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Abstract
This paper compares the development of multi-chaotic

system during the optimization process on three

classical benchmark functions – Rosenbrock, Rastrigin

and Ackley. The multi-chaotic system involves five

different randomizations based on discrete chaotic maps

(Burgers, Delayed Logistic, Dissipative, Lozi and

Tinkerbell) and the probability of their selection is

adjusted according to the development of the

optimization task. Two variants of Differential

Evolution (DE) are used in order to simulate the effect

of adaptivity on the randomization probability

adjustment process. First non-adaptive variant is DE

with rand/1 mutation strategy and the second adaptive

variant is novel Success-History based Adaptive DE

(SHADE).

Keywords: randomization, differential evolution,

SHADE, chaos, parent selection

1 Introduction

The Differential Evolution (DE) has played a significant

role in optimization and outperformed other

Evolutionary Computation Techniques (ECT) in many

cases (Price et al, 2006; Kim et al, 2007; Chauhan et al,

2009; Babu and Jehan, 2003). The original version was

introduced in 1995 (Storn and Price, 1995) and since

then has been thoroughly studied and improved. One

branch of improvement is in adapting its control

parameters to the solved optimization task. The

examples of adaptive variants are jDE (Brest et al,
2006), JADE (Zhang and Sanderson, 2009) and

Success-History based Adaptive DE (SHADE) (Tanabe

and Fukunaga, 2013). The last listed is used as a

representative of adaptive DE variants in this research

paper.

One of the recent research directions in ECT is the

studying of effect of different randomizations on various

parts of the evolutionary algorithms and swarm

intelligence algorithms. Especially, the chaotic maps are

often used as Pseudo-Random Number Generators

(PRNGs) instead of the classical ones with uniform

distribution (dos Santos Coelho et al, 2014; Senkerik et

al, 2015b; Caponeto et al, 2003) or combinations of

multiple chaotic systems with some sort of switching

mechanism (Pluhacek et al, 2014; Senkerik et al,

2015a).

The main research question of this paper is whether 

there is a randomization or their combination, that 

would be preferred in parent selection process of non-

adaptive and adaptive variants of DE and if the 

preferences vary for these two variants. In order to 

simulate that, the multi-chaotic framework containing 

five different chaotic map based PRNGs was created 

and probability adjustment process, which mirrors the 

preference is presented. DE and SHADE algorithms 

with multi-chaotic framework are tested on three classic 

benchmark functions – Rosenbrock, Rastrigin and 

Ackley and the resulting probability development is 

reported. 

The remainder of this paper is structured as follows. 

Section 2 illustrates chaotic maps and their use as a 

PRNGs. Section 3 describes DE, SHADE and multi-

chaotic framework with pseudo-codes. Following 

Section 4 is devoted to experiments and results and the 

whole paper is concluded in Section 5. 

2 Chaotic Maps 

The chaotic maps are systems generated continuously 

from a single initial position by simple equations. The 

current coordinates are generated from the previous 

ones, consequently creating a system which is extremely 

dependent on the initial position. The generated chaotic 

sequence varies for different initial positions. Therefore, 

the generation of the initial position is randomized to 

obtain unique chaotic sequences. The generation of 

starting positions is carried out by PRNG with uniform 

distribution.  Chaotic map equations may also contain 

control parameters, which determine the chaotic 

behavior and dynamics. 

Chaotic systems used in this research, with their 

generating equations, control parameter values and 

initial position generator settings are depicted in Table 

1. All the control parameter values were set according 

to previous experiments and suggestions in literature 

(Sprott and Sprott, 2003). 

