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Abstract
The term collinear (flat)  pattern means in this article, a set

of a large number of feature vectors located on (or near) a

plane in multidimensional feature space. Flat patterns

extracted from large data set can provide a basis for

modeling a local interactions in selected sets of features.

Collinear patterns can be discovered in given data set

through minimization of some kind of the convex and

piecewise linear (CPL) criterion functions.

Keywords:  data mining, flat patterns, CPL criterion

functions, margins

 

1 Introduction  

Data mining tools are used to extraction patterns from 

multivariate data sets (Hand and Smyth, 2001). The data 

sets considered in this article are assumed to be formed by 

the structuralized feature vectors of the same 

dimensionality and can be represented as the matrices. The 

word pattern means a data subset with a certain type of 

regularity. The overall goal of the data mining process is to 

obtain useful information on the basis of the extracted 

patterns. 

The term collinear (flat) pattern means a subset of a 

large number of feature vectors located on and around 

selected hyperplanes in a certain feature subspace. 

Discovered collinear patterns can be used also for creating 

models of linear interaction between many selected features 

(genes).  

Flat patterns can be discovered in data sets through 

minimization of a certain type of the convex and piecewise 

linear (CPL) criterion functions (Bobrowski, 2014). The 

basis exchange algorithms can be used for the CPL 

functions minimization. The role the margin in a special 

type of the CPL functions in the flat patterns discovering is 

examined in the presented paper.  A special type of the 

CPL functions gives opportunity to discover the so called 

layered patterns in the feature space. 

 

 

2 Data subsets in feature subspaces  

Let consider the data set C composed of m feature vectors            

xj = xj[n] = [xj,1,...,xj,n]T which represent the objects 

(patients) Oj and belong to a given n-dimensional feature 

space F[n] (xj  F[n]): 

 C =  {xj: j = 1,..., m} (1) 

 

The feature space F[n] = { x1,…, xn} is composed of n 

features xi (in}). he i-th component xj,i (xj.i R 

or xj,i ) of the feature vector xj is the numerical 

value of the feature xi measured on the j-th object Oj. 

The k-th feature subspace Fk[nk] (Fk[nk]  F[n]) is 

made of nk such features xi which have the indices i in the 

subset k  (i k  ) and contains nk - dimensional reduced 

vectors x = x[nk] (x[nk] Fk[nk]). The reduced vectors 

x[nk] are obtained from the feature vectors x[n] = [x1,...,xn]T 

by neglecting these components xi which represent features 

xi with the indices i outside the set k (i k). The regular 

hyperplane Hk(w, ) in the k-th feature subspace Fk[nk] is 

defined in the below manner: 

Hk(w, ) = {x: wx = }                          (2) 

where x = [x1,...,xnk]T is the reduced feature vector 

(xFk[nk]),  w = [w1,...,wnk]T is the reduced weight vector  

(w Rnk) and is the threshold ( R1). 

Definition 1: The hyperplane Hk(w,) in the k-th feature 

subspace Fk[nk] is regular if and if the threshold  and the 

weights w,i are different from zero:  

and i1,…, nk})   wi≠                   

 

The k-th data subset Ck[nk] is constituted by such mk 

reduced vectors xj (xj  Fk[nk]) which have the indices j 

from the given subset Jk (j Jk    J = {1,..., m}): 

Ck = Ck[nk]  =  {xj: j Jk}                        (4) 

The k-th data subset Ck[nk] (3) can be represented also 

as the matrix M[mk  nk] with the mk rows and nk columns. 

The rows of the matrix M[mk  nk] are constituted by 

particular feature vectors xj (j Jk). Similar representation 
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of data sets is used in the biclustering methods. We pay 

attention to the data subsets Ck[nk] (3) with a collinear 

(flat) structure based on regular hyperplanes Hk(w, ) (2) in 

the feature subspace Fk[nk]. 

Definition 2: The data subset Ck[nk] (4) formed by a large 

number mk of reduced vectors xj = xj[nk] constitutes the 

collinear (flat) pattern Pk if all elements xj of this subset 

are located on a regular hyperplane Hk(w, ) (2) in the 

feature subspace Fk[nk]: 

 

                   xjCknk wxj = 



The -layer S(w,in the feature subspace Fk[nk] is 

defined on the regular hyperplane Hk(w, in the 

below manner by using a small margin  (): 

 

S(w, )   = {x:  -   w / || w ||)T x    +                 (6 

where || w || = wT w)1/2.  

