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Abstract
A new evolutionary algorithm called NN-DEGA that us-
ing Artificial Neural Network (ANN) for Self-adaptive
Differential Evolution (DE) with Island model of Genetic
Algorithm (GA) is proposed to solve large scale opti-
mization problems, to reduce calculation cost, and to im-
prove stability of convergence towards the optimal solu-
tion. This is an approach that combines the global search
ability of DE and the local search ability of Adaptive Sys-
tem with Island model of GA. The proposed algorithm in-
corporates concept from DE, GA, and Neural Networks
(NN) for self-adaptive of control parameters. The NN-
DEGA is applied to several benchmark tests with multi-
dimensions to evaluate its performance. It is shown to
be statistically significantly superior to other Evolutionary
Algorithms (EAs), and Memetic Algorithms (MAs).
Keywords: differential evolution, memetic algorithm,
migration, neural network, parallel genetic algorithm

1 Introduction
To solve complex numerical optimization problems, re-
searchers have been looking into nature both as model and
as metaphor for inspiration. A keen observation of the un-
derlying relation between optimization and biological evo-
lution led to the development of an important paradigm of
computational intelligence for performing very complex
search and optimization. Evolutionary Computation uses
iterative process, such as growth or development in a pop-
ulation that is then selected in a guided random search us-
ing parallel processing to achieve the desired end. Nowa-
days, the field of nature-inspired metaheuristics is mostly
continued by the Evolution Algorithms (EAs) (e.g., Ge-
netic Algorithms (GAs), Evolution Strategies (ESs), and
Differential Evolution (DE) etc.) as well as the Swarm
Intelligence algorithms (e.g., Ant Colony Optimization
(ACO), Particle Swarm Optimization (PSO), Artificial
Bee Colony (ABC), etc.). Also the field extends in a
broader sense to include self-organizing systems, artificial
life, memetic and cultural algorithms, harmony search, ar-
tificial immune systems, and learnable evolution model.
The GAs (Goldberg, 1989; Holland, 1992) have been ap-
plied to various complex computational problems, and its
validity has been reported by many researchers (Goldberg,

1999; Mahfoud, 1992). However, it requires a huge com-
putational cost to obtain stability in convergence towards
an optimal solution. To reduce the cost and to improve the
stability, a strategy that combines global and local search
methods becomes necessary. As for this strategy, current
research has proposed various methods (Nasa, 2016). For
instance, Memetic Algorithms (MAs) (Ong, 2004; Smith,
2005) are a class of stochastic global search heuristics
in which EAs-based approaches are combined with lo-
cal search techniques to improve the quality of the solu-
tions created by evolution. MAs have proven very suc-
cessful across the search ability for multi-modal functions
with multi-dimensions (Ong, 2004). These methodologies
need to choose suitably a best local search method from
various local search methods for combining with a global
search method within the optimization process. Further-
more, since genetic operators are employed for a global
search method within these algorithms, design variable
vectors (DVs) which are renewed via a local search are en-
coded into its genes many times at its GA process. These
certainly have the potential to break its improved chro-
mosomes via gene manipulation by GA operators, even
if these approaches choose a proper survival strategy. To
solve these problems and maintain the stability of the con-
vergence towards an optimal solution for multi-modal op-
timization problems with multiple dimensions, Hieu Pham
et al. proposed evolutionary strategies of Adaptive Plan
system with Genetic Algorithm (APGAs) (Pham, 2012).
It is shown to be statistically significantly superior to other
EAs and MAs. Unlike most other techniques, GAs main-
tain a population of tentative solutions that are competi-
tively manipulated by applying some variation operators
to find a global optimum. For non-trivial problems, this
process might require high computational resources such
as large memory and search times. To design efficient
GAs, a variety of advances by new operators, hybrid al-
gorithms, termination criteria, and more are continuously
being achieved. Parallel GAs (PGAs) (Alba, 1999; Cant,
1998; Tanese, 1989) often leads to superior numerical per-
formance not only to faster algorithms. However, the truly
interesting observation is that the use of structured popu-
lation, either in the form of a set of islands or a diffu-
sion grid, is responsible for such numerical benefits. A
PGA has the same as a serial GA, consisting in using rep-
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resentation of the problem parameters, robustness, easy
customization, and multi-solution capabilities. In addi-
tion, a PGA is usually faster, less prone to finding sub-
optimal solutions only, and able of cooperating with other
search techniques in parallel. Differential Evolutionary
(DE) was recently introduced and has garnered signifi-
cant attention in the research literature (Storn, 1997). DE
has many advantages including simplicity of implemen-
tation, reliable, robust, and in general is considered as
an effective global optimization algorithm (Price, 2005).
DE operates through similar computational steps as em-
ployed by a standard EA. However, unlike traditional EAs,
the DE variants perturb the current generation population
members with the scaled differences of randomly selected
and distinct population members. Therefore, no sepa-
rate probability distribution has to be used for generat-
ing the offspring (Das, 2011). Recently, DE has drawn
the attention of many researchers all over the world re-
sulting in a lot of variants of the basic algorithm with im-
proved performance such as Improved Self-adaptive Dif-
ferential Evolution (ISADE) used in (Bui, 2015) and Ad-
vanced DE (ADE) (Mohamed, 2011) etc. (Brest, 2006;
Liu, 2005; Mohamed, 2011; Noman, 2008; Omran, 2007;
Xu, 2009). Compared with and other techniques (Vester-
stroem, 2004), it hardly requires any parameter tuning and
is very efficient and reliable. In this paper, we purposed
a new evolutionary algorithm called NN-DEGA that us-
ing Artificial Neural Network (ANN) for Self-adaptive DE
with Island model of GA to solve large scale optimization
problems, to reduce a large amount of calculation cost,
and to improve the convergence towards the optimal solu-
tion.