The multi-chaotic framework used for parent 

selection presented in this paper uses five chaotic maps 

– Burgers, Delayed Logistic, Dissipative, Lozi and 

Tinkerbell. Each of the chaotic map based PRNGs has 

different probability distribution and unique 

sequencing, which may be beneficial for the parent 

selection process where the obtained parent vector 

combinations exhibit a different dynamic than that of 
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parent vector combinations selected by a PRNG with 

uniform distribution. The distribution of 5,000 real 

numbers from range [0, 1] generated by each chaotic 

map can be seen in Figure 1 and Figure 2. It is important 

to mention the differences between these chaotic 

systems. While Lozi and Dissipative chaotic maps tend 

to generate values from the whole range without any 

clear preference, other three chaotic maps visibly favor 

values close to the left end of the specified range. In fact, 

the distribution identifier in Wolfram Mathematica 10.2 

software shown that the distribution of Lozi map 

generated values is beta distribution with shape 

parameters α = 1.03457 and β = 1.56153 and similarly 

the distribution of Dissipative map generated values was 

identified as uniform with range [0.00034, 0.99857]. 

Other three were identified as mixtures of different 

distributions. 

Table 1. Chaotic maps, generating equations, control parameters and initial position ranges 

Chaotic map Equations Parameters Initial position 

Burgers 
𝑋𝑛+1 = 𝑎𝑋𝑛 − 𝑌𝑛

2 
𝑌𝑛+1 = 𝑏𝑌𝑛 + 𝑋𝑛𝑌𝑛 

a = 0.75 
b = 1.75 

𝑋0 = (−0.1, −0.01) 

𝑌0 = (0.01, 0.1) 

Delayed Logistic 
𝑋𝑛+1 = 𝐴𝑋𝑛(1 − 𝑌𝑛) 
𝑌𝑛+1 = 𝑋𝑛 

A = 2.27 𝑋0 = 𝑌0 = (0.8, 0.9) 

Dissipative 
𝑋𝑛+1 = 𝑋𝑛 + 𝑌𝑛+1 (mod 2𝜋) 
𝑌𝑛+1 = 𝑏𝑌𝑛 + 𝑘 𝑠𝑖𝑛𝑋𝑛 (mod 2𝜋) 

b = 0.1 
k = 8.8 

𝑋0 = 𝑌0 = (0, 0.1) 

Lozi 

𝑋𝑛+1 = 1 − 𝑎|𝑋𝑛| − 𝑏𝑌𝑛 

𝑌𝑛+1 = 𝑋𝑛 
a = 1.7 
b = 0.5 

𝑋0 = 𝑌0 = (0, 0.1) 

Tinkerbell 

𝑋𝑛+1 = 𝑋𝑛 + 𝑌𝑛 + 𝑎𝑋𝑛 + 𝑏𝑌𝑛 

𝑌𝑛+1 = 2𝑋𝑛𝑌𝑛 + 𝑐𝑋𝑛 + 𝑑𝑌𝑛 

a = 0.9 
b = - 0.6 
c = 2 
d = 0.5 

𝑋0 = (−0.1, −0.01) 

𝑌0 = (0, 0.1) 

 

               

Figure 1. Lozi and Dissipative generated values in 

histogram. 

               

Figure 2. Delayed Logistic, Burgers and Tinkerbell 

generated values in histogram. 

In order to use chaotic maps as PRNGs, the 

transformation rule had to be developed. The process of 

obtaining the i-th random integer value rndInti from the 

chaotic map is presented in (1). 

𝑟𝑛𝑑𝐼𝑛𝑡𝑖 = round (
abs(𝑋𝑖)

max(abs(𝑋𝑖∈𝑁))

∗ (𝑚𝑎𝑥𝑅𝑛𝑑𝐼𝑛𝑡 − 1)) + 1 

(1) 

Where abs(Xi) is the absolute value of the i-th 

generated X coordinate from the chaotic sequence of 
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length N, max(abs(Xi∈N)) is a maximum value of all 

absolute values of generated X coordinates in chaotic 

sequence. The function round() is common rounding 

function and maxRndInt is a constant to ensure that 

integers will be generated in the range [1, maxRndInt]. 

3 Differential Evolution, Success-

History based Adaptive Differential 

Evolution and Multi-Chaotic 

Framework 

This section describes DE and SHADE algorithms and 

their individual parts. It also covers the proposed multi-

chaotic framework for parent selection. 