 

            x5 

            

 

                                      w 

 







 

 

                                                           x2 
Figure 1. An example of the  - layer S(w,in the                 

two-dimensional (nk = 2) feature subspace Fk = {x2, x5}. 

Definition 3: The data subset Ck[nk] (4) has the  - collinear 

structure with a margin  (  0) if it exists such weight 

vector w and the threshold  that all elements xjof this 

subset are located inside the layer S(w, ) (6): 

 
              (xj  Ck[nk])     -   w)T xj    +           (7

 

where || w || = 1 and  ≠ 0. 

 

Because the threshold is different from zero( ≠ 0) the 

above inequalities can be given in the following form: 

 

              (xj  Ck[nk])    1 -   wT xj   1 +                  (8

 

where w =  w/  and  =  / . 

 

3 Dual hyperplanes and vertices in the 

parameter subspaces  

 
Each of reduced feature vector xj from the data subset 

Ck[nk] (4) defines the below dual hyperplane hj in the nk - 

dimensional  parameter subspace Rnk  (w Rnk): 

                  (xj  Ck[nk])   hj =  {w: xj
Tw  =  1}         

Let consider the set Sk = {xj(i)} of nk linearly 

independent reduced feature vector xj[nk] from the subset 

Ck[nk] (4)  

        Sk = {xj(i): j(i) Jk

The hyperplanes hj(i) defined by the basis vectors xj(i) 

from the set Sk (9) intersect at one point (vertex) wk 

determined the below equations:   

        j(i) Jk xj(i)
Twk  =  1

The above equations can be given in the matrix form: 

      k
Twk  =  1                          

where Bk = [xj(1),…, xj(nk)] is the non-singular matrix called 

the k-th basis and  1 = [1,1,…,1]T. 

The k-th vertex wk = [wk,1,...,wk,nk]T (11) with the non-

zero components wk,i (wk,i ≠) allows to define the 

vertexical hyperplane Hk(wk,) in the feature subspace 

Fk[nk] :  

 

          Hk(wk, 1)  =  {x  Fk[nk]: (wk)Tx = 1}  (13) 

 

The vertexical hyperplane Hk(wk,) (12) is defined in 

the k-th feature subspace Fk[nk] composed from nk features 

xi with the indices i belonging to the subset Ik i Ik).   

  

Remark 1: All feature vectors xj from the subset Ck[nk] (4) 

are situated on the hyperplane H(w,) = {x: wx = with 

 ≠ 0, if and only if each vector xj defines such dual 

hyperplane hj (8) which passes through the vertex  wk (10). 

 

The Remark 1 has been dicussed in the paper.  

 

4 Penalty and criterion functions aimed 

at extraction of collinear patterns  

 
We consider convex and piecewise linear (CPL) penalty 

functions j(w) defined on the nk - dimensional feature 

vectors xj from the k-th data subset Ck[nk]  (4): 
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  (xj  Ck[nk])     

                      - wTxj      if    wTxj  

j(w) 0if     wTxj  

                      wTxj- 1 +       if    wTxj  1 +    

 

where  is a small, non-negative parameter (margin). 

 

The non-negative function j(w) is equal to zero (j(w) 

=) if and only if the feature vector xj is located in the layer 

S(w, ) (7) with  = 1 (Fig. 2) 

 

 

 

  

j(w) 

wTxj  


 


 



Figure 2. The j-th penalty functions j(w) (8). 

The criterion function k(w) is defined as the weighted 

sum of the penalty functions j(w) (8) linked to mk feature 

vectors xj constituting the subset Ck  C (1): 



 kwjjj(w) 

 

where the positive parameters j (j ) are prices of 

particular feature vectors xj. The parameters j  may 

depend on the number mk of the vectors xj in  the subset Ck: 

xj  Ck)         jmk 

The criterion function k(w) (15) is convex and 

piecewise linear (CPL). It can be proved that the minimal 

value of the  function k(w) can be found in one of the 

vertices wk
* (11): 

 wk
*wk wkwk

*k


The basis exchange algorithms which are similar to the 

linear programming allow to find efficiently the optimal 

vertex wk
* (19) constituting the minimal value 

kwk
*even in the case of large, multidimensional data 

subsets Ck (4) (Bobrowski, 2014). 

