
Simulating the Effect of Adaptivity on Randomization

Adam Viktorin Roman Senkerik Michal Pluhacek

Faculty of Applied Informatics, Tomas Bata University in Zlin, T. G. Masaryka 5555, 760 01 Zlin, Czech Republic,
{aviktorin,senkerik,pluhacek}@fai.utb.cz

Abstract
This paper compares the development of multi-chaotic

system during the optimization process on three

classical benchmark functions – Rosenbrock, Rastrigin

and Ackley. The multi-chaotic system involves five

different randomizations based on discrete chaotic maps

(Burgers, Delayed Logistic, Dissipative, Lozi and

Tinkerbell) and the probability of their selection is

adjusted according to the development of the

optimization task. Two variants of Differential

Evolution (DE) are used in order to simulate the effect

of adaptivity on the randomization probability

adjustment process. First non-adaptive variant is DE

with rand/1 mutation strategy and the second adaptive

variant is novel Success-History based Adaptive DE

(SHADE).

Keywords: randomization, differential evolution,

SHADE, chaos, parent selection

1 Introduction

The Differential Evolution (DE) has played a significant

role in optimization and outperformed other

Evolutionary Computation Techniques (ECT) in many

cases (Price et al, 2006; Kim et al, 2007; Chauhan et al,

2009; Babu and Jehan, 2003). The original version was

introduced in 1995 (Storn and Price, 1995) and since

then has been thoroughly studied and improved. One

branch of improvement is in adapting its control

parameters to the solved optimization task. The

examples of adaptive variants are jDE (Brest et al,
2006), JADE (Zhang and Sanderson, 2009) and

Success-History based Adaptive DE (SHADE) (Tanabe

and Fukunaga, 2013). The last listed is used as a

representative of adaptive DE variants in this research

paper.

One of the recent research directions in ECT is the

studying of effect of different randomizations on various

parts of the evolutionary algorithms and swarm

intelligence algorithms. Especially, the chaotic maps are

often used as Pseudo-Random Number Generators

(PRNGs) instead of the classical ones with uniform

distribution (dos Santos Coelho et al, 2014; Senkerik et

al, 2015b; Caponeto et al, 2003) or combinations of

multiple chaotic systems with some sort of switching

mechanism (Pluhacek et al, 2014; Senkerik et al,

2015a).

The main research question of this paper is whether

there is a randomization or their combination, that

would be preferred in parent selection process of non-

adaptive and adaptive variants of DE and if the

preferences vary for these two variants. In order to

simulate that, the multi-chaotic framework containing

five different chaotic map based PRNGs was created

and probability adjustment process, which mirrors the

preference is presented. DE and SHADE algorithms

with multi-chaotic framework are tested on three classic

benchmark functions – Rosenbrock, Rastrigin and

Ackley and the resulting probability development is

reported.

The remainder of this paper is structured as follows.

Section 2 illustrates chaotic maps and their use as a

PRNGs. Section 3 describes DE, SHADE and multi-

chaotic framework with pseudo-codes. Following

Section 4 is devoted to experiments and results and the

whole paper is concluded in Section 5.

2 Chaotic Maps

The chaotic maps are systems generated continuously

from a single initial position by simple equations. The

current coordinates are generated from the previous

ones, consequently creating a system which is extremely

dependent on the initial position. The generated chaotic

sequence varies for different initial positions. Therefore,

the generation of the initial position is randomized to

obtain unique chaotic sequences. The generation of

starting positions is carried out by PRNG with uniform

distribution. Chaotic map equations may also contain

control parameters, which determine the chaotic

behavior and dynamics.

Chaotic systems used in this research, with their

generating equations, control parameter values and

initial position generator settings are depicted in Table

1. All the control parameter values were set according

to previous experiments and suggestions in literature

(Sprott and Sprott, 2003).

The multi-chaotic framework used for parent

selection presented in this paper uses five chaotic maps

– Burgers, Delayed Logistic, Dissipative, Lozi and

Tinkerbell. Each of the chaotic map based PRNGs has

different probability distribution and unique

sequencing, which may be beneficial for the parent

selection process where the obtained parent vector

combinations exhibit a different dynamic than that of

EUROSIM 2016 & SIMS 2016

525DOI: 10.3384/ecp17142525 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

parent vector combinations selected by a PRNG with

uniform distribution. The distribution of 5,000 real

numbers from range [0, 1] generated by each chaotic

map can be seen in Figure 1 and Figure 2. It is important

to mention the differences between these chaotic

systems. While Lozi and Dissipative chaotic maps tend

to generate values from the whole range without any

clear preference, other three chaotic maps visibly favor

values close to the left end of the specified range. In fact,

the distribution identifier in Wolfram Mathematica 10.2

software shown that the distribution of Lozi map

generated values is beta distribution with shape

parameters α = 1.03457 and β = 1.56153 and similarly

the distribution of Dissipative map generated values was

identified as uniform with range [0.00034, 0.99857].

Other three were identified as mixtures of different

distributions.

Table 1. Chaotic maps, generating equations, control parameters and initial position ranges

Chaotic map Equations Parameters Initial position

Burgers
𝑋𝑛+1 = 𝑎𝑋𝑛 − 𝑌𝑛

2
𝑌𝑛+1 = 𝑏𝑌𝑛 + 𝑋𝑛𝑌𝑛

a = 0.75
b = 1.75

𝑋0 = (−0.1, −0.01)

𝑌0 = (0.01, 0.1)

Delayed Logistic
𝑋𝑛+1 = 𝐴𝑋𝑛(1 − 𝑌𝑛)
𝑌𝑛+1 = 𝑋𝑛

A = 2.27 𝑋0 = 𝑌0 = (0.8, 0.9)

Dissipative
𝑋𝑛+1 = 𝑋𝑛 + 𝑌𝑛+1 (mod 2𝜋)
𝑌𝑛+1 = 𝑏𝑌𝑛 + 𝑘 𝑠𝑖𝑛𝑋𝑛 (mod 2𝜋)

b = 0.1
k = 8.8

𝑋0 = 𝑌0 = (0, 0.1)

Lozi

𝑋𝑛+1 = 1 − 𝑎|𝑋𝑛| − 𝑏𝑌𝑛

𝑌𝑛+1 = 𝑋𝑛
a = 1.7
b = 0.5

𝑋0 = 𝑌0 = (0, 0.1)

Tinkerbell

𝑋𝑛+1 = 𝑋𝑛 + 𝑌𝑛 + 𝑎𝑋𝑛 + 𝑏𝑌𝑛

𝑌𝑛+1 = 2𝑋𝑛𝑌𝑛 + 𝑐𝑋𝑛 + 𝑑𝑌𝑛

a = 0.9
b = - 0.6
c = 2
d = 0.5

𝑋0 = (−0.1, −0.01)

𝑌0 = (0, 0.1)

Figure 1. Lozi and Dissipative generated values in

histogram.