2 New Evolutionary Computation
2.1 Island model parallel distributed in NN-

DEGA
Migration PGA, island model, such as those described in
Sect. 1, are reported to have greater information compati-
bility, a stable design and low computational costs because
they deal with GAs in parallel. In NN-DEGA, optimiza-
tion is conducted by applying GA and DE to each sub-
population. The control variables adjust the vicinity of the
output constriction factor F between the subpopulations.
The candidate control variables and the new solution come
from the other subpopulation at the time of immigration,
so a diversity of solutions can be expected because the mi-
gration destination is determined at random. A schematic
diagram of NN-DEGA with PGA migration is shown in
Figure 1.

2.2 Self-adaptive using Neural Network
The self-adaptive constriction factor F(NN) is used for
data clustering of the GA control variables using NN,
which have been determined uniquely to stabilize their
variation. From a viewpoint of excellent parallel process-
ing and to ensure compatibility with multi-point search

Figure 1. Island Model GA conceptual diagram in NN-DEGA.

methods such as GA and DE are also used in the present
method. NN is often used in combination with these tech-
niques (Kobayashi, 2007). NN may be used to cluster and
classify the data without using a signal if it is necessary to
learn using a teacher signal that is also a NN. In the present
method, the GA variable data clustering is controlled us-
ing unsupervised learning to determine the output scaling
factor change. The initial constriction factor F is set at
random and we vary its value based on the NN output. The
unsupervised learning method is also a multi-layer NN, so
we use NN to perform the feed-forward transfer. The num-
ber of layers is determined in a number of search points
for each subpopulation. In addition, the NN is configured
after it has been sorted in descending order of fitness in
the subpopulations to the output side from the input side,
where the weight of the transfer equation is as shown in
(1). Therefore, many subpopulations have highly adaptive
search points with strong effects on other subpopulations.
The formulation of the control variable, the transfer equa-
tion for each node in the NN and the schematic diagram
of the overall NN are as follows.

w jnin = ynm/y(n−1)m (1)

nodet =
I

∑
i=1

SP ·win jnoutn−1
i /I (2)

SP = 2 ·Ci,G−1 (3)

C = [ci, j, . . . , ci,p] ;(0.0≤ ci, j ≤ 1.0) (4)

Fi,G+1 = Fi,G−∇Fi (5)

The GA handles control variables (CVs) and Ct is allo-
cated to each search point, which is encoded as a 10-bit
string. The order of each search point is allocated to each
node of a multi-layer NN, as shown in Figure 2, on the in-
put side and the output side. The weight of the NN, w jnin ,
which is determined from the adaption ratio of the search
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Figure 2. NN-DEGA neural network.

Figure 3. Step size that defined by CVs for controlling a global
behavior to prevent it falling into the local optimum.

points, is transmitted between the nodes. Ct is the control
variable that determines the step size SP in (3) (as shown
in Figure 3) and this element determines the extent of the
constraint factor change, ∇F . Therefore, the constriction
factor change is an important factor, which determines the
width of the overall distribution of the neighborhood of
search points. Using the control variable, we can change
F adaptively to facilitate more stable solution search and
better control of the control variable in the NN. In addi-
tion, n is the number of NN hierarchical levels, m is the
number of subpopulations, j, i is the number of neurons
in NN, t is the number of individuals, S is the number of
searches per island and I is the maximum number of is-
lands.

2.3 Reconstruction of differential vector
Each target vector aims at the global optimal solution by
updating differential vector based on its best solution has
been achieved so far pbesti j and the best solution of all in-
dividuals in the population gbest j (where j = [1,2, . . . ,D],
D is the dimension of the solution vector), as following
equation:

Vi j,G+1 = gbest j,G +F ·
(

pbesti j,G−Xi j,G
)

(6)

We carried out the reconstruction of the control variable
like considered control variables APGAs (Pham, 2012),

Algorithm 1 The NN-DEGA Pseudocode
1: Initialize population with CVs;
2: Generate initial DVs;
3: Evaluate individuals with initial DVs;
4: while (Termination Condition) do
5: Adaptive control of scaling factor F = F(NN) using Neural net-

work;
6: Generate DVs via AP with new DE scheme:
7: Generate a mutant vector: Vi j,G+1 = gbest j,G + F(NN) ·(

pbesti j,G−Xi j,G
)
;

8: Generate a trial vector Ui j,G+1 through binomial crossover:

Ui j,G+1 =

{
Vi j,G+1,(rand j ≤CR) or ( j = jrand)
Xi j,G+1,(rand j ≥CR) and ( j 6= jrand)

;

9: Evaluate the trial vector Ui,G;
10: if f

(
Ui,G

)
≤ f

(
Xi,G

)
then Xi,G+1 =Ui,G else Xi,G+1 = Xi,G;

11: end if
12: Evaluate individuals with DVs;
13: Select parents;
14: Recombine to produce offspring for CVs;
15: Mutate offspring for CVs;
16: if (Restructuring Condition) then
17: Restructure chromosome of offspring for CVs;
18: end if
19: end while

not only control variable meet the conditions listed be-
low, but also reconstruction of the DE differential vector
by keep performing keep the global search of the search
point, the appropriate solution search is always performed.

• The same value adaptation accounted for more than
80% for the entire

• The same bit-string chromosome occupies more than
80% for the entire

• The same value of scaling factor accounted for 50%
of the total.