3.1 Differential Evolution and Success-

History based Adaptive Differential 

Evolution 

The DE (Storn and Price, 1995) has four static control 

parameters – number of generations Gmax, population 

size NP, scaling factor F and crossover rate CR. In the 

evolutionary process of DE, these four parameters 

remain unchanged and depend on the user initial setting. 

SHADE algorithm, on the other hand, adapts the F and 

CR parameters during the evolution. The values that 

brought improvement to the optimization task are stored 

into according historical memories MF and MCR. 

The whole process can be divided into five parts – 

initialization, mutation strategy with parent selection, 

crossover, elitism and historical memory update (the last 

one is only in SHADE algorithm). 

3.1.1 Initialization 

DE: The initial population of size NP is generated 

randomly from the objective space. Control parameters 

F, CR and Gmax are set. 

 SHADE: The initial population is generated as in 

DE, external archive of inferior solutions A is initialized 

empty and has a maximum size of NP. Both historical 

memories have the same size H and are initialized to 

MCR,i = MF,i = 0.5 for (i = 1, …, H). 

3.1.2 Mutation Strategy with Parent Selection 

DE: The selected mutation strategy for DE algorithm in 

this paper is rand/1 (Storn and Price, 1995), which 

combines 3 different randomly selected parent vectors 

xr1,G, xr2,G and xr3,G from current generation G. 

Additionally, parent vectors have to differ from the 

original vector xi,G, therefore xi,G ≠ xr1,G ≠ xr2,G ≠ xr3,G. 

All three parents are selected by the PRNG with uniform 

distribution. The rand/1 mutation is depicted in (2) 

where vi,G is the resulting mutated vector and F is the 

static scaling factor. 

𝒗𝑖,𝐺 =  𝒙𝑟1,𝐺 + 𝐹(𝒙𝑟2,𝐺 − 𝒙𝑟3,𝐺) (2) 

SHADE: In the original version of SHADE algorithm 

(Tanabe andY Fukunaga, 2013), parent selection for 

mutation strategy is carried out by the PRNG with 

uniform distribution. The mutation strategy used in 

SHADE is current-to-pbest/1 and uses four parent 

vectors – current i-th vector xi,G, vector xpbest,G randomly 

selected from the NP × p best vectors (in terms of 

objective function value) from current generation G. 

The p value is randomly generated by uniform PRNG 

U[pmin, 0.2], where pmin = 2/NP. Third parent vector xr1,G 

is randomly selected from the current generation and last 

parent vector xr2,G is also randomly selected, but from 

the union of current generation G and external archive 

A. Also, vectors xpbest,G, xi,G, xr1,G and xr2,G has to differ, 

xpbest,G ≠ xi,G ≠ xr1,G ≠ xr2,G. The mutated vector vi,G is 

generated by (3). 

𝒗𝑖,𝐺 =  𝒙𝑖,𝐺 + 𝐹𝑖(𝒙𝑝𝑏𝑒𝑠𝑡,𝐺 − 𝒙𝑖,𝐺)

+ 𝐹𝑖(𝒙𝑟1,𝐺 − 𝒙𝑟2,𝐺) 
(3) 

The i-th scaling factor Fi is generated from a Cauchy 

distribution with the location parameter MF,r (selected 

randomly from the scaling factor historical memory MF) 

and scale parameter value of 0.1 (4). If Fi > 1, it is 

truncated to 1 also if Fi ≤ 0, (4) is repeated. 

𝐹𝑖 = 𝐶[𝑀𝐹,𝑟 , 0.1] (4) 

DE and SHADE: If any of the features of the mutated 

vector vi,G is outside the boundaries of objective space 

in that dimension [xj,min, xj,max], it is constrained as 

shown in (5). 

𝑣𝑗,𝑖,𝐺 = {
(𝑥𝑗,𝑚𝑖𝑛 + 𝑥𝑗,𝑖,𝐺)/2 if 𝑣𝑗,𝑖,𝐺 < 𝑥𝑗,𝑚𝑖𝑛

(𝑥𝑗,𝑚𝑎𝑥 + 𝑥𝑗,𝑖,𝐺)/2 if 𝑣𝑗,𝑖,𝐺 > 𝑥𝑗,𝑚𝑎𝑥

 (5) 

3.1.3 Crossover 

DE and SHADE: Binomial crossover operation 

generates the trial vector ui,G from mutated vector vi,G 

and current vector xi,G. The crossover operation uses 

compare rule with the threshold CR (6). In DE, this 

threshold is static, on the other hand, in SHADE its 

value CRi is calculated for each individual in generation. 

