 
; V � 1,2,⋯ ,W. Thus, the fuzzy IF-THEN 

rules (6) have the following specific form (Kim et al., 

2006): ��: ��	�)		
	X��), ��)∗ ��
�	�A		
	X��A, ��A∗ ��
� ⋯�
�	�S		
	X��S, ��S∗ � ����	T� � ��)�) I ⋯I ��S�S I ��U; 	 � 1,2,⋯ , 
 

(8) 

The function X3�/ , ��/∗ 4 in (8) represents the grade of 

membership of �Vwith respect to the fuzzy set �V	, ��/∗ 	is 

a relevance vector (RV), [�/ is a kernel parameter, the 

number of fuzzy rules 
 equals the number of RVs and 	 � 1, ,⋯ , 
; V � 1,2,⋯ ,W. The number of fuzzy rules 

and the parameters of the membership functions in (8) 

are generated automatically by the extended relevance 

vector learning machine RVM algorithm (Kim et al., 

2006). The identification algorithm performs system 

optimization and generalization simultaneously. The 

gradient ascent method adjusts the parameters of the 

kernel functions.  The coefficients in the consequent part 

of the fuzzy rules are determined by the least square 

method.  

The structure of the neuro-fuzzy model of residuary 

resistance is shown in Figure 5. It is presented as a 

neural network with six different layers. The first layer 

is the input layer. It has a total of W nodes, W being the 

number of elements in the training input vector	]^ ���P), �PA,⋯ , �PS�. This layer transmits the upcoming 

input data to the second layer and does not perform any 

operations over the training input data. The second layer 

is a fuzzification layer. Each node in this layer has 

exactly W inputs. The second layer consists of 
 nodes 

that represent adequate kernel functions	X3�/ , ��/∗ 4. 

From the fuzzy modeling perspective, the Gaussian 

kernel function is the membership function X3�/ , ��/∗ 4 �"12$ 3�/4 of the thj fuzzy input	�/  with respect to the

thi  fuzzy rule, its parameters ��/∗  and [�/ are premise  
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Figure 5. The structure of the neuro-fuzzy model of 

residuary resistance. 

parameters of  the  corresponding  fuzzy  rule, W is the 

number of fuzzy inputs to the neuro-fuzzy model, and 

the number 
 of kernel functions is the number of fuzzy 

rules, i.e. the number of nodes in the second layer. 

Because of the Gaussian shape of the selected kernel 

functions, the membership functions of the antecedent 

part of the fuzzy rules are Gaussian membership 

functions. From RVM prospective, the center ��/∗  of the 

Kernel function is a relevance vector RV, the 

variance[�/ is a kernel parameter, and 
 is the number 

of RVs. The third layer can be called as the rule layer, 

since a node in this layer generates the IF part of each 

fuzzy rule. This layer has 
 nodes, one for each fuzzy 

rule, and they compute the firing strength of the 

associated fuzzy rules using the product of membership 

functions as T-norm operator. The fourth layer is a 

normalization layer. It consists of 
 nodes and each node 

perform normalization of the firing strength of the 

associated fuzzy rule. This normalization is done with 

respect to the sum of the firing strengths of all the fuzzy 

rules, and the output of each node is the weight _� of the 

corresponding fuzzy rule. Each node 	 in the fifth layer  

 

Figure 6. The output of the neuro-fuzzy model of 

residuary resistance (dashed line) compared to the actual 

measured output (solid line). 

calculates the product of  the normalized weight _� for 

the thi rule and the local output variable T� of the 

fuzzy model. The sixth and the last layer is the output 

layer. The single node in this layer computes the overall 

output T�]� of the neuro-fuzzy model as the sum of all 

incoming signals	_�T� 	�	 � 1,2,⋯ , 
�. The output of the 

neuro-fuzzy model for residuary resistance prediction 

with the obtained relevance vectors, and compared to 

the actual measured output, is shown in Figure 6. 