2.4 Elite strategy
In this paper, using the diploid genetics is not proper to
perform the search using the NN solution (Kouchi, 1992).
Generally, GA, information has only a single gene for one
individual. However, the structure has a double recessive
genetic information that does not appear in the dominant
phenotype. Here, in NN, genetic information is treated as
a control variable. Information dominance for the NN is
elite solution closed to the control variable, as shown in
the following equation. With the aim of having a strong
influence in the form of dominant inheritance, enhancing
the effectiveness of the control variable, advantageously
advancing the solution search, elite solution against other
sub-populations as the island model of GA.

i f |eSP−SP1|− |eSP−SP2|< 0 SP = SP1
i f |eSP−SP1|− |eSP−SP2|> 0 SP = SP2

(7)

3 Numerical Experiments
In this section, the numerical experiments were performed
to compare among strategies. Next, the new algorithm
were compared with other techniques for the robustness
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Figure 4. Elite strategy, where the best individual survives in
the next generation, is adopted during each generation process.

Table 1. Parameter Settings for Benchmark Tests.

Operator Control Parameter Set value

DE Scaling factor F(NN) ∈ [−1.0,1.0]

Crossover probability CR = 0.5

GA Selection ratio 1.0

Crossover ratio 0.8

Mutation ratio 0.1

The population size: 100

of the optimization approach. These experiments involved
25 independent trials for each function. The parameter set-
tings used in solving the benchmark functions are given
in Table 1. The initial seed number are randomly var-
ied during every trial. The scaling factor F takes value
in [−1.0,1.0], and the crossover probability CR is set by
0.5 for the performance of DE. The GA parameters, selec-
tion ratio, crossover ratio and mutation ratio are 1.0, 0.8
and 0.01, respectively. The population size has 100 indi-
viduals.

3.1 Benchmark Functions

For the NN-DEGA, we estimated the stability of the con-
vergence to the optimal solution by using five benchmarks
with 30, and 100 dimensions - Ridge ( f3), Rosenbrock
( f5), Rastrigin ( f9), Ackley ( f10), and Griewank ( f11). Ta-
ble 2 lists their characteristics, including the terms epis-
tasis, multi-peaks, and steepness. D denotes the dimen-
sionality of the test problem, design range variables and
the global optimum value are summarized. A more de-
tailed description of each function is given in Ref. (Yao,
1999). All functions are minimized to zero, when opti-
mal DVs X = 0 are obtained. Note that, it is difficult to
search for optimal solutions by applying one optimization
strategy only, because each function has specific complex
characteristics. The search process is terminated when the
search point attains an optimal solution or a current gen-
eration process reaches the termination.

f3 =
D

∑
i=1

(
i

∑
j=1

x j

)2

(8)

Table 2. Characteristics of benchmark tests.

Func Epis M-peaks Steepness Design range Optimum

f3 Yes No Average [−100,100]D f (0) = 0
f5 Yes No Big [−30,30]D f (0) = 0
f9 No Yes Average [−5.12,5.12]D f (0) = 0
f10 No Yes Average [−32,32]D f (0) = 0
f11 Yes Yes Small [−600,600]D f (0) = 0

D denotes the dimensionality of the test problem.
"Epis" stands for Epistatic, "M - peak" stand for Multi - peaks.

f5 =
D

∑
i=1

[100(xi+1 +1− (xi +1)2)2 + x2
i ] (9)

f9 = 10D+
D

∑
i=1

[x2
i −10cos(2πxi)] (10)

f10 =−20exp

(
−0.2

√
1
D

D

∑
i=1

x2
i

)

−exp

(
1
D

D

∑
i=1

cos(2πxi)

)
+20+ e (11)

f11 = 1+
D

∑
i=1

x2
i

4000
−

D

∏
i=1

cos
(

xi√
i

)
(12)

3.2 Experiment Results
The experiment results, average generations required to
reach the global optimum of all benchmark functions with
30 dimensions in term of 150,000 FES by the NN-DEGA
are given in Tables 3 - 6. ”Mean best” indicates average of
optimum values obtained and ”Std Dev” stands for stan-
dard deviation. The solution of all benchmark functions
reach their global optimum solutions, and the success rate
of optimal solution is 100%. The effect of island number
and immigration rate on the performance of algorithm is
reported. From this results via optimization experiments,
it can be concluded that either the island number or immi-
gration rate increase, the performance of the NN-DEGA
algorithm significantly improves. Additionally, the re-
sults show that the NN-DEGA algorithm is effective in all
benchmarks for various island number and immigration
rate, which suggests that the NN-DEGA is more stable
and robust on island model using neural network. We em-
ployed the best value of island number and immigration
rate for the NN-DEGA are 10, 0.2 respectively. In addi-
tion, the experiment results with 100 dimension in term
of fixed total evaluation times 500,000 FES are given in
Table 7. When the success rate of optimal solution is not
100%, ”-” is described. We confirmed that the NN-DEGA
could solve multi-modal functions with high probability.
As a result, its validity confirms that this strategy can dra-
matically reduce the computation cost and improve the
stability of the convergence to the optimal solution more
significantly.
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Table 3. Experiment results, average generations required to
reach the global optimum over 25 runs (D = 30, population size
100, island number 5 and imigration rate 0.05).

Function Gen. No NFE Mean best Std Dev

f3 571 57,100 0.000E+000 0.000E+000
f5 147 14,700 0.000E+000 0.000E+000
f9 61 6,100 0.000E+000 0.000E+000
f10 101 10,100 4.441E-016 0.000E+000
f11 77 7,700 0.000E+000 0.000E+000

Table 4. Experiment results, average generations required to
reach the global optimum over 25 runs (D = 30, population size
100, island number 5 and imigration rate 0.2).