Figure 2. Delayed Logistic, Burgers and Tinkerbell

generated values in histogram.

In order to use chaotic maps as PRNGs, the

transformation rule had to be developed. The process of

obtaining the i-th random integer value rndInti from the

chaotic map is presented in (1).

𝑟𝑛𝑑𝐼𝑛𝑡𝑖 = round (
abs(𝑋𝑖)

max(abs(𝑋𝑖∈𝑁))

∗ (𝑚𝑎𝑥𝑅𝑛𝑑𝐼𝑛𝑡 − 1)) + 1

(1)

Where abs(Xi) is the absolute value of the i-th

generated X coordinate from the chaotic sequence of

EUROSIM 2016 & SIMS 2016

526DOI: 10.3384/ecp17142525 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

length N, max(abs(Xi∈N)) is a maximum value of all

absolute values of generated X coordinates in chaotic

sequence. The function round() is common rounding

function and maxRndInt is a constant to ensure that

integers will be generated in the range [1, maxRndInt].

3 Differential Evolution, Success-

History based Adaptive Differential

Evolution and Multi-Chaotic

Framework

This section describes DE and SHADE algorithms and

their individual parts. It also covers the proposed multi-

chaotic framework for parent selection.

3.1 Differential Evolution and Success-

History based Adaptive Differential

Evolution

The DE (Storn and Price, 1995) has four static control

parameters – number of generations Gmax, population

size NP, scaling factor F and crossover rate CR. In the

evolutionary process of DE, these four parameters

remain unchanged and depend on the user initial setting.

SHADE algorithm, on the other hand, adapts the F and

CR parameters during the evolution. The values that

brought improvement to the optimization task are stored

into according historical memories MF and MCR.

The whole process can be divided into five parts –

initialization, mutation strategy with parent selection,

crossover, elitism and historical memory update (the last

one is only in SHADE algorithm).

3.1.1 Initialization

DE: The initial population of size NP is generated

randomly from the objective space. Control parameters

F, CR and Gmax are set.

 SHADE: The initial population is generated as in

DE, external archive of inferior solutions A is initialized

empty and has a maximum size of NP. Both historical

memories have the same size H and are initialized to

MCR,i = MF,i = 0.5 for (i = 1, …, H).

3.1.2 Mutation Strategy with Parent Selection

DE: The selected mutation strategy for DE algorithm in

this paper is rand/1 (Storn and Price, 1995), which

combines 3 different randomly selected parent vectors

xr1,G, xr2,G and xr3,G from current generation G.

Additionally, parent vectors have to differ from the

original vector xi,G, therefore xi,G ≠ xr1,G ≠ xr2,G ≠ xr3,G.

All three parents are selected by the PRNG with uniform

distribution. The rand/1 mutation is depicted in (2)

where vi,G is the resulting mutated vector and F is the

static scaling factor.

𝒗𝑖,𝐺 = 𝒙𝑟1,𝐺 + 𝐹(𝒙𝑟2,𝐺 − 𝒙𝑟3,𝐺) (2)

SHADE: In the original version of SHADE algorithm

(Tanabe andY Fukunaga, 2013), parent selection for

mutation strategy is carried out by the PRNG with

uniform distribution. The mutation strategy used in

SHADE is current-to-pbest/1 and uses four parent

vectors – current i-th vector xi,G, vector xpbest,G randomly

selected from the NP × p best vectors (in terms of

objective function value) from current generation G.

The p value is randomly generated by uniform PRNG

U[pmin, 0.2], where pmin = 2/NP. Third parent vector xr1,G

is randomly selected from the current generation and last

parent vector xr2,G is also randomly selected, but from

the union of current generation G and external archive

A. Also, vectors xpbest,G, xi,G, xr1,G and xr2,G has to differ,

xpbest,G ≠ xi,G ≠ xr1,G ≠ xr2,G. The mutated vector vi,G is

generated by (3).

𝒗𝑖,𝐺 = 𝒙𝑖,𝐺 + 𝐹𝑖(𝒙𝑝𝑏𝑒𝑠𝑡,𝐺 − 𝒙𝑖,𝐺)

+ 𝐹𝑖(𝒙𝑟1,𝐺 − 𝒙𝑟2,𝐺)
(3)

The i-th scaling factor Fi is generated from a Cauchy

distribution with the location parameter MF,r (selected

randomly from the scaling factor historical memory MF)

and scale parameter value of 0.1 (4). If Fi > 1, it is

truncated to 1 also if Fi ≤ 0, (4) is repeated.

𝐹𝑖 = 𝐶[𝑀𝐹,𝑟 , 0.1] (4)

DE and SHADE: If any of the features of the mutated

vector vi,G is outside the boundaries of objective space

in that dimension [xj,min, xj,max], it is constrained as

shown in (5).

𝑣𝑗,𝑖,𝐺 = {
(𝑥𝑗,𝑚𝑖𝑛 + 𝑥𝑗,𝑖,𝐺)/2 if 𝑣𝑗,𝑖,𝐺 < 𝑥𝑗,𝑚𝑖𝑛

(𝑥𝑗,𝑚𝑎𝑥 + 𝑥𝑗,𝑖,𝐺)/2 if 𝑣𝑗,𝑖,𝐺 > 𝑥𝑗,𝑚𝑎𝑥

 (5)

3.1.3 Crossover

DE and SHADE: Binomial crossover operation

generates the trial vector ui,G from mutated vector vi,G

and current vector xi,G. The crossover operation uses

compare rule with the threshold CR (6). In DE, this

threshold is static, on the other hand, in SHADE its

value CRi is calculated for each individual in generation.

CRi is generated from a normal distribution with a mean

parameter value MF,r (selected randomly from the

crossover rate historical memory MCR) and standard

deviation value of 0.1 (7). If the CRi value is outside of

the interval [0, 1], the closer limit value (0 or 1) is used.

𝑢𝑗,𝑖,𝐺

= {
𝑣𝑗,𝑖,𝐺 if 𝑟𝑎𝑛𝑑[0,1] ≤ 𝐶𝑅𝑖 or 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑥𝑗,𝑖,𝐺 otherwise

(6)

𝐶𝑅𝑖 = 𝑁[𝑀𝐶𝑅,𝑟 , 0.1] (7)

The j index is the index of vector feature and jrand is

the index of a feature (randomly selected), which has to

be taken from the mutated vector. Without the jrand

index, the trial vector ui,G could be the same as the

current vector xi,G and that would result in unnecessary

elitism in the next step of the algorithm.