CRi is generated from a normal distribution with a mean 

parameter value MF,r (selected randomly from the 

crossover rate historical memory MCR) and standard 

deviation value of 0.1 (7). If the CRi value is outside of 

the interval [0, 1], the closer limit value (0 or 1) is used. 

𝑢𝑗,𝑖,𝐺

= {
𝑣𝑗,𝑖,𝐺 if 𝑟𝑎𝑛𝑑[0,1] ≤ 𝐶𝑅𝑖 or 𝑗 =  𝑗𝑟𝑎𝑛𝑑

𝑥𝑗,𝑖,𝐺 otherwise
 

(6) 

𝐶𝑅𝑖 = 𝑁[𝑀𝐶𝑅,𝑟 , 0.1] (7) 

The j index is the index of vector feature and jrand is 

the index of a feature (randomly selected), which has to 

be taken from the mutated vector. Without the jrand 

index, the trial vector ui,G could be the same as the 

current vector xi,G and that would result in unnecessary 

elitism in the next step of the algorithm. 

3.1.4 Elitism 

DE and SHADE: Elitism is the algorithm feature which 

ensures that the next generation G+1 will contain only 
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equal or better individuals in terms of objective function 

value (8). If the objective function value of the trial 

vector ui,G is better than that of the current vector xi,G, 

the trial vector will become the new individual in new 

generation xi,G+1 and the original vector xi,G will be 

moved to the external archive of inferior solutions A 
(SHADE only). Otherwise, the original vector remains 

in the population in next generation and external archive 

remains unchanged. 

𝒙𝑖,𝐺+1 = {
𝒖𝑖,𝐺 if 𝑓(𝒖𝑖,𝐺) < 𝑓(𝒙𝑖,𝐺)

𝒙𝑖,𝐺 otherwise
 

(8) 

3.1.5 Historical Memory Update 

SHADE: Values of Fi and CRi of individuals successful 

in elitism are stored into two corresponding arrays SF 

and SCR. After each generation, those arrays are used to 

update k-th cell in both historical memories MF and MCR. 

The index k is initialized to 1 before the first generation 

and after each update it is incremented by 1. If it 

overflows the size of historical memories H, it is set 

back to 1. When the whole generation fails to improve, 

SF and SCR arrays are empty and no update takes place. 

Also the k index value stays the same. Equations used 

for historical memory updates are given in (9) and (10). 

𝑀𝐹,𝑘,𝐺+1 = {
mean𝑊𝐿(𝑆𝐹) if 𝑆𝐹 ≠ ∅

𝑀𝐹,𝑘,𝐺+1 otherwise
 

(9) 

𝑀𝐶𝑅,𝑘,𝐺+1 = {
mean𝑊𝐴(𝑆𝐶𝑅) if 𝑆𝐶𝑅 ≠ ∅

𝑀𝐶𝑅,𝑘,𝐺+1 otherwise
 

(10) 

The weights for both weighted Lehmer mean 

meanWL(SF) and weighted arithmetic mean meanWA(SCR) 

are evaluated by (11) and used in mean equations given 

in (12) and (13). 