Function Gen. No NFE Mean best Std Dev

f3 380 38,000 0.000E+000 0.000E+000
f5 95 9,500 0.000E+000 0.000E+000
f9 45 4,500 0.000E+000 0.000E+000
f10 71 7,100 4.441E-016 0.000E+000
f11 58 5,800 0.000E+000 0.000E+000

Table 5. Experiment results, average generations required to
reach the global optimum over 25 runs (D = 30, population size
100, island number 10 and imigration rate 0.05).

Function Gen. No NFE Mean best Std Dev

f3 585 58,500 0.000E+000 0.000E+000
f5 129 12,900 0.000E+000 0.000E+000
f9 61 6,100 0.000E+000 0.000E+000
f10 99 9,900 4.441E-016 0.000E+000
f11 73 7,300 0.000E+000 0.000E+000

Table 6. Experiment results, average generations required to
reach the global optimum over 25 runs (D = 30, population size
100, island number 10 and imigration rate 0.2).

Function Gen. No NFE Mean best Std Dev

f3 394 39,400 0.000E+000 0.000E+000
f5 83 8,300 0.000E+000 0.000E+000
f9 43 4,300 0.000E+000 0.000E+000
f10 66 6,600 4.441E-016 0.000E+000
f11 56 5,600 0.000E+000 0.000E+000

Table 7. Experiment results, average generations required to
reach the global optimum over 25 runs in term of 500,000 FES
(D = 100, population size 100, island number 10 and imigration
rate 0.2).

Function Gen. No NFE Mean best Std Dev

f3 - - - -
f5 226 22,600 0.000E+000 0.000E+000
f9 110 11,000 0.000E+000 0.000E+000
f10 232 23,200 4.441E-016 0.000E+000
f11 154 15,400 0.000E+000 0.000E+000

Table 8. Comparison of DE, jDE, ADE and NN-DEGA algo-
rithm in term of 150,000 FES; Gen. No 1500 (D = 30, popula-
tion size=100).

Func. Gen. No DE jDE ADE NN-DEGA

Mean best Mean best Mean best Mean best
(Std Dev) (Std Dev) (Std Dev) (Std Dev)

f3 1500 1.630860 0.090075 - 0.000E+000
(0.886153) (0.080178) (0.000E+000)

f5 1500 7.8E-09 3.1E-15 3.75E-05 (1) 0.000E+000
(5.8E-09) (8.3E-15) (8.90E-05) (0.000E+000)

f9 1500 173.405 1.5E-15 0.0E+00 (2) 0.000E+000
(13.841) (4.8E-15) (0.0E+00) (0.000E+000)

f10 1500 9.7E-08 7.7E-15 6.93E-11 4.441E-016
(4.2E-08) (1.4E-15) (3.10E-11) (0.000E+000)

f11 1500 2.9E-13 0 0.0E+00 (3) 0.000E+000
(4.2E-13) 0 (0.0E+00) (0.000E+000)

(1) Gen. No 3000; (2) Gen. No 5000; (3) Gen. No 2000

3.3 Comparison for Robustness
To evaluate the performance of the NN-DEGA algorithm,
we compared to other EAs such as GA, PSO, PS-EA in
(Srinivasan, 2010), ABC (Karaboga, 2006), DE (Storn,
1997), jDE (Brest, 2006), and ADE (Mohamed, 2011).
Maximum number of generation and the population size,
i.e. 100, as in the study presented in (Vesterstroem, 2004;
Srinivasan, 2010). The mean and the standard deviations
of the function values obtained by these methods are given
in Tables 9 and 8. By means of the comparison with other
methodologies, the NN-DEGA could certainly achieve
optimal solution with low calculation cost. Additionally,
the results show that the proposed NN-DEGA algorithm
outperformed other techniques in all function. The con-
vergence of the optimal solution could be improved more
significantly in the NN-DEGA than that in other methods
for the same calculation cost. Therefore, it is desirable to
introduce this strategy for global optimization.

4 Conclusions
In this paper, overcome the computational complexity, a
new evolutionary strategy that using Artificial Neural Net-
work for Self-adaptive Differential Evolution with Island
model of Genetic Algorithm called NN-DEGA is pro-
posed to solve large scale optimization problems, to re-
duce a large amount of calculation cost, and to improve
the convergence to the optimal solution. Then, we veri-
fied the effectiveness of the NN-DEGA algorithm by the
numerical experiments performed five benchmark tests.
Moreover, the NN-DEGA was compared to other EAs,
it shown to be statistically significantly superior to other
EAs. We confirmed that the NN-DEGA reduces the calcu-
lation cost and dramatically improves the convergence to-
wards the optimal solution. Moreover, it could solve large
scale optimization problems with high probability. About
a solution of the problem of cost reduction, minimum time
and maximum reliability, it is a future work. Finally, this
study plans to do a comparison with the sensitivity plan
of the AP by applying other methods on constrained real-
parameters and dynamic optimization problems, and fur-
ther real-life applications.
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Table 9. Comparison of GA, PSO, PS-EA, ABC and NN-DEGA algorithm in term of 100,000 FES; Gen. No 1000 (D = 30,
population size=100).