For the purpose of the minimization of the criterion 

function k(w) (15) with the penalty functions j(w) (14) it 

is useful to replace each dual hyperplane hj (9) by the two 

hyperplanes hj
+ and hj

-: 

           (xj  Ck[nk])   hj
 =  {w: xj

Tw  =  }  and       

                                     hj
- =  {w: xj

Tw  =  1 - } 

 

Theorem 1: If all vectors xj from the subset Ck[nk]  (4) can 

be located inside some  - layer S(w,) with  ≠ 0 (5), 

then the minimal value kwk
*(16) of the criterion 

function k(w) (14) determined on this subset is equal to 

zero.  

 

Proof: If the reduced vector xj is located in the -layer 

S(w,) with  ≠ 0 (6), then the inequalities (7) are 

fulfilled for w =  w /  and  =  / . It means, that the 

penalty function  j(w) (14) is equal to zero in the point w 

= w / . If all elements xjf the subset Ck (4) are located 

inside the layer S(w,), then all the penalty function j(w) 

(13) are equal to zero. It means that the value kwk
*(16) 

of the criterion function k(w) (14) is equal to zero in the 

point w =  w / .

Remark 2: The minimal value kwk
*(17) of the criterion 

function k(w) (15) determined on all elements xjf the 

subset Ck (4) becomes equal to zero for a sufficiently high 

value of the parameter . 

 

For a given data subset Ck[nk] (4) we can determine the 

minimum value k of the parameter which allows to reset 

the minimal value kwk
*(17) of the criterion function 

k(w) (15) determined on this subset: 

          k = min {:  
kwk



The minimal value k of the parameter can be 

computed for data subset Ck[nk] (4)  through multiple 

minimization of the criterion function k(w) (15) 

determined on this subset. 

 

Definition 4: The thickness k of the data subset Ck[nk] (4) 

is defined to be equal twice the value of the parameter k              

(k = 2k) (19). 

 

The minimizing of the criterion function k(w) (15) 

with parameter  less than k (0  k) allows also to 

identify in the data subsets Ck[nk]  (4) a part with the 

greatest collinearity. 

 

5 Vertexical hyperplanes in feature 

subspaces  

 
The vertexical hyperplane Hk(wk,1) (13) in the nk - 

dimensional feature subspace Fk[nk] is defined by using the 

vertex wk  [wk,1,...,wk.nk]T with nk non-zero components wi 
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(4). The vertex wk is linked to the k-th basis Bk = [xj(1),… 

xj(nk)] constituted by nk linearly independentbasis vectors 

xj(i) of dimensionality nk. 

The vertexical hyperplane Hk(wk, 1) (13) can be 

represented also in a different manner by using the nk basis 

vectors xj(i) in the feature subspace Fk[nk]: 

 

                Hk(wk, 1) = Pk(xj(1),…,xj(nk)) =  



               =  {x: x =  xj(1) +…+ nkxj(nk)} 

 

where iare real numbers (i R1)which  fulfills the 

below condition: 

                                …nk 1           

 

Remark 3: The dimensionality of the vertexical hyperplane 

Pk(xj(1),…,xj(nk)) (20) is equal to nnk - 1. 

 

Theorem 2: The reduced  feature vector xj (xjFk[nk]) is 

situated on the vertexical hyperplane Pk(xj(1)[n],…,xj(rk)[n]) 

(20), where j(i)Jk  (10) if and only if, the dual hyperplane 

hj (9)  passes through the vertex wk (11) .   

The proof of a similar theorem can be found in the paper 

(Bobrowski, 2014).  

 

Definition 5: The vertexical hyperplane Hk(wk,1) (13) 

supports the flat pattern Pk if a large number mk of the 

reduced vectors xj  are located on this hyperplane.  

 

Definition 6: The vertexical hyperplane Hk(wk,1) (13) 

supports the - flat pattern Pk if a large number mk of the 

reduced vectors xj are located in the  - layer 

S(wk,1around this hyperplane.  