𝑤𝑘 =
abs (𝑓(𝒖𝑘,𝐺) − 𝑓(𝒙𝑘,𝐺))

∑ abs (𝑓(𝒖𝑚,𝐺) − 𝑓(𝒙𝑚,𝐺))
|𝑆𝐶𝑅|

𝑚=1

 

(11) 

Since both arrays SCR and SF are of the same size, 

either of them can be used for the m index upper 

boundary of the sum in (11). 

mean𝑊𝐿(𝑆𝐹) =
∑ 𝑤𝑘 ∙ 𝑆𝐹,𝑘

2|𝑆𝐹|
𝑘=1

∑ 𝑤𝑘 ∙ 𝑆𝐹,𝑘
|𝑆𝐹|

𝑘=1

 
(12) 

mean𝑊𝐴(𝑆𝐶𝑅) = ∑ 𝑤𝑘 ∙ 𝑆𝐶𝑅,𝑘

|𝑆𝐶𝑅|

𝑘=1
 

(13) 

3.2 Multi-Chaotic Framework for Parent 

Selection 

Both mutation strategies rand/1 and current-to-pbest/1 

require randomly chosen parents, therefore the mutation 

can be significantly influenced by the used PRNG for 

the parent selection. It was experimentally tested that the 

chaotic map based PRNGs used for parent selection may 

improve the convergence speed and the ability to reach 

the global optimum. But the chaotic PRNG which 

improved the performance of the algorithm on one 

objective function might not be as suitable as other 
chaotic PRNG on different objective function. 

Therefore, the multi-chaotic framework was developed. 

Multi-chaotic framework for parent selection 

presented in this paper was partially inspired by the 

ranking selection process in Genetic Algorithm (GA) 

(Holland, 1975). In order to implement framework into 

the evolutionary algorithm, a chaotic map based PRNG 

pool Cpool has to be added to the process. The Cpool 

used in this research contains five chaotic PRNGs and 

each of them has assigned probability value pcj where j 
is the index of chaotic PRNG. At the beginning, all pcj 

values are initialized to the same pcinit value, pcinit = 

1/Csize where Csize is the size of Cpool. As for this 

paper, Csize = 5 and pcinit = 1/5 = 0.2 = 20%. The pcj 

value determines the probability of a j-th chaotic PRNG 

to be used for parent selection. 

For each individual vector xi,G in generation G, the 

chaotic generator PRNGk is selected from the Cpool 

based on its probability pck, where k is the index of the 

selected generator. The selected generator is then used 

for the random selection of parent vectors. If the trial 

vector ui,G generated from these parent vectors succeeds 

in elitism, then the probability pck of the selected 

generator PRNGk is increased and all other generators 

probabilities are decreased. The upper boundary for the 

probability is 60%, pcmax = 0.6. If the selected chaotic 

PRNG reaches the maximum probability, then no 

adjustment takes place. The probability adjustment 

process is depicted in pseudo-code below – Algorithm 

1. 

 

Algorithm 1: Probability adjustment of multi-chaotic 
system 
1 Cpool = {Burgers, Delayed Logistic, 

Dissipative, Lozi, Tinkerbell}; 

2 Csize = 5, pcmax = 0.6; 

3 k is the index of the selected 

chaotic system and pck is its 

selection probability; 

4 if f(ui,G) < f(xi,G) and pck < pcmax 

then 

5 for j = 1 to Csize do 

6 if j = k then 

7 pcj = (pcj + 0.01)/1.01; 

8 else 

9 pcj = pcj /1.01; 

10 end 

11 end 

12 else 

13 pcj = pcj; 

14 end 

 

Since the parent selection processes of DE and 

SHADE differ, the pseudo-code is divided into two 

algorithms – 2 for DE and 3 for SHADE. 
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Algorithm 2: Multi-chaotic parent selection in DE 
1 Cpool = {Burgers, Delayed Logistic, 

Dissipative, Lozi, Tinkerbell}; 

2 Csize = 5; 

3 i is the index of active individual 

xi,G; 

4 P is the current population of 

individuals; 

5 Nsize = |P|; 

6 k = 1 the index of selected chaotic 

system; 

7 selectedChaos = Burgers; 

8 prob = U[0,1]; 

9 do 

10 prob = prob – pcchaosIndex; 

11 k++; 

12 if k > Csize then break; 

13 while (prob > 0) 

14 k = k - 1; 

15 selectedChaos = Cpool[k]; 

16 do 

17 xr1,G = P[selectedChaos.rndInt(1, 

Nsize)]; 