Func. Gen. No GA PSO PS-EA ABC NN-DEGA

Mean best Mean best Mean best Mean best Mean best
(Std Dev) (Std Dev) (Std Dev) (Std Dev) (Std Dev)

f3 1000 - - - - 0.000E+000
(0.000E+000)

f5 1000 166.283 402.54 98.407 0.219626 0.000E+000
(59.5102) (633.65) (35.5791) (0.152742) (0.000E+000)

f9 1000 10.4388 32.476 3.0527 0.033874 0.000E+000
(2.6386) (6.9521) (0.9985) (0.181557) (0.000E+000)

f10 1000 1.0989 1.49E-6 0.3771 3E-12 4.441E-016
(0.24956) (1.86E-6) (0.098762) (5E-12) (0.000E+000)

f11 1000 1.2342 0.011151 0.8211 2.87E-09 0.000E+000
(0.11045) (0.014209) (0.1394) (8.45E-10) (0.000E+000)

References
E. Alba and J.M. Troya. A Survey of Parallel Distributed

Genetic Algorithms, Journal Complexity, 4(4): 31–
52,1999.

J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V.
Zumer. Self-adapting control parameters in differential
evolution: A comparative study on numerical bench-
mark problems, IEEE Trans. Evol. Comput., 10(6):
646–657, 2006.

Ngoc Tam Bui and Hiroshi Hasegawa. Training Artifi-
cial Neural Network Using Modification of Differential
Evolution Algorithm. International Journal of Machine
Learning and Computing, 5(1): 1-6, 2015.

E. Cant. A survey of parallel genetic algorithms, Cal-
culateurs paralleles, reseaux et systems repartis, vol
10,1998.

S. Das and P.N. Suganthan. Differential evolution - A sur-
vey of the State-of-the-Art, IEEE Transactions on Evo-
lutionary Computation, 15(1): 4–31, 2011.

D.E. Goldberg. Genetic Algorithms in Search Optimiza-
tion and Machine Learning, Addison - Wesley, 1989.

D. E. Goldberg and S. Voessner. Optimizing global-
local search hybrids, In Proceedings of 1999 Genetic
and Evolutionary Computation Conference, pages 220–
228, 1999.

J. Holland. Adaptation in Natural and Artificial Systems.
The University of Michigan 1975, MIT Press, 1992.

D. Karaboga and B. Basturk. A powerful and efficient al-
gorithm for numerical function optimization: artificial
bee colony (ABC) algorithm, Journal Global Optimiza-
tion, 39: 459–471, 2006.

K. Kobayashi, T. Hiroyasu, and M. Miki. Mechanism of
Multi-Objective Genetic Algorithm for Maintaining the
Solution Diversity Using Neural Network, The Science

and Engineering Review of Doshisha University, 48(2):
24–33, 2007.

M. Kouchi, H. Inayoshi, and T. Hoshino. Optimization
of Neural-Net Structure by Genetic Algorithm with
Diploydi and Geographical Isolation Model, Japanese
Society for Artificial Intelligence, 7(3): 509–517, 1992.

J. Liu and J. Lampinen. A fuzzy adaptive differential evo-
lution algorithm, Soft Computing - A Fusion of Founda-
tions, Methodologies and Applications, 9(6): 448–462,
2005.

S. W. Mahfoud and D. E. Goldberg. Parallel recombina-
tive simulated annealing: A genetic algorithm, Parallel
Computing, 21(1): 1–28, 1995.

A. Wagdy Mohamed, H.Z. Sabry, and A. Farhat. Ad-
vanced Differential Evolution algorithm for global nu-
merical optimization, In IEEE International Confer-
ence on Computer Applications and Industrial Elec-
tronics (ICCAIE), pages 156–161, 2011.

N. Noman and H. Iba. Accelerating differential evolution
using an adaptive local Search, IEEE Transactions on
Evolutionary Computation, 12(1): 107–125, 2008.

Nasa Publications http://ti.arc.nasa.gov/
tech/rse/publications/

M. Omran, A.P. Engelbrecht, and A. Salman. Empirical
analysis of self-adaptive differential evolution, Euro-
pean Journal of Operations Research, 183(2): 785–
804, 2007.

Y.S. Ong and A.J. Keane. Meta-Lamarckian Learning in
Memetic Algorithms, IEEE Transactions on Evolution-
ary Computation, 8(2): 99–110, 2004.

K. Price, R. Storn, and J. Lampinen. Differential Evo-
lution: A Practical Approach to Global Optimization,
Springer-Verlag, Berlin, 2005.

EUROSIM 2016 & SIMS 2016

538DOI: 10.3384/ecp17142533       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

http://ti.arc.nasa.gov/tech/rse/publications/
http://ti.arc.nasa.gov/tech/rse/publications/


Hieu Pham, S. Tooyama, and H. Hasegawa. Evolutionary
Strategies of Adaptive Plan System with Genetic Al-
gorithm, JSME Journal of Computational Science and
Technology, 6(3): 129–146, 2012.

D.E. Rumelhart and J.L. McClelland. Parallel Distributed
Processing: Explorations in the Microstructure of Cog-
nition, MIT Press, 1986.

D. Srinivasan and T.H. Seow. Evolutionary Computation,
IEEE Congress on Modelling and Simulation, 2010.

J.E. Smith, W.E. Hart, and N. Krasnogor. Recent Advances
in Memetic Algorithms, Springer, 2005.

R. Storn and K. Price. Differential Evolution - a sim-
ple and efficient Heuristic for global optimization over
continuous spaces, Journal Global Optimization, 11(4):
341–357, 1997.

R. Tanese. Distributed genetic algorithms, In Proc. of 3rd
Int. Conf. on Genetic Algorithms, pages 434–439, 1989.

J. Vesterstroem and R. Thomsen. A comparative study of
differential evolution, particle swarm optimization, and
evolutionary algorithms on numerical benchmark prob-
lems, In Proc. IEEE Congr. Evolutionary Computation,
pages 1980-1987, 2004.