4 Neural Models of Residuary 

Resistance based on ELM 

Three neural modes of residuary resistance are 

presented in this section, based on classic and 

incremental extreme learning machine (ELM). First the 

classic ELM is used to obtain the desired model of 

residuary resistance. To perform the modeling, the 

available experimental data were divided into two sets: 

training data and testing data, and fixed number of 

hidden nodes 25n  were assigned for training. Since 

the approximation performance of classic ELM is 

generally independent of the type of activation function 

(Huang and Babri, 1998), the logistic function was 

chosen for the hidden neurons, and the input parameters 

of the hidden neurons à and !� 	�	 � 1, ,⋯ , 
� were 

randomly assigned according to the uniform probability 

distribution. The neural model of residuary resistance 

based on the classic ELM is of the following form 

(Huang et al., 2004): 

�bP � &c�
0

�() d��]P� � &c�
0

�() d�`�]P I !��; R � 1,2,⋯ ,� 

(9) 

where ]^ � e�P)	�PA 	⋯	�PSfgis the thk  input vector 

of dimension W, à � e%�)	%�A 	⋯	%�Sfgare the weights 

of the connections between the M input neurons and the 

thi  hidden neuron, ca � eh�)	h�A 	⋯	h�ifgis the vector 

of the weights defining the connections between the thi  

hidden neuron and the j output neurons, !� is the threshold, 

i.e. the bias of the thi  hidden neuron, and d��]P� is the 

activation function of the thi  hidden neuron; the term `�]P denotes inner product between `�and ]P. The 

hidden neuron output weights can be determined simply 

and analytically with an adequate least square method 

yielding the smallest norm least square solution (Huang et 

al., 2004):  k � lmn (10) 

where k is the model adjustable parameter vector, 	n is the model output vector, and lm stands for the 

Moore-Penrose generalized inverse of the hidden layer 

output matrix	l (Rao and Mitra, 1971). However, the 

conducted research has shown that the approximation 

performance of classic ELM depends considerably on the 

values of the arbitrary chosen weights and biases for the 

hidden layer inputs. Therefore, a simple approach is used 

in this research to overcome the uncertainty problem with 
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classic ELM. After the selection of appropriate activation 

function and the number of hidden neurons, the desired 

value of the error is set as	o. Then the training of the 

constructed neural network with ELM is conducted and the 

error of the obtained model is compared to the preset 

desired value . If the model error is greater than , the 

training process is repeated. Otherwise, it is considered that 

the obtained model has the desired accuracy. Figure 7 

shows the output of the ELM model of residuary resistance 

obtained in this way compared to the actual output.

The approximation accuracy of ELM certainly 

depends on the number of hidden layer neurons 
, and 

when 
 approaches the number of training samples �, 

the model error approaches zero (Huang and Babri, 

1998). However, since too large number of hidden 

neurons is not a desired neural network feature, (Huang 

et al., 2006) has proposed a new learning algorithm 

called as incremental ELM (IELM). The difference 

between the classic ELM and the IELM is in the addition 

of new neurons to the hidden layer of the later.  The new 

neurons can be added one at a time, or in groups, and the 

process of learning continues until the preset maximum 

number of hidden neurons is reached, or the preset 

acceptable model error is achieved. As with classic 

ELM, the input parameters of the hidden layer in IELM 

are randomly generated and are not adjusted at all during 

the learning process. When a new hidden neuron is 

added to the hidden layer, the IELM algorithm does not 

recalculate the hidden layer output parameters of the 

existing hidden nodes, and the output weights of the 

hidden layer are calculated according to (Huang et al., 

2006): 

p0 � qrs rrs⁄ � &M�	�ℎ�	�B
�() &ℎA�	�B

�()*  (11) 

where ℎ�	� denotes the activation of the added new 

hidden node for the thi training sample, while M�	� is 

the corresponding residual error before the addition of 

the new hidden node in question;     T1 Nhh ⋯H  

is the activation vector of the newly added node for all 

the training samples, and q � eM�1�	⋯ M���fg is the 

vector of  residual  error  before the addition of the new 

  

Figure 7. NN model for residuary resistance prediction 

based on our modification of classic ELM with u �vw,	logistic activation function and RMSE=0.162942. 