3.1.4 Elitism

DE and SHADE: Elitism is the algorithm feature which

ensures that the next generation G+1 will contain only

EUROSIM 2016 & SIMS 2016

527DOI: 10.3384/ecp17142525 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

equal or better individuals in terms of objective function

value (8). If the objective function value of the trial

vector ui,G is better than that of the current vector xi,G,

the trial vector will become the new individual in new

generation xi,G+1 and the original vector xi,G will be

moved to the external archive of inferior solutions A
(SHADE only). Otherwise, the original vector remains

in the population in next generation and external archive

remains unchanged.

𝒙𝑖,𝐺+1 = {
𝒖𝑖,𝐺 if 𝑓(𝒖𝑖,𝐺) < 𝑓(𝒙𝑖,𝐺)

𝒙𝑖,𝐺 otherwise

(8)

3.1.5 Historical Memory Update

SHADE: Values of Fi and CRi of individuals successful

in elitism are stored into two corresponding arrays SF

and SCR. After each generation, those arrays are used to

update k-th cell in both historical memories MF and MCR.

The index k is initialized to 1 before the first generation

and after each update it is incremented by 1. If it

overflows the size of historical memories H, it is set

back to 1. When the whole generation fails to improve,

SF and SCR arrays are empty and no update takes place.

Also the k index value stays the same. Equations used

for historical memory updates are given in (9) and (10).

𝑀𝐹,𝑘,𝐺+1 = {
mean𝑊𝐿(𝑆𝐹) if 𝑆𝐹 ≠ ∅

𝑀𝐹,𝑘,𝐺+1 otherwise

(9)

𝑀𝐶𝑅,𝑘,𝐺+1 = {
mean𝑊𝐴(𝑆𝐶𝑅) if 𝑆𝐶𝑅 ≠ ∅

𝑀𝐶𝑅,𝑘,𝐺+1 otherwise

(10)

The weights for both weighted Lehmer mean

meanWL(SF) and weighted arithmetic mean meanWA(SCR)

are evaluated by (11) and used in mean equations given

in (12) and (13).

𝑤𝑘 =
abs (𝑓(𝒖𝑘,𝐺) − 𝑓(𝒙𝑘,𝐺))

∑ abs (𝑓(𝒖𝑚,𝐺) − 𝑓(𝒙𝑚,𝐺))
|𝑆𝐶𝑅|

𝑚=1

(11)

Since both arrays SCR and SF are of the same size,

either of them can be used for the m index upper

boundary of the sum in (11).

mean𝑊𝐿(𝑆𝐹) =
∑ 𝑤𝑘 ∙ 𝑆𝐹,𝑘

2|𝑆𝐹|
𝑘=1

∑ 𝑤𝑘 ∙ 𝑆𝐹,𝑘
|𝑆𝐹|

𝑘=1

(12)

mean𝑊𝐴(𝑆𝐶𝑅) = ∑ 𝑤𝑘 ∙ 𝑆𝐶𝑅,𝑘

|𝑆𝐶𝑅|

𝑘=1

(13)

3.2 Multi-Chaotic Framework for Parent

Selection

Both mutation strategies rand/1 and current-to-pbest/1

require randomly chosen parents, therefore the mutation

can be significantly influenced by the used PRNG for

the parent selection. It was experimentally tested that the

chaotic map based PRNGs used for parent selection may

improve the convergence speed and the ability to reach

the global optimum. But the chaotic PRNG which

improved the performance of the algorithm on one

objective function might not be as suitable as other
chaotic PRNG on different objective function.

Therefore, the multi-chaotic framework was developed.

Multi-chaotic framework for parent selection

presented in this paper was partially inspired by the

ranking selection process in Genetic Algorithm (GA)

(Holland, 1975). In order to implement framework into

the evolutionary algorithm, a chaotic map based PRNG

pool Cpool has to be added to the process. The Cpool

used in this research contains five chaotic PRNGs and

each of them has assigned probability value pcj where j
is the index of chaotic PRNG. At the beginning, all pcj

values are initialized to the same pcinit value, pcinit =

1/Csize where Csize is the size of Cpool. As for this

paper, Csize = 5 and pcinit = 1/5 = 0.2 = 20%. The pcj

value determines the probability of a j-th chaotic PRNG

to be used for parent selection.

For each individual vector xi,G in generation G, the

chaotic generator PRNGk is selected from the Cpool

based on its probability pck, where k is the index of the

selected generator. The selected generator is then used

for the random selection of parent vectors. If the trial

vector ui,G generated from these parent vectors succeeds

in elitism, then the probability pck of the selected

generator PRNGk is increased and all other generators

probabilities are decreased. The upper boundary for the

probability is 60%, pcmax = 0.6. If the selected chaotic

PRNG reaches the maximum probability, then no

adjustment takes place. The probability adjustment

process is depicted in pseudo-code below – Algorithm

1.

Algorithm 1: Probability adjustment of multi-chaotic
system
1 Cpool = {Burgers, Delayed Logistic,

Dissipative, Lozi, Tinkerbell};

2 Csize = 5, pcmax = 0.6;

3 k is the index of the selected

chaotic system and pck is its

selection probability;

4 if f(ui,G) < f(xi,G) and pck < pcmax

then

5 for j = 1 to Csize do

6 if j = k then

7 pcj = (pcj + 0.01)/1.01;

8 else

9 pcj = pcj /1.01;

10 end

11 end

12 else

13 pcj = pcj;

14 end

Since the parent selection processes of DE and

SHADE differ, the pseudo-code is divided into two

algorithms – 2 for DE and 3 for SHADE.

EUROSIM 2016 & SIMS 2016

528DOI: 10.3384/ecp17142525 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Algorithm 2: Multi-chaotic parent selection in DE
1 Cpool = {Burgers, Delayed Logistic,

Dissipative, Lozi, Tinkerbell};

2 Csize = 5;

3 i is the index of active individual

xi,G;

4 P is the current population of

individuals;

5 Nsize = |P|;

6 k = 1 the index of selected chaotic

system;

7 selectedChaos = Burgers;

8 prob = U[0,1];

9 do

10 prob = prob – pcchaosIndex;

11 k++;

12 if k > Csize then break;

13 while (prob > 0)

14 k = k - 1;

15 selectedChaos = Cpool[k];

16 do

17 xr1,G = P[selectedChaos.rndInt(1,

Nsize)];

18 xr2,G = P[selectedChaos.rndInt(1,

Nsize)];

19 xr3,G = P[selectedChaos.rndInt(1,

Nsize)];

20 while (xi,G = xr1,G or xi,G = xr2,G or

xi,G = xr3,G or xr1,G = xr2,G or xr1,G =

xr3,G or xr2,G = xr3,G)

Algorithm 3: Multi-chaotic parent selection in
SHADE
1 Cpool = {Burgers, Delayed

Logistic, Dissipative, Lozi,

Tinkerbell};