 

Definition 7: The rank  rk of the flat patterns Pk or Pk is 

equal to the number nk (rk = nk) of the basis vectors xj(i) in 

the k-th base Bk = [xj(1),…, xj(nk)] (12).  

 

Definition 8:The dimensionality of of the flat patterns Pk 

or Pk is  equal to rk - 1. 

 

Example 1: The vertexical hyperplane Hk(wk, 1) (13) in the  

feature subspace Fk[2] = {xi(1), xi(2)} represented as the line 

lk(xj(1),xj(2)) spanned (19) by two basis vectors xj(1) and xj(2): 

 

            lk(xj(1), xj(2)) =  {x: x =  xj(1) + (1 - ) xj(2)}        (22) 

 

where  R1.

The rank rk of the flat patterns Pk or Pk supported 

by the line lk(xj(1),xj(2)) (21) is equal 2 (rk = 2). 

 

Example 2: The vertexical hyperplane Hk(wk, 1) (13) in the  

feature subspace Fk[3] = {xi(1), xi(2), xi(3)} represented  as the 

plane Pk(xj(1),xj(2),xj(3)) (19) spanned by three basis vectors 

xj(i):  

 

   Pk(xj(1),xj(2),xj(3)) = {x: x =  xj(1)+xj(2)+xj(2}   (23) 

 

where 3 1 and i R1. 

 

The rank rk of the flat patterns Pk or Pk supported by 

the plane Pk(xj(1),xj(2),xj(3)) (22) is equal 3 (rk = 3). 

The flat patterns Pk or Pk can be extracted from the 

data set C (1) trough minimization of the criterion 
functions k(w) (15). 

 

6 Properies of the criterion functions 

k(w) 

 
The criterion function (w) is defined as the weighted sum 

(15) of the penalty functions j(w) (8) on the basis of m 

feature vectors xj = xj[n]  (xj F[n]) constituting the data 

set C (1). The criterion function k(w) is defined (15) on 

the basis of mk reduced vectors xj (xj  Fk[nk]) from the 

subset Ck[nk]  (4).  In accordance with the Definition 1, the 

data subset Ck[nk] (4) is the k-th the flat pattern Pk if all 

elements xj of this subset can be located on the hyperplane 

Hk(wk,1) (12). We can infer from the Theorem 2, that a 

large number mk of the  vectors xj  located on the vertexical 

hyperplane Hk(wk,1) (12) causes passing mk dual 

hyperplanes hj (9) through the vertex wk (11). In result, the 

vertex wk (11) becomes highly degenerated. The 

minimization of the criterion functions k(w) (15) allows 

to discover highly degenerated vertices wk (11) and, in 

result, to extract flat patterns Pk. 

The folowing properies of the criterion functions k(w) 

(15). can be useful in flat patterns extraction from the data 

set C (1). The minimal value k(wk
*) (18) of the criterion 

function k(w) (14) can be characterized by two below 

monotonocity properties (Bobrowski, 2014): 

 

i. The positive monotonocity due to reduction of  feature 

vectors xj 

Neglecting some feature vectors xj the data set C (1) 

cannot result in an increase of the minimal value 

kwk
*(17) of the criterion function k(w) (15): 

     (Ck   Ck)  (k
*   k

*)                                 (24) 

 

where the symbol k
* stands for the minimal value (18) of 

the criterion function k(w) (14) defined on the elements xj 

of the subset Ck (xj  Ck). 
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The implication (22) can be proved by the fact that 

omission of certain feature vectors xj results in omission of 

certain non-negative components jj(w) (14) in the 

criterion function k(w) (15). 

ii. The negative monotonicity due to reduction of features xi  

The reduction of the feature space Fk[nk] to Fk[nk] by 

neglecting some features xi cannot result in a decrease of 

the minimal value kwk
*(17) of the criterion function 

k(w) (15): 

   (Fk[nk]   Fk[nk])  (k
*   k

*)                     (25) 

 

where the symbol k
* stands for the minimal value (17) of 

the criterion function k(w) (15) defined on the reduced 

vectors xj (xjFk[nk], nk< nk). The implication (25) 

results from the fact that the omission of certain features xi 

is equivalent to imposing an additional constraint wi = 0 

during the minimization (17) in the parameter space Rnk. 