Y. Xu, L. Wang, and L. Li. An effective hybrid algo-
rithm based on simplex search and differential evolu-
tion for global optimization, In Proc. ICIC, pages 341–
350, 2009.

X. Yao, Y. Liu, and G. Lin. Evolutionary programming
made faster, IEEE Trans. Evol. Comput., 3(2): 82–102,
1999.

X. Yao. Evolving artificial neural networks, In Proceed-
ings of the IEEE, 87: 1423-1447,1999.

EUROSIM 2016 & SIMS 2016

539DOI: 10.3384/ecp17142533       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland


	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	Introduction
	Calculation formulas
	Calculation of Intra-Ocular Lens for Non-Normal Eyes

	Back ground of studies
	Artificial Neural Network
	Real data
	Collected Data
	Specification of Patients Data Selected for Collection
	Specification of Preprocessing Parameters


	Results
	Objective
	ANN training
	ANN settings
	Results

	Conclusion
	Future work
	Introduction
	Homeostasis, Disturbance Rejection and Set Point Tracking
	Controller Motifs

	Results
	Dynamic Properties of Controller Motifs
	Tuning of Individual Controllers

	Conclusions
	Introduction
	Modelling the pharmacokinetics of propofol
	The 3-compartmental model
	Effect-site concentration model
	Model parameters

	Model verification
	Simulation results
	Propofol inflow
	Plasmatic concentration
	Effect-site concentration
	Evaluation of the predictive quality of the model

	Conclusion
	Introduction
	Modular Model Predictive Control Concept
	Building Setup
	Modular Predictive Control Concept

	Energy Supply Level - ESS - Models
	Linear Models
	Hybrid Models

	Model Predictive Controllers
	Objective Function
	LMPC
	MI-MPC

	Simulation Results
	Simulation Setup
	Demonstration of MPCC Performance
	Comparison between MPCC and RBC

	Conclusion
	Introduction
	Data Properties
	Macro Money Systems in QEs
	Behavior in QE1=(2008m11,2010m06)
	Behavior in QE2+=(2010m11,2012m08)
	Behavior in QE3=(2012m09,2014m10)

	Transmission Path of Housing Price from Reserve to Economic Activity
	Decomposition of M2 into Transaction and Precautionary Money Demands in (1975m10, 2016m03)
	Estimation of Precautionary Money Demand
	The Role of Business Condition u(t)=napm-50 in Transmission Mechanism of QEMP during QE1, QE2+ and QE3

	Conclusion
	Introduction
	Mathematical Model
	Model Parameters and Geometry
	Results and Discussions
	Conclusions
	Introduction
	Field Excitation Control
	Capability Curve
	Classical Control

	Concept and Formulation of MPC
	MPC as Excitation Control
	Modeling and Control Workflow

	Tuning the MPC Controller
	Time Response
	Open Circuit Conditions

	First-swing Angle Stability Enhancement
	Long-term Voltage Stability Enhancement
	Steady-state Voltage Stability
	Power System Simulator
	LTVS Simulations

	Discussion
	Conclusion
	Introduction
	Grid impedance model
	Impedance-based instability studies
	Practical implementation
	Conclusion
	Aknowledgements
	Introduction
	Literature Review
	Circulating Fluidized Bed Boilers
	Characteristics of RDF
	Agglomeration

	Methodology
	Description of Model
	Mass and Energy Balances
	Hydrodynamics

	Results and Discussion
	Validation
	Agglomerate Prediction

	Conclusion
	Introduction
	Theory
	Stability of Grid-Connected System
	Maximum-Length Binary Sequence

	Implementation in dSPACE
	System Setup
	Experiment

	Conclusions
	Introduction
	Governing Equation for Flow Modeling
	KP Numerical Scheme
	Simulation of the River Flow
	Results and Discussion
	Simulation Results
	Simulation Results for Numerical Stability Analysis

	Conclusion
	Introduction
	Air preparation process
	Fuzzy identification
	Takagi-Sugeno fuzzy model
	Fuzzy clustering

	Data collection
	Structure selection
	Input and output variables
	Representation of the systems' dynamics
	Fuzzy models granularity

	Fuzzy clustering and model validation
	Comments on resulting model performance

	Control experiments
	PID control
	Supervisory logic

	Conclusions
	Introduction
	First step - DES model
	Second Step - Portfolio optimization

	Stochastic DES model through markovian properties
	Product-Form Networks - Convolution algorithm
	Marginal probability
	Mean response time

	Load-haulage cycle
	DES model: Load-haulage system
	Project portfolio formulation
	Conclusion
	Introduction
	Overview of the Method
	Computing the Encounter Probabilities
	Example

	State Transition Matrix
	Projectile with a Single Sensor Fuzed Submunition
	Example
	Projectile with Two Sensor Fuzed Submunitions

	Failure Probability of the System
	Conclusion
	Hydro-pneumatic Accumulator
	Recent Research
	Purpose of This Study

	Logical Structure of Simulation Model
	Physics of Piston Type Hydro-Pneumatic Accumulator
	Nitrogen gas
	Mechanical Structure
	Hydraulic Fluid

	Conceptual Model

	Mathematical Model
	Equations for Nitrogen Gas
	Equations for Piston
	Equations for Friction
	Equations for Hydraulic Fluid
	Equations for Orifice

	Modelling in MATLAB/Simulink
	Calibration and Validation of the Simulation Model
	Testing Setup
	Laboratory Tests
	Validation