2 Csize = 5;

3 i is the index of active

individual xi,G;

4 P is the current population of

individuals, A is the external

archive, PB is the array of best

individuals in population, its

size is given by p in SHADE

algorithm;

5 Nsize = |P|, NAsize = |P| + |A|,

PBsize = |PB|;

6 k = 1 the index of selected

chaotic system;

7 selectedChaos = Burgers;

8 prob = U[0,1];

9 do

10 prob = prob – pcchaosIndex;

11 k++;

12 if k > Csize then break;

13 while (prob > 0)

14 k = k - 1;

15 selectedChaos = Cpool[k];

16 do

17 xpbest,G = PB[selectedChaos.rndInt(1,

PBsize)];

18 xr1,G = P[selectedChaos.rndInt(1,

Nsize)];

19 xr2,G = (P ⋃

A)[selectedChaos.rndInt(1,
NAsize)];

20 while (xi,G = xpbest,G or xi,G = xr1,G

or xi,G = xr2,G or xr1,G = xr2,G or xr1,G

= xpbest,G or xr2,G = xpbest,G)

The function rndInt(min, max) generates a random

integer from the range [min, max] according to (1).

DE and SHADE algorithms with multi-chaotic parent

selection were labeled MC-DE and MC-SHADE and

their pseudo-codes are below in algorithms 4 and 5.

Algorithm 4: MC-DE
1 G = 0;

2 Randomly initialized population P =

(x1,G, … , xNP,G);

3 Cpool = {Burgers, Delayed Logistic,

Dissipative, Lozi, Tinkerbell};

4 All values in pc set to pcinit =

0.2;

5 while termination = false do

6 for i = 1 to NP do

7 Multi-chaotic parent selection –

Algorithm 2;

8 ui,G mutation (2) and crossover (6);

9 if f(ui,G) < f(xi,G) then

10 xi,G+1 = ui,G;

11 Probability adjustment of multi-

chaotic system – Algorithm 1;

12 else

13 xi,G+1 = xi,G;

14 end

15 end

16 G++;

17 end

EUROSIM 2016 & SIMS 2016

529DOI: 10.3384/ecp17142525 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Algorithm 5: MC-SHADE
1 G = 0, k = 1, A = Ø, pmin = 2 / NP;

2 Randomly initialized population P =

(x1,G, … , xNP,G);

3 All values in MF and MCR set to 0.5;

4 Cpool = {Burgers, Delayed Logistic,

Dissipative, Lozi, Tinkerbell};

5 All values in pc set to pcinit =

0.2;

6 while termination = false do

7 SF = Ø, SCR = Ø;

8 for i = 1 to NP do

9 r = U[1, H];

10 Fi,G = C[MF,r, 0.1];

11 CRi,G = N[MCR,r, 0.1];

12 pi,G = U[pmin, 0.2];

13 Multi-chaotic parent selection –

Algorithm 3;

14 ui,G mutation (3) and crossover (6);

15 if f(ui,G) < f(xi,G) then

16 xi,G+1 = ui,G;

17 xi,G → A;

18 Fi,G → SF, CRi,G → SCR;

19 Probability adjustment of multi-

chaotic system – Algorithm 1;

20 else

21 xi,G+1 = xi,G;

22 end

23 end

24 if |A| > NP then delete random

individuals from A;

25 if SF ≠ Ø and SCR ≠ Ø then

26 Update MF and MCR;

27 k++;

28 if k > H then k = 1;

29 end

30 G++;

31 end

4 Experiments and Results

In order to test sensitivity to randomization of non-

adaptive and adaptive algorithms, three classic

benchmark functions were selected – Rosenbrock

(unimodal function with global optima in a narrow,

parabolic valley) (14), Rastrigin (complex, multimodal

function) (15) and Ackley (multimodal with nearly flat

outer region and large hole at the center) (16).

𝑓(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)

2
+ (𝑥𝑖 − 1)2]

𝑑−1

𝑖=1

 𝑓(𝑥∗) = 0, 𝑥∗ = (1, … , 1), 𝑥𝑖 ∈ [−2.048, 2.048]

(14)

𝑓(𝑥) = 10𝑑 + ∑ [𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

𝑑

𝑖=1

𝑓(𝑥∗) = 0, 𝑥∗ = (0, … , 0), 𝑥𝑖 ∈ [−5.12, 5.12]

(15)

𝑓(𝑥) = −20𝑒
−.2√1

𝑑
∑ 𝑥𝑖

2𝑑
𝑖=1 − 𝑒

1
𝑑

∑ cos(2𝜋𝑥𝑖)𝑑
𝑖=1 + 20 + 𝑒

𝑓(𝑥∗) = 0, 𝑥∗ = (0, … , 0), 𝑥𝑖 ∈ [−32, 32]

(16)

Figure 3. Development of multi-chaotic probabilities

over test function evaluations of MC-DE algorithm. From

top – Rosenbrock, Rastrigin, Ackley.

EUROSIM 2016 & SIMS 2016

530DOI: 10.3384/ecp17142525 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Figure 4. Development of multi-chaotic probabilities

over test function evaluations of MC-SHADE algorithm.

From top – Rosenbrock, Rastrigin, Ackley.

Both algorithms MC-DE and MC-SHADE were run

51 times on each test function with the maximum

number of test function evaluations maxTFE set to

100,000. The population size NP was set to 100 and 10

dimensional space was selected. The MC-DE control

parameters F and CR were set to 0.5 and 0.8 respectively

and MC-SHADEs size of historical memories H was set

to 10. The multi-chaotic system was initialized with five

chaotic maps (Burgers, Delayed Logistic, Dissipative,

Lozi and Tinkerbell) with the selection probability pcinit

= 0.2. The development of the probabilities over the test

function evaluations TFE was recorded and all 51 runs

were averaged. The average development of

probabilities for MC-DE on test functions is shown in

Figure 3 and the same is presented for MC-SHADE in

Figure 4.

As can be seen in Figure 3, the probabilities of single
chaotic maps in non-adaptive algorithm for all three test

functions move around the initial values, while as shown

in Figure 4, the adaptive algorithm is more sensitive to

the randomization system and prefers in each three cases

three systems that favor the values close to the left end

of specified range for generation. Additionally, in all

three cases, the Dissipative chaotic map which was

identified to generate values with uniform distribution is

strongly suppressed by adaptive algorithm.

5 Conclusions

This paper simulated the effect of adaptivity on

randomization on three classic benchmark functions and

presented a multi-chaotic framework for parent

selection in two DE variants.

In the past, adaptive DE variants outperformed the

original DE on numerous benchmarks and real world

problems in terms of convergence speed and ability to

find the global optimum. Thus, it is important to analyze

behavior of such algorithms.