Theorem 3: The minimal value kwk
*(17) of the criterion 

function k(w) (15) defined on reduced feature vectors xj 

from the subset Ck (4) does not depend on linear, non-

singular transformations of the feature vectors xj from this 

subset: 

                      kwk = kwk
*                                     (26) 

where kwk  is the minimal value of the criterion 

functions k(w) (15) defined on the transformed feature 

vectors xj[n]: 

                    (xj  Ck)   xj = A xj                                  (27) 

where A is a non-singular matrix of dimension (nk x nk)               

(A-1 exists). 

Proof: The values j(w[n]) of the penalty function j(w[n]) 

(15) in a point w[n]  are defined in the below manner on 

the transformed feature vectors xj[n] (26): 

      (xj Ck)  j(w) = |1– (w)Txj| = |1 – (w)TAxj |     (28) 

If we take (17) 

                              w = (AT)-1 wk
*                                   (29) 

we obtain the below result 

                            (xj Ck)  j(w) = j(wk
*)                (30) 

The above equation mean that the value k(w) of the 

criterion functions k(w) (15) defined in the point w (29) 

on the transformed feature vectors xj (26) is equal to the 

minimal value k(wk
*) (17) of the criterion function k(w) 

(15) defined on the feature vectors xj  (xj  Ck[nk] (4)).

7  Procedure of flat pattrerns extraction 

 
The collinear (flat) patterns Pk (Def. 2) can be extracted  
from the data set C (1) through multiple minimization of 

the criterion functions k(w) (15). The procedure Vertex 

can be used for this purpose (Bobrowski, 2014). The basic 

form of this procedure is given below with using the 

counter l: 

 

Procedure Vertex 

 i.        l  =  1;  Cl = C (1);                                                (31) 

 ii.   Define  the criterion function l(w) (15) on all 

elements xj of the data set Cl and find the optimal vertex wl
* 

(11) which constitutes the minimal value k(wl
*) (17) of 

this function.   

iii.  If l(wl
*) = 0, then the procedure is stopped in the 

optimal vertex wl
*, otherwise the next step is executed 

 

iv. Find the vector xj' in the feature subset Cl with the 

highest value of the penalty function j(w) (14) in the 

optimal vertex wl
* (18):    

                   (xj Cl)   j'(wl
*)  j(wl

*)                        (32) 

or with an additional emphasis on the parameters j (15):   

 

                (xj Cl)  j' j'(wl
*)  jj(wl

*)                   (33) 

v.   Remove the feature vector xj' from the subset Cl:  

                  Cl   Cl /  xj'                                                  (34) 

vi.   Increase the counter k: 

                 l   l + 1                                                        (35) 

vii.   Go to the step ii. 

The resulting set Ck
* (4) of feature vectors xj, the set 

Jk
* (4) of these vectors indices j, and the optimal vertex wk

* 

(11) can be created as a result of the Vertex procedure: 

                     Ck
* = Cl  (34) = {xj: j Jk

*}     and           (36) 

                         wk
* = wl

*  

 

It can be proved that the Procedure Vertex is stopped 

in some  vertex wk
* (17) of after finite number of steps l. 

The vertex wk
* resulting from the procedure fulfils the 

below condition (17): 

wk wkwk
*

where the criterion function k(w) (15) is determined on all 

elements xj of such reduced data subset Ck which results 

from the Vertex procedure. 

The vertex wk
* = [wk,1

*,...,wk,nk
*]T (36) obtained from 

the procedure Vertex (31) should be regularized before 
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using it in the definition of the vertexical hyperplane 

Hk(wk
*,) (13). The regularization process means in this 

case the neglecting of such components wk,i
* in the vector 

wk
* which  are equal to zero  (wi = 0)  (Def. 1). The 

regularization means additionally the neglecting of such 

features xi and components xj,i of the feature vectors xj =  

[xj,1,...,xj,n]T from the reduced data subset Ck which are 

linked to weights wk,i
* equal to zero  (wk,i

* = 0): 

 

(in})(jJk(36))                                           

 if  (wk,i
* = 0),  then (the i-th feature xi and the i-th 

component xj,i of  the j-th feature vector xj are neglected) 

 

Remark 4: The reduction of feature vectors xj                                          

in the set C (1) in accordance with the procedure Vertex 

combined with the reduction of features xi in accordance 

with the rule (38) leads in a finite number of steps l to the 

extraction of the collinear data subset Ck[nk] (5) composed 

of mk reduced vectors xj (xjFk[nk]) which fulfill the 

equation (5). 