hidden neuron. The value of the residual error after the 

addition of a new hidden neuron is calculated according 

to (Huang et al., 2006): q � q = pxrx (12) 

However, the obtained IELM model does not provide 

the best possible solution considering the model 

approximation error, since the output weights of the 

nodes in the hidden layer are not recalculated after each 

addition of a new hidden node. To overcome this 

problem, we have tested a much simpler algorithm than 

the IELM described above, which is a modification of 

the classic ELM in a sense that it accepts increasing 

number of hidden nodes and searches for smallest preset 

error defined by	o. The algorithm recalculates the output 

parameters of all the hidden neurons in the hidden layer 

after every new addition to the hidden layer and 

performs until the preset maximum number of hidden 

neurons or the preset desired model error is reached. The 

performance of our version of IELM residuary 

resistance model with 
 � 30 and logistic activation 

function, compared to the actual measured output, is 

shown in Figure 8. This model has much better 

performance index than the IELM given by (11) - (12). 

To overcome the accuracy issue with IELM, (Huang 

and Chen, 2007) proposed a modification of IELM called 

convex incremental ELM (CIELM), which assigns the 

output hidden layer weights as: p � qeq = �n = r�fseq = �n = r�feq = �n = r�fg � 

� ∑ M�	�OM�	� = e��	� = ℎ�	�fQB�()∑ OM�	� = e��	� = ℎ�	�fQAB�()  

(13) 

The variables in (13) are defined as in (11). The 

output of the residuary resistance CIELM model 

according to (13) is given in Figure 9. It has worse PI 

than the model in Figure 7, which is due to the fixed 

random assignment of network input parameters. 

The performance indices of the obtained models for 

residuary resistance prediction are shown in Table 1. 

The model with our version of IELM has shown the best 

PI value and the reason for this is found in the fact that 

 

Figure 8. Our version of IELM model for residuary 

resistance prediction with u � {|,	logistic activation 

function and RMSE=0.104165. 
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Figure 9. CIELM model for residuary resistance 

prediction with u � {|,	logistic activation function and 

RMSE=0.127857 according to (Huang and Chen, 2007). 

whenever a new hidden node is added to the network, 

all the output parameters of the hidden layer are 

recalculated, and a search is conducted with different 

random assignments for the network input parameters 

until the desired error is reached. IELM and CIELM do 

not take into consideration the influence of the 

randomness factor. Once assigned, the input parameters 

of IELM and CIELM networks are never changed. 

Table 1. Comparison of Residuary Resistance Prediction 

Models obtained by Different Modeling Techniques. 

Model RMSE 

Position type fuzzy model  0.47446 

Position-gradient type fuzzy model 0.17367 

Neuro-fuzzy model based on RVM 0.112275 

NN model based on our version of ELM 0.162942 

NN model based on IELM according to 

(Huang et al., 2006) 
0.143637 

NN model based on our version of 

IELM 
0.104165 

NN model based on CIELM according 

to (Huang and Chen, 2007) 
0.127857 

5 Conclusions

The paper presents six unconventional models for

residuary resistance prediction based on fuzzy logic and

neural network techniques. All of them possess

excellent approximation properties. The applied fuzzy

logic approach is especially valuable because of its

transparency and ease of interpretability, and because it

allows the researcher to determine the most significant

input variables that affect the modeled system output

and behavior, which is very desirable in cases with large

number of input candidates. The position-gradient fuzzy

model has a comparable accuracy with the more

sophisticated models. The neuro-fuzzy model for

residuary resistance prediction has the same excellent

approximation property as the rest of the presented

models, but it lacks the simplicity and the computational

speed of the ELM neural models. The neural models for

residuary resistance prediction based on ELM 

philosophy, have clearly showed that ELM indeed 

possesses the attributes of extreme simplicity, extremely 

good approximation performance, and extremely fast 

computation. Very notably, our version of IELM 

produces the best approximation performance, meaning 

the smallest approximation error defined as RMSE, 

because it takes into consideration the effect of input 

parameters randomness on the ELM. 
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