As can be seen in Figure 4, the adaptive algorithm

may prefer different randomizations for the selection of

parent vectors during the evolutionary process, whereas

non-adaptive algorithm seems to be less sensitive and

there are mostly none preferred randomizations, which

answered the main research question of this paper. The

selection of the right randomization or their combination

might be beneficial when using adaptive algorithms and

the impact has to be studied and analyzed.

The future research will be devoted to thorough

analysis of the performance of adaptive algorithms with

various randomizations and to development of a robust

adaptive randomization system derived from multi-

chaotic system presented here.

Acknowledgements

This work was supported by the Ministry of Education,

Youth and Sports of the Czech Republic within the

National Sustainability Programme Project no. LO1303

(MSMT-7778/2014), further by the European Regional

Development Fund under the Project CEBIA-Tech no.

CZ.1.05/2.1.00/03.0089 and by Internal Grant Agency

of Tomas Bata University under the Projects no.

IGA/CebiaTech/2018/003. This work is also based upon

support by COST (European Cooperation in Science &

Technology) under Action CA15140, Improving

Applicability of Nature-Inspired Optimisation by

Joining Theory and Practice (ImAppNIO), and Action

IC1406, High-Performance Modelling and Simulation

for Big Data Applications (cHiPSet). The work was

further supported by resources of A.I.Lab at the Faculty

of Applied Informatics, Tomas Bata University in Zlin

(ailab.fai.utb.cz).

References

BV Babu and M Mathew Leenus Jehan. Differential evolution

for multi-objective optimization. In Evolutionary

EUROSIM 2016 & SIMS 2016

531DOI: 10.3384/ecp17142525 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Computation, 2003. CEC’03. The 2003 Congress on,

volume 4, pages 2696–2703. IEEE, 2003.

Janez Brest, Sao Greiner, Borko Boskovic, Marjan Mernik,

and Viljem Zumer. Self-adapting control parameters in

differential evolution: A comparative study on numerical

benchmark problems. IEEE transactions on evolutionary

computation, 10(6):646–657, 2006.

Riccardo Caponetto, Luigi Fortuna, Stefano Fazzino, and

Maria Gabriella Xibilia. Chaotic sequences to improve the

performance of evolutionary algorithms. IEEE transactions

on evolutionary computation, 7(3):289–304, 2003.

Nikunj Chauhan, Vadlamani Ravi, and D Karthik Chandra.

Differential evolution trained wavelet neural networks:

Application to bankruptcy prediction in banks. Expert

Systems with Applications, 36(4):7659–7665, 2009.

Leandro dos Santos Coelho, Helon Vicente Hultmann Ayala,

and Viviana Cocco Mariani. A self-adaptive chaotic

differential evolution algorithm using gamma distribution

for unconstrained global optimization. Applied

Mathematics and Computation, 234:452–459, 2014.

John Henry Holland. Adaptation in natural and artificial

systems: an introductory analysis with applications to

biology, control, and artificial intelligence. MIT press,

1992.

Hong-Kyu Kim, Jin-Kyo Chong, Kyong-Yop Park, and David

A Lowther. Differential evolution strategy for constrained

global optimization and application to practical engineering

problems. IEEE Transactions on Magnetics, 43(4):1565–

1568, 2007.

Michal Pluhacek, Roman Senkerik, and Ivan Zelinka. Particle

swarm optimization algorithm driven by multichaotic

number generator. Soft Computing, 18(4):631–639, 2014.

Kenneth Price, Rainer M Storn, and Jouni A Lampinen.

Differential evolution: a practical approach to global

optimization. Springer Science & Business Media, 2006.

Roman Senkerik, Michal Pluhacek, and Zuzana Kominkova

Oplatkova. An initial study on the new adaptive approach

for multi-chaotic differential evolution. In Artificial

Intelligence Perspectives and Applications, pages 355–362.

Springer, 2015a.

Roman Senkerik, Michal Pluhacek, Zuzana Kominkova

Oplatkova, and Donald Davendra. On the parameter

settings for the chaotic dynamics embedded differential

evolution. In Evolutionary Computation (CEC), 2015 IEEE

Congress on, pages 1410–1417. IEEE, 2015b.

Julien Clinton Sprott and Julien C Sprott. Chaos and time-

series analysis, volume 69. Citeseer, 2003.

Rainer Storn and Kenneth Price. Differential evolution–a

simple and efficient heuristic for global optimization over

continuous spaces. Journal of global optimization,

11(4):341–359, 1997.

Ryoji Tanabe and Alex Fukunaga. Success-history based

parameter adaptation for differential evolution. In

Evolutionary Computation (CEC), 2013 IEEE Congress on,

pages 71–78. IEEE, 2013.

Jingqiao Zhang and Arthur C Sanderson. Jade: adaptive

differential evolution with optional external archive. IEEE

Transactions on evolutionary computation, 13(5):945–958,

2009.

EUROSIM 2016 & SIMS 2016

532DOI: 10.3384/ecp17142525 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	Introduction
	Calculation formulas
	Calculation of Intra-Ocular Lens for Non-Normal Eyes

	Back ground of studies
	Artificial Neural Network
	Real data
	Collected Data
	Specification of Patients Data Selected for Collection
	Specification of Preprocessing Parameters

	Results
	Objective
	ANN training
	ANN settings
	Results

	Conclusion
	Future work
	Introduction
	Homeostasis, Disturbance Rejection and Set Point Tracking
	Controller Motifs

	Results
	Dynamic Properties of Controller Motifs
	Tuning of Individual Controllers

	Conclusions
	Introduction
	Modelling the pharmacokinetics of propofol
	The 3-compartmental model
	Effect-site concentration model
	Model parameters

	Model verification
	Simulation results
	Propofol inflow
	Plasmatic concentration
	Effect-site concentration
	Evaluation of the predictive quality of the model

	Conclusion
	Introduction
	Modular Model Predictive Control Concept
	Building Setup
	Modular Predictive Control Concept

	Energy Supply Level - ESS - Models
	Linear Models
	Hybrid Models

	Model Predictive Controllers
	Objective Function
	LMPC
	MI-MPC

	Simulation Results
	Simulation Setup
	Demonstration of MPCC Performance
	Comparison between MPCC and RBC

	Conclusion
	Introduction
	Data Properties
	Macro Money Systems in QEs
	Behavior in QE1=(2008m11,2010m06)
	Behavior in QE2+=(2010m11,2012m08)
	Behavior in QE3=(2012m09,2014m10)

	Transmission Path of Housing Price from Reserve to Economic Activity
	Decomposition of M2 into Transaction and Precautionary Money Demands in (1975m10, 2016m03)
	Estimation of Precautionary Money Demand
	The Role of Business Condition u(t)=napm-50 in Transmission Mechanism of QEMP during QE1, QE2+ and QE3