The Remark 4 can justify directly on the basis of the 

description of the procedure Vertex and the rule (38). 

Remark 5: If the number mk of elements xj of the final 

subset Ck[nk] obtained in result of the procedure Vertex and 

the rule (38) is a large enough, than this subset constitutes 

the flat pattern Pk  (5) (Def. 2).   

The Procedure Vertex (31) gives possibility for 

discovering and extraction more than one flat pattern Pk  

(5) from a given data set C (1).  For this purpose the data 

set data set C (1) can be reduced in subsequent cycles k of 

the below procedure: 

During the first cycle (k = 1), the Procedure Vertex 

(31) is activated on the data set C1  equal to the full data set 

C (1) and ends with the set C1
* (36).   

The initial data set C1 = C (1) is reduced by the final set C1
* 

(36) after the first cycle: 

                  C2 =  C1  / C1
* = C  / C1

*                                (39) 

The second cycle (k = 2) is activated on the data set C2 

and ends with the set C2
*:   

                   C3 =  C2  / C2
*                                               (40) 

The third cycle (k = 3) is activated on the set C3 and so 

on. 

The above procedure should be stopped after extraction 

of an adequate number K of the flat patterns Pk (5). The 

stop criterion should take into account that the numbers mk 

of elements xj in the final subsets Ck
* (36) can not be too  

small. 

8 Examples of experimental results 

The computational pro/cedures described in this paper are 

currently being implemented. The first results of the 

calculations are shown in this paragraph. 

Two synthetic data sets D1 and D2, has been created for 

the purpose of the computational experiments. The set D1 

contained m1 = 100 two-dimensional feature vectors xj               

(xj  R2). The set D2 contained m2 = 100 three-dimensional 

feature vectors xj (xj  R3). The data sets D1 and D2 were 

collinear.  It means in this case, that elements xj of each set 

Dk (k = 1, 2) has been located on the vertexical line lk(xj(1), 

xj(2)) (22) defined by two basic feature vectors xj(1) andxj(2)  

contained in the basis Bk (12): 

 

The basic feature vectors xj(1) andxj(2)  (25) were pre-

selected as: 

P1:   xj(1) = [1,0]T andxj(2) = [0,1]T   and                    (41) 

         P2:   xj(1) = [1,1,0]T andxj(2) = [0,1,1]T 

  

The computational experiments were carried out both 

on the collinear data set P1 with added outliers. as well as 

on the set P2 without outliers. The term outliers means here 

such additional feature vectors xj which were not located on 

the vertexical line lk(xj(1), xj(2)) (22). The outlier feature 

vectors xj were generated in accordance with the normal 

distribution N2(0, I) with the unit covariance matrix I.  

 
Figure 3. Representations of  the collinear pattern P1 with 

added outliers in the two-dimensional feature  space (left) and 

in the parameter space (right).   
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Figure 4. Representations of the collinear pattern P2 (41) 

without outliers in the three-dimensional feature  space (left) 

and in the parameter space (right).   

 

The computational experiments allowed to extract the 

flat patterns P1 and P1  (41) from the data sets given in the 

feature space.   

9 Concluding remarks 

Collinear patterns Pk (Def. 2) can be discovered in large, 

high-dimensional  data sets C (1) through minimization of 

the convex and piecewise linear (CPL) criterion functions 

kw (12). 

Discovering collinear patterns Pk can be linked to a 

search for degenerated vertices (9) in the parameter space. 

The proposed by us method of discovering collinear 

patterns on the basis of the CPL functions can be compared  

with the methods based on the Hough transformation used 

in computer vision for detection  lines and curves in 

pictures (Duda and Hart, 1972; Ballard, 1981). 
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