18 xr2,G = P[selectedChaos.rndInt(1, 

Nsize)]; 

19 xr3,G = P[selectedChaos.rndInt(1, 

Nsize)]; 

20 while (xi,G = xr1,G or xi,G = xr2,G or 

xi,G = xr3,G or xr1,G = xr2,G or xr1,G = 

xr3,G or xr2,G = xr3,G) 

 

Algorithm 3: Multi-chaotic parent selection in 
SHADE 
1 Cpool = {Burgers, Delayed 

Logistic, Dissipative, Lozi, 

Tinkerbell}; 

2 Csize = 5; 

3 i is the index of active 

individual xi,G; 

4 P is the current population of 

individuals, A is the external 

archive, PB is the array of best 

individuals in population, its 

size is given by p in SHADE 

algorithm; 

5 Nsize = |P|, NAsize = |P| + |A|, 

PBsize = |PB|; 

6 k = 1 the index of selected 

chaotic system; 

7 selectedChaos = Burgers; 

8 prob = U[0,1]; 

9 do 

10 prob = prob – pcchaosIndex; 

11 k++; 

12 if k > Csize then break; 

13 while (prob > 0) 

14 k = k - 1; 

15 selectedChaos = Cpool[k]; 

16 do 

17 xpbest,G = PB[selectedChaos.rndInt(1, 

PBsize)]; 

18 xr1,G = P[selectedChaos.rndInt(1, 

Nsize)]; 

19 xr2,G = (P ⋃ 

A)[selectedChaos.rndInt(1, 
NAsize)]; 

20 while (xi,G = xpbest,G or xi,G = xr1,G 

or xi,G = xr2,G or xr1,G = xr2,G or xr1,G 

= xpbest,G or xr2,G = xpbest,G) 

 

The function rndInt(min, max) generates  a random 

integer from the range [min, max] according to (1). 

DE and SHADE algorithms with multi-chaotic parent 

selection were labeled MC-DE and MC-SHADE and 

their pseudo-codes are below in algorithms 4 and 5. 

 

Algorithm 4: MC-DE 
1 G = 0; 

2 Randomly initialized population P = 

(x1,G, … , xNP,G); 

3 Cpool = {Burgers, Delayed Logistic, 

Dissipative, Lozi, Tinkerbell}; 

4 All values in pc set to pcinit = 

0.2; 

5 while termination = false do 

6 for i = 1 to NP do 

7 Multi-chaotic parent selection – 

Algorithm 2;  

8 ui,G mutation (2) and crossover (6); 

9 if f(ui,G) < f(xi,G) then 

10 xi,G+1 = ui,G; 

11 Probability adjustment of multi-

chaotic system – Algorithm 1; 

12 else 

13 xi,G+1 = xi,G; 

14 end 

15 end 

16 G++; 

17 end 
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Algorithm 5: MC-SHADE 
1 G = 0, k = 1, A = Ø, pmin = 2 / NP; 

2 Randomly initialized population P = 

(x1,G, … , xNP,G); 

3 All values in MF and MCR set to 0.5; 

4 Cpool = {Burgers, Delayed Logistic, 

Dissipative, Lozi, Tinkerbell}; 

5 All values in pc set to pcinit = 

0.2; 

6 while termination = false do 

7 SF = Ø, SCR = Ø; 

8 for i = 1 to NP do 

9 r = U[1, H]; 

10 Fi,G = C[MF,r, 0.1]; 

11 CRi,G = N[MCR,r, 0.1]; 

12 pi,G = U[pmin, 0.2]; 

13 Multi-chaotic parent selection – 

Algorithm 3;  

14 ui,G mutation (3) and crossover (6); 

15 if f(ui,G) < f(xi,G) then 

16 xi,G+1 = ui,G; 

17 xi,G → A; 

18 Fi,G → SF, CRi,G → SCR; 

19 Probability adjustment of multi-

chaotic system – Algorithm 1; 

20 else 

21 xi,G+1 = xi,G; 

22 end 

23 end 

24 if |A| > NP then delete random 

individuals from A; 

25 if SF ≠ Ø and SCR ≠ Ø then 

26 Update MF and MCR; 

27 k++; 

28 if k > H then k = 1; 

29 end 

30 G++; 

31 end 

4 Experiments and Results 

In order to test sensitivity to randomization of non-

adaptive and adaptive algorithms, three classic 

benchmark functions were selected – Rosenbrock 

(unimodal function with global optima in a narrow, 

parabolic valley) (14), Rastrigin (complex, multimodal 

function) (15) and Ackley (multimodal with nearly flat 

outer region and large hole at the center) (16). 