	Conclusion
	Introduction
	Mathematical Model
	Model Parameters and Geometry
	Results and Discussions
	Conclusions
	Introduction
	Field Excitation Control
	Capability Curve
	Classical Control

	Concept and Formulation of MPC
	MPC as Excitation Control
	Modeling and Control Workflow

	Tuning the MPC Controller
	Time Response
	Open Circuit Conditions

	First-swing Angle Stability Enhancement
	Long-term Voltage Stability Enhancement
	Steady-state Voltage Stability
	Power System Simulator
	LTVS Simulations

	Discussion
	Conclusion
	Introduction
	Grid impedance model
	Impedance-based instability studies
	Practical implementation
	Conclusion
	Aknowledgements
	Introduction
	Literature Review
	Circulating Fluidized Bed Boilers
	Characteristics of RDF
	Agglomeration

	Methodology
	Description of Model
	Mass and Energy Balances
	Hydrodynamics

	Results and Discussion
	Validation
	Agglomerate Prediction

	Conclusion
	Introduction
	Theory
	Stability of Grid-Connected System
	Maximum-Length Binary Sequence

	Implementation in dSPACE
	System Setup
	Experiment

	Conclusions
	Introduction
	Governing Equation for Flow Modeling
	KP Numerical Scheme
	Simulation of the River Flow
	Results and Discussion
	Simulation Results
	Simulation Results for Numerical Stability Analysis

	Conclusion
	Introduction
	Air preparation process
	Fuzzy identification
	Takagi-Sugeno fuzzy model
	Fuzzy clustering

	Data collection
	Structure selection
	Input and output variables
	Representation of the systems' dynamics
	Fuzzy models granularity

	Fuzzy clustering and model validation
	Comments on resulting model performance

	Control experiments
	PID control
	Supervisory logic

	Conclusions
	Introduction
	First step - DES model
	Second Step - Portfolio optimization

	Stochastic DES model through markovian properties
	Product-Form Networks - Convolution algorithm
	Marginal probability
	Mean response time

	Load-haulage cycle
	DES model: Load-haulage system
	Project portfolio formulation
	Conclusion
	Introduction
	Overview of the Method
	Computing the Encounter Probabilities
	Example

	State Transition Matrix
	Projectile with a Single Sensor Fuzed Submunition
	Example
	Projectile with Two Sensor Fuzed Submunitions

	Failure Probability of the System
	Conclusion
	Hydro-pneumatic Accumulator
	Recent Research
	Purpose of This Study

	Logical Structure of Simulation Model
	Physics of Piston Type Hydro-Pneumatic Accumulator
	Nitrogen gas
	Mechanical Structure
	Hydraulic Fluid

	Conceptual Model

	Mathematical Model
	Equations for Nitrogen Gas
	Equations for Piston
	Equations for Friction
	Equations for Hydraulic Fluid
	Equations for Orifice

	Modelling in MATLAB/Simulink
	Calibration and Validation of the Simulation Model
	Testing Setup
	Laboratory Tests
	Validation

	Conclusion
	Introduction
	Contributions
	Setup for the analysis
	Experimental data
	Compressor Map
	Compressor Isentropic Efficiency
	Corrected Mass Flow
	Data Treatment

	 Pressure Losses in Gas Stand
	Pressure Loss in Straight Pipe
	Friction Factor - Laminar Flow
	Friction Factor - Turbulent Flow
	Pressure Loss In Bend
	Pressure Loss in Inlet Nozzle and Outlet Diffuser
	Adjust Measured Data
	Calculate New Compressor Efficiency

	Effect of pressure losses on measured compressor efficiency
	Compressor and Pipes Dimensions
	Case 1: Straight Pipes
	Case 2: Pipes with Diffuser and Nozzle
	Case 3: Pipes with Diffuser, Nozzle and Bend

	Summary and Discussion
	Future Work
	Conclusion
	Introduction
	Traffic Regulation: Stage selection
	Signal Control Schemes
	Pre-timed network control
	Max-Pressure Practical (MPract)

	Modelling and Simulation Overview
	An event-driven approach
	PointQ design

	Case Study-Data description
	From theory to applications
	System Stability
	Trajectory Delay Measurement
	Queue Delay Measurement
	Varying Traffic Conditions

	 PointQ versus AIMSUN Network Performance
	Evolution of phase (137,154)
	Evolution of phase (254,237)

	Conclusion
	Introduction
	Background
	MVB and Master Transfer
	Multifunction Vehicle Bus
	Mastership Transfer

	Model Checking with temporal logic

	System Modelling
	Bus Administrator Modelling
	basic data structure
	finite state machine of Bus Administrator

	Communication and Timing Modelling
	communication mechanism of BusAdmin
	timing mechanism

	Property Modelling
	Property Classification
	safety property
	liveness property

	Live sequence charts
	Observer Automata modelling

	Experiments
	Conclusion
	Introduction
	Experimental data
	Modeling
	Compressor
	Turbine
	EGR Blowers
	Auxiliary Blower
	Exhaust Back Pressure
	Combustion Species and Thermodynamic Parameters

	Parameterization Procedure
	Complete stationary parameterization
	Dynamic estimation

	Model Validation
	Conclusions
	Nomenclature
	Introduction
	Fundamentals
	Safe Active Learning
	The high pressure fuel supply system

	Design and Implementation
	Training of the hyperparameters
	The discriminative model
	The risk function
	The path to the next sample
	The algorithm

	Evaluation
	Evaluation in simulation
	Evaluation at a test vehicle

	Conclusion
	Introduction
	Modelling
	Centre of Gravity
	Aerodynamic Forces
	Definition of Angles
	Lever Arms
	Catenary
	Equations of Motion
	Velocities
	Self Stabilisation
	Complete Model

	Model Parameters
	Simulation Results
	Gliding Flight
	Towing Process

	Conclusions
	Introduction
	Context
	Compton scattering tomography (CST)

	Modelling of the new CST modality
	Proposed setup by back-scattering
	Direct problem : Image formation
	The half-space Radon transform (HRT)
	Image formation

	Inverse problem : Object Reconstruction
	Inversion of the HRT
	Filtered back-projection

	Simulation of the new CST modality
	Energy resolution of the detector
	Spatial discretization
	Window functions

	Conclusion and perspectives
	Introduction
	Powertrain model
	Problem formulation
	Tip-in problem constraints
	Boundary conditions for the tip-in problem
	Path constraints during tip-in

	Optimal control problem formulation
	Numerical solution of optimal control problems

	Optimal control results
	Extreme transients
	Compromise between time, Jerk and energy
	Jerk-Energy trade-off
	Efficient state and control transients