	Conclusion
	Introduction
	Contributions
	Setup for the analysis
	Experimental data
	Compressor Map
	Compressor Isentropic Efficiency
	Corrected Mass Flow
	Data Treatment

	 Pressure Losses in Gas Stand
	Pressure Loss in Straight Pipe
	Friction Factor - Laminar Flow
	Friction Factor - Turbulent Flow
	Pressure Loss In Bend
	Pressure Loss in Inlet Nozzle and Outlet Diffuser
	Adjust Measured Data
	Calculate New Compressor Efficiency

	Effect of pressure losses on measured compressor efficiency
	Compressor and Pipes Dimensions
	Case 1: Straight Pipes
	Case 2: Pipes with Diffuser and Nozzle
	Case 3: Pipes with Diffuser, Nozzle and Bend

	Summary and Discussion
	Future Work
	Conclusion
	Introduction
	Traffic Regulation: Stage selection
	Signal Control Schemes
	Pre-timed network control
	Max-Pressure Practical (MPract)

	Modelling and Simulation Overview
	An event-driven approach
	PointQ design

	Case Study-Data description
	From theory to applications
	System Stability
	Trajectory Delay Measurement
	Queue Delay Measurement
	Varying Traffic Conditions

	 PointQ versus AIMSUN Network Performance
	Evolution of phase (137,154)
	Evolution of phase (254,237)

	Conclusion
	Introduction
	Background
	MVB and Master Transfer
	Multifunction Vehicle Bus
	Mastership Transfer

	Model Checking with temporal logic

	System Modelling
	Bus Administrator Modelling
	basic data structure
	finite state machine of Bus Administrator

	Communication and Timing Modelling
	communication mechanism of BusAdmin
	timing mechanism


	Property Modelling
	Property Classification
	safety property
	liveness property

	Live sequence charts
	Observer Automata modelling

	Experiments
	Conclusion
	Introduction
	Experimental data
	Modeling
	Compressor
	Turbine
	EGR Blowers
	Auxiliary Blower
	Exhaust Back Pressure
	Combustion Species and Thermodynamic Parameters

	Parameterization Procedure
	Complete stationary parameterization
	Dynamic estimation

	Model Validation
	Conclusions
	Nomenclature
	Introduction
	Fundamentals
	Safe Active Learning
	The high pressure fuel supply system

	Design and Implementation
	Training of the hyperparameters
	The discriminative model
	The risk function
	The path to the next sample
	The algorithm

	Evaluation
	Evaluation in simulation
	Evaluation at a test vehicle

	Conclusion
	Introduction
	Modelling
	Centre of Gravity
	Aerodynamic Forces
	Definition of Angles
	Lever Arms
	Catenary
	Equations of Motion
	Velocities
	Self Stabilisation
	Complete Model

	Model Parameters
	Simulation Results
	Gliding Flight
	Towing Process

	Conclusions
	Introduction
	Context
	Compton scattering tomography (CST)

	Modelling of the new CST modality
	Proposed setup by back-scattering
	Direct problem : Image formation
	The half-space Radon transform (HRT)
	Image formation

	Inverse problem : Object Reconstruction
	Inversion of the HRT
	Filtered back-projection


	Simulation of the new CST modality
	Energy resolution of the detector
	Spatial discretization
	Window functions

	Conclusion and perspectives
	Introduction
	Powertrain model
	Problem formulation
	Tip-in problem constraints
	Boundary conditions for the tip-in problem
	Path constraints during tip-in

	Optimal control problem formulation
	Numerical solution of optimal control problems

	Optimal control results
	Extreme transients
	Compromise between time, Jerk and energy
	Jerk-Energy trade-off
	Efficient state and control transients

	Conclusions
	An Improved Kriging Model Based on Differential Evolution
	1 Introduction
	2 Theory of kriging model
	3 Kriging model based on DE algorithm
	3.1 Theory of DE algorithm
	3.2 Kriging interpolation based on DE algorithm
	3.3 Process of kriging Model based on DE algorithm

	4 An engineering example
	4.1 Setting DE algorithm parameters
	4.2 Data preprocessing
	4.3 Model computation and optimization

	5 Conclusion
	Introduction
	Model for slug flow
	Simulation for slug flow
	State estimation
	Control strategies
	Model predictive control
	PI control

	Simulation results and discussion
	Control structure I
	Control structure II
	Control structure III

	Computational time for MPC
	Maximum valve opening
	Conclusion
	Introduction
	Description of the loading bridge
	Modelling with Modelica
	Package of mechanical components Mechanics
	Package of causal components Blocks
	Structure and components of the overall model
	Model of the loading bridge
	World
	Cart
	Pendulum
	Drive


	Controller in Matlab Simulink environment
	Experiments
	Open loop experiments
	Closed loop experiments

	Conclusion
	Introduction
	MMT - Mathematics, Modelling and Tools
	Structure of MMT
	Usage of MMT

	Maple T.A. - Maple Testing and Assessment
	Structure MTA
	Usage MTA
	Mathapps
	MTA - Moodle Connector

	Case Study
	Conclusion
	Outlook
	Introduction
	Signal processing
	DFT and derivatives
	lp-norms and MIT-indices
	Nadaraya-Watson nonparametric regression

	Measurements and gearbox properties
	Load haul dumper front axle
	Water power station gearboxes

	Calculations from the LHD measurements
	Calculations from the WPS measurements
	Conclusion
	Introduction
	Preliminaries
	Problem Statement
	Vector Smoothing Splines