𝑓(𝑥) =  ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)

2
+ (𝑥𝑖 − 1)2]

𝑑−1

𝑖=1

 𝑓(𝑥∗) = 0, 𝑥∗ = (1, … , 1), 𝑥𝑖 ∈ [−2.048, 2.048]

 

(14) 

𝑓(𝑥) = 10𝑑 + ∑ [𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

𝑑

𝑖=1

𝑓(𝑥∗) = 0, 𝑥∗ = (0, … , 0), 𝑥𝑖 ∈ [−5.12, 5.12]

 
(15) 

𝑓(𝑥) = −20𝑒
−.2√1

𝑑
∑ 𝑥𝑖

2𝑑
𝑖=1 − 𝑒

1
𝑑

∑ cos(2𝜋𝑥𝑖)𝑑
𝑖=1 + 20 + 𝑒

𝑓(𝑥∗) = 0, 𝑥∗ = (0, … , 0), 𝑥𝑖 ∈ [−32, 32]
 

(16) 

 

               

Figure 3. Development of multi-chaotic probabilities 

over test function evaluations of MC-DE algorithm. From 

top – Rosenbrock, Rastrigin, Ackley. 
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Figure 4. Development of multi-chaotic probabilities 

over test function evaluations of MC-SHADE algorithm. 

From top – Rosenbrock, Rastrigin, Ackley. 

Both algorithms MC-DE and MC-SHADE were run 

51 times on each test function with the maximum 

number of test function evaluations maxTFE set to 

100,000. The population size NP was set to 100 and 10 

dimensional space was selected. The MC-DE control 

parameters F and CR were set to 0.5 and 0.8 respectively 

and MC-SHADEs size of historical memories H was set 

to 10. The multi-chaotic system was initialized with five 

chaotic maps (Burgers, Delayed Logistic, Dissipative, 

Lozi and Tinkerbell) with the selection probability pcinit 

= 0.2. The development of the probabilities over the test 

function evaluations TFE was recorded and all 51 runs 

were averaged. The average development of 

probabilities for MC-DE on test functions is shown in 

Figure 3 and the same is presented for MC-SHADE in 

Figure 4. 

As can be seen in Figure 3, the probabilities of single 
chaotic maps in non-adaptive algorithm for all three test 

functions move around the initial values, while as shown 

in Figure 4, the adaptive algorithm is more sensitive to

the randomization system and prefers in each three cases

three systems that favor the values close to the left end

of specified range for generation. Additionally, in all

three cases, the Dissipative chaotic map which was

identified to generate values with uniform distribution is

strongly suppressed by adaptive algorithm.

5 Conclusions

This paper simulated the effect of adaptivity on

randomization on three classic benchmark functions and

presented a multi-chaotic framework for parent

selection in two DE variants.

In the past, adaptive DE variants outperformed the

original DE on numerous benchmarks and real world

problems in terms of convergence speed and ability to

find the global optimum. Thus, it is important to analyze

behavior of such algorithms.

As can be seen in Figure 4, the adaptive algorithm

may prefer different randomizations for the selection of

parent vectors during the evolutionary process, whereas

non-adaptive algorithm seems to be less sensitive and

there are mostly none preferred randomizations, which

answered the main research question of this paper. The

selection of the right randomization or their combination

might be beneficial when using adaptive algorithms and

the impact has to be studied and analyzed.

The future research will be devoted to thorough

analysis of the performance of adaptive algorithms with

various randomizations and to development of a robust

adaptive randomization system derived from multi-

chaotic system presented here.
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