	Conclusions
	An Improved Kriging Model Based on Differential Evolution
	1 Introduction
	2 Theory of kriging model
	3 Kriging model based on DE algorithm
	3.1 Theory of DE algorithm
	3.2 Kriging interpolation based on DE algorithm
	3.3 Process of kriging Model based on DE algorithm

	4 An engineering example
	4.1 Setting DE algorithm parameters
	4.2 Data preprocessing
	4.3 Model computation and optimization

	5 Conclusion
	Introduction
	Model for slug flow
	Simulation for slug flow
	State estimation
	Control strategies
	Model predictive control
	PI control

	Simulation results and discussion
	Control structure I
	Control structure II
	Control structure III

	Computational time for MPC
	Maximum valve opening
	Conclusion
	Introduction
	Description of the loading bridge
	Modelling with Modelica
	Package of mechanical components Mechanics
	Package of causal components Blocks
	Structure and components of the overall model
	Model of the loading bridge
	World
	Cart
	Pendulum
	Drive

	Controller in Matlab Simulink environment
	Experiments
	Open loop experiments
	Closed loop experiments

	Conclusion
	Introduction
	MMT - Mathematics, Modelling and Tools
	Structure of MMT
	Usage of MMT

	Maple T.A. - Maple Testing and Assessment
	Structure MTA
	Usage MTA
	Mathapps
	MTA - Moodle Connector

	Case Study
	Conclusion
	Outlook
	Introduction
	Signal processing
	DFT and derivatives
	lp-norms and MIT-indices
	Nadaraya-Watson nonparametric regression

	Measurements and gearbox properties
	Load haul dumper front axle
	Water power station gearboxes

	Calculations from the LHD measurements
	Calculations from the WPS measurements
	Conclusion
	Introduction
	Preliminaries
	Problem Statement
	Vector Smoothing Splines

	Trajectory Planning
	Trajectory between Two Lines
	Centerline and Intermediate Time Instants
	Smoothing Spline Trajectory

	Numerical Examples
	Path with Piecewise Linear Boundaries
	Path in Obstacle Avoidance Problem

	Concluding Remarks
	Introduction
	Literature Review
	Dynamic multi-workstation model based on electrical components

	Simulation Model with a PI Controller
	Test and Results
	Final Remarks
	Introduction
	Related Work
	Methodology
	DataSet

	Semantic Identification Through Multiple Classifiers
	Global Feature Extraction through Wavelet Decomposition
	Deep Learning of Neural Network

	Image Retrieval
	Performance Analysis
	Conclusion
	Motivation
	Related work
	Data set and pre-processing
	Defining the curvature of a steel plate
	Experiment
	Discussion
	Conclusion
	Introduction
	New Evolutionary Computation
	Island model parallel distributed in NN-DEGA
	Self-adaptive using Neural Network
	Reconstruction of differential vector
	Elite strategy

	Numerical Experiments
	Benchmark Functions
	Experiment Results
	Comparison for Robustness

	Conclusion
	Introduction
	Classical RF Prediction
	Fuzzy Clustering Prediction
	Analysis
	Conclusion
	Introduction
	Dynamic Artificial Neural Network
	Back Propagation Through Time (BPTT)
	Real Time Recurrent Learning (RTRL)
	Extended Kalman Filter Learning (EKF)

	Experimental Set-up
	Results
	Simulation Study
	Experimental Study

	Conclusion
	Introduction
	Overview of Toolbox
	DANN Main
	Uploading data set
	Division of data set
	Validation check
	Bias
	Learning algorithm
	Learning parameters
	Past inputs and outputs
	Additional parameters

	Parameter Tuning
	Plot Menu
	Performance plot
	Regression plot
	Prediction plot
	Parameter plot
	Error plot

	Additional information
	Installing the MATLAB DANN toolbox

	Case Studies
	Case I: BPTT learning algorithm for flow measurement
	Case II: EKF learning algorithm for temperature measurement
	Case III: RTRL learning algorithm for mortality prediction

	Conclusion
	Modeling and Simulation of Train Networks Using Max-Plus Algebra
	1. Introduction
	2. Max-plus algebra
	3. Scheduled max-plus linear systems
	4. Timetable stability
	4.1 Delay sensitivity analysis
	4.2 Dynamic Delay Propagation
	4.3 Recovery Matrix

	5. Conclusion
	Introduction
	Construction of DBN metamodels
	Utilization of DBN metamodels
	Example analysis - simulated operation of air base
	Conclusion
	Introduction
	Metastable liquids

	Model for two phase flow and phase transition
	The van der Waals equation of state

	Solver
	Stiff pressure relaxation
	Stiff thermodynamic relaxation

	Experiments
	Simulation set-up
	Results and discussion
	Conclusion
	Introduction
	ParModelica
	Previous Research on PDEs in Modelica
	Partial Differential Equations (PDE)
	Explicit Form

	Numerics
	Discretisation
	Runge-Kutta with Variable Step Length

	General-Purpose Computing on Graphics Processing Units (GPGPU)
	PDEs in Modelica
	Algorithmic Modelica and ParModelica
	Solver Framework
	User Defined State Derivative and Settings
	Types Used by the Solver
	Solvers

	Use Case — Heat in Plane
	Poor Insulation and Constant Temperature
	Constant Temperature Depending on Location

	Performance Measurement
	Pros & Cons of Solver Written in Modelica
	Conclusions
	Blood Flow in the Abdominal Aorta Post 'Chimney' Endovascular Aneurysm Repair
	1 Introduction
	2 Methodology
	2.1 Governing Equations
	2.2 Anatomical Model
	2.3 Numerical Model
	2.4 Numerical Discretization

	3 Results
	3.1 Validation
	3.2 Flow Patterns
	3.3 Flow Regime

	4 Discussion and Conclusions
	Introduction
	Spin-Image Algorithm
	The Proposed Parallel Spin-Images Algorithm
	Results and Analysis
	Platform Specification
	Experimental Data
	Results

	Conclusions and future work
	Introduction
	Overview of Python API
	Goal
	Installing the OMPython Extension
	Status
	Description of the API
	Python Class and Constructor
	Utility Routines, Converting Modelica FMU
	Getting and Setting Information
	Operating on Python Object: Simulation, Optimization
	Operating on Python Object: Linearization

	Use of API for Model Analysis
	Case Study: Simple Tank Filled with Liquid
	Model Summary
	Modelica Encoding of Model
	Use of Python API
	Basic Simulation of Model
	Parameter Sensitivity/Monte Carlo Simulation

	Discussion and Conclusions
	Introduction
	Related Work
	Virtual Testing of Open embedded Systems
	Simulator Coupling for Network Simulation
	Network Fault Injection Testing
	Case Study
	Conclusions and future work
	Validation Method for Hardware-in-the-Loop Simulation Models
	1 Introduction
	2 Validation Methods
	2.1 Open-Loop Operation
	2.2 Independent Closed-Loop Operation
	2.3 Compensated Closed-Loop Operation

	3 Related Work
	3.1 Example Circuit
	3.2 Simulation Models

	4 Simulation Results
	4.1 Models with Different Switching Delays
	4.2 Discrete-Time Models
	4.3 Fixed-Point Models

	5 Conclusion
	Introduction
	Control Engineering: The Teacher's Challenge
	New Curriculum For Teaching Automatic Control
	Luma Activity
	Conclusion
	Introduction
	The Activated Sludge Process
	Mass balances and expression for the sludge age
	The settler

	ASP with ideal settler model
	Steady-state solutions
	Substrate input-output relationship for constant sludge age

	ASP with DZC settler model
	Steady-state solutions
	Substrate input-output relation for constant sludge age

	An approximation for S* given 0
	Numerical example
	Theorem 1
	Theorem 2

	Conclusions
	Introduction
	Materials and Methods
	Gaussian Mixture Models
	GMM based fault detection criteria

	Case Study: Monitoring a Secondary Settler
	Results
	Discussions
	Conclusions
	Introduction
	Industrial Process Description
	SIAAP Waste water and sewage Sludge Treatment Process
	Incineration Process
	The Furnace
	The Heat Exchanger

	Identification Process Overview
	Sludge Incineration sub-models: Input-output interaction.
	Identification Strategy

	Validation Methods
	Absolute Criteria
	Relative reference-model criteria

	Results and Discussions
	Relative Reference-Model Criteria Results

	Conclusion
	1 Introduction
	2 Modelling
	2.1 Basic Process Components
	2.2 Boiler Evaporator Loop
	2.3 Test Model

	3 Simulation Tests
	3.1 Comparison of Numerical Solvers
	3.2 Effects of Initial State and Parameters

	4 Conclusions
	Introduction
	TCP-100 solar field description
	Mathematical modeling of TCP-100 solar field
	 Optical and geometric efficiencies
	Characteristics of the heat transfer fluid
	Thermal losses

	Simulations
	Conclusion
	Introduction
	Description of a Basic Gas Turbine Model
	Compressor
	Combustion Chamber
	Turbine Module

	Computational Causality And Conditions for Numerical Convergence
	First Principles Compression and Expansion Maps
	Compression Case
	Expansion Case

	Simulation Results
	Conclusion
	Appendix
	Introduction
	Modelling methodology, libraries and tools
	Plant Description
	Innovative aspects
	OTSG topology

	Device modelling
	Re-used components
	Custom component models
	Separator
	Feedwater heater
	Deaerator
	MS fluid model

	Plant modelling
	OTSG model
	Turbine model
	Feedwater preheaters train
	Plant control system
	Complete plant model

	Simulation objectives - methodology
	Simulation performance
	Conclusion
	Introduction
	Formal Problem Statement and SVM
	SVM by Set-Valued Training Data
	A Modification of the AdaBoost
	Imprecise Updating Weights of Robots
	Conclusion
	Introduction
	Methodology
	Power grid connection
	Electrolyser
	Interim gas storages
	Methanation
	MEA CO2 capture
	CH4 compression

	Control sequences
	CH4 compression
	Start-up
	Power grid connection
	Methanation reactor
	Electrolysers
	Interim gas storages
	CH4 compression

	Shutdown
	Methanation reactor
	CH4 compression
	Interim gas storages
	Electrolysers

	Results
	Conclusion and future work
	Acknowledgment
	Introduction
	Mathematical Model
	Assumptions
	Development of Model
	Material Balance
	Energy Balance
	Heat Exchanger

	Simulation Results and Discussion
	Simulation Results
	Comparison with Previous Work

	Conclusions
	1 Introduction
	2 Herding behavior of rhinos
	2.1 A synoptic model of space use
	2.2 Population size updating model

	3 Rhino herd (RH) algorithm
	3.1 Synoptic model
	3.2 Population size updating model
	3.3 RH algorithm

	4 Simulation results
	5 Discussions and conclusions
	Acknowledgements
	References

	Introduction
	Structure and Kinematics of the Double-Spiral Mobile Robot
	Structure
	Forward kinematics
	Gripper positions
	COG

	NESM
	Numerical Case Study
	Conditions and methods
	Results

	Discussion
	Conclusion
	Introduction
	Data analysis
	Nonlinear scaling
	Interactions
	Uncertainty
	Natural language

	Recursive analysis
	Scaling
	Interactions
	Fuzzy logic
	Smart adaptive systems

	Temporal analysis
	Trend indices
	Fluctuations
	Changes of operating conditions

	Conclusion
	Introduction
	MOEA/D
	Algorithm
	Focused Issue

	Proposed Method: Chain-Reaction Initial Solution Arrangement
	Aim and Concept
	Method

	Experimental Settings
	Results and Discussion
	Search Performance at Final Generation
	Search Performance over Generations

	Conclusions
	Introduction
	Modeling demand-side management
	Markets
	Actors
	Other elements

	Controlling consumption
	Optimizing scheduling
	Controlling (via) frequency

	Discussion and conclusions
	Introduction
	Components and Parameters of Musical Expression
	Learning Support System of Musical Representation
	Generation of Example of Musical Expression
	Construction of Kansei Space
	Image Estimation
	Parameter Values Estimation using Fuzzy Inference
	Interactive Modification of Musical Expression

	Comparison of Parameter of Musical Expression
	Advice for Parameter of Musical Expression

	Range of Learner's Musical Expression on Kansei Space
	Estimation of Range of Musical Expression
	Advice about Impression

	Experiment
	Results and Discussions

	Conclusion
	Introduction
	Formulating the GA Optimization
	The Problem Encoding
	The Objective Function (Fitness)
	Selecting The GA Operators
	Tuning the GA Parameters

	FPGA Implementation
	GA's HDL Entities
	Fitness
	Selection
	Crossover
	Mutation
	Generating Pseudo Random Sequences
	Replacement

	Performance Evaluation
	Functional Verification
	Fitness
	Selection
	Replacement
	Crossover
	Mutation
	LFSRs
	Comparator

	Integrating GA into the SoC
	Interfacing GA with the HPS
	Controlling GA from the Linux host

	Conclusion and Future Work
	Introduction
	Related Work
	Earthmoving Simulator
	Workspace Subdivision with Scoop Area
	High Point and Zero Contour Methods
	Simulation Results and Discussion
	Conclusion and Future Work
	Introduction
	SDNized Wireless LAN Testbed
	 Central Manager
	 Aggregator and Transport Network
	 Network Edge
	 Android Measurement Application
	Experiment Automation

	Mobility Management - A Use-Case Scenario Implementation
	Mobility Handling in Developed Testbed
	Logging
	Running the Experiment
	Parsing and aggregating results

	Conclusion