	Trajectory Planning
	Trajectory between Two Lines
	Centerline and Intermediate Time Instants
	Smoothing Spline Trajectory

	Numerical Examples
	Path with Piecewise Linear Boundaries
	Path in Obstacle Avoidance Problem

	Concluding Remarks
	Introduction
	Literature Review
	Dynamic multi-workstation model based on electrical components

	Simulation Model with a PI Controller
	Test and Results
	Final Remarks
	Introduction
	Related Work
	Methodology
	DataSet

	Semantic Identification Through Multiple Classifiers
	Global Feature Extraction through Wavelet Decomposition
	Deep Learning of Neural Network

	Image Retrieval
	Performance Analysis
	Conclusion
	Motivation
	Related work
	Data set and pre-processing
	Defining the curvature of a steel plate
	Experiment
	Discussion
	Conclusion
	Introduction
	New Evolutionary Computation
	Island model parallel distributed in NN-DEGA
	Self-adaptive using Neural Network
	Reconstruction of differential vector
	Elite strategy

	Numerical Experiments
	Benchmark Functions
	Experiment Results
	Comparison for Robustness

	Conclusion
	Introduction
	Classical RF Prediction
	Fuzzy Clustering Prediction
	Analysis
	Conclusion
	Introduction
	Dynamic Artificial Neural Network 
	Back Propagation Through Time (BPTT)
	Real Time Recurrent Learning (RTRL)
	Extended Kalman Filter Learning (EKF)

	Experimental Set-up
	Results
	Simulation Study
	Experimental Study

	Conclusion
	Introduction
	Overview of Toolbox
	DANN Main
	Uploading data set
	Division of data set
	Validation check
	Bias
	Learning algorithm
	Learning parameters
	Past inputs and outputs
	Additional parameters

	Parameter Tuning
	Plot Menu
	Performance plot
	Regression plot
	Prediction plot
	Parameter plot
	Error plot

	Additional information
	Installing the MATLAB DANN toolbox

	Case Studies
	Case I: BPTT learning algorithm for flow measurement
	Case II: EKF learning algorithm for temperature measurement
	Case III: RTRL learning algorithm for mortality prediction

	Conclusion
	Modeling and Simulation of Train Networks Using Max-Plus Algebra
	1. Introduction
	2. Max-plus algebra
	3. Scheduled max-plus linear systems
	4. Timetable stability
	4.1 Delay sensitivity analysis
	4.2 Dynamic Delay Propagation
	4.3 Recovery Matrix

	5. Conclusion
	Introduction
	Construction of DBN metamodels
	Utilization of DBN metamodels
	Example analysis - simulated operation of air base
	Conclusion
	Introduction
	Metastable liquids

	Model for two phase flow and phase transition
	The van der Waals equation of state

	Solver
	Stiff pressure relaxation
	Stiff thermodynamic relaxation

	Experiments
	Simulation set-up
	Results and discussion
	Conclusion
	Introduction
	ParModelica
	Previous Research on PDEs in Modelica
	Partial Differential Equations (PDE)
	Explicit Form

	Numerics
	Discretisation
	Runge-Kutta with Variable Step Length

	General-Purpose Computing on Graphics Processing Units (GPGPU)
	PDEs in Modelica
	Algorithmic Modelica and ParModelica
	Solver Framework
	User Defined State Derivative and Settings
	Types Used by the Solver
	Solvers

	Use Case — Heat in Plane
	Poor Insulation and Constant Temperature
	Constant Temperature Depending on Location

	Performance Measurement
	Pros & Cons of Solver Written in Modelica
	Conclusions
	Blood Flow in the Abdominal Aorta Post 'Chimney' Endovascular Aneurysm Repair
	1 Introduction
	2 Methodology
	2.1 Governing Equations
	2.2 Anatomical Model
	2.3 Numerical Model
	2.4 Numerical Discretization

	3 Results
	3.1 Validation
	3.2 Flow Patterns
	3.3 Flow Regime

	4 Discussion and Conclusions
	Introduction
	Spin-Image Algorithm
	The Proposed Parallel Spin-Images Algorithm
	Results and Analysis
	Platform Specification
	Experimental Data
	Results

	Conclusions and future work
	Introduction
	Overview of Python API
	Goal
	Installing the OMPython Extension
	Status
	Description of the API
	Python Class and Constructor
	Utility Routines, Converting Modelica  FMU
	Getting and Setting Information
	Operating on Python Object: Simulation, Optimization
	Operating on Python Object: Linearization


	Use of API for Model Analysis
	Case Study: Simple Tank Filled with Liquid
	Model Summary
	Modelica Encoding of Model
	Use of Python API
	Basic Simulation of Model
	Parameter Sensitivity/Monte Carlo Simulation

	Discussion and Conclusions
	Introduction
	Related Work
	Virtual Testing of Open embedded Systems
	Simulator Coupling for Network Simulation
	Network Fault Injection Testing
	Case Study
	Conclusions and future work
	Validation Method for Hardware-in-the-Loop Simulation Models
	1 Introduction
	2 Validation Methods
	2.1 Open-Loop Operation
	2.2 Independent Closed-Loop Operation
	2.3 Compensated Closed-Loop Operation

	3 Related Work
	3.1 Example Circuit
	3.2 Simulation Models

	4 Simulation Results
	4.1 Models with Different Switching Delays
	4.2 Discrete-Time Models
	4.3 Fixed-Point Models

	5 Conclusion
	Introduction
	Control Engineering: The Teacher's Challenge
	New Curriculum For Teaching Automatic Control
	Luma Activity
	Conclusion
	Introduction
	The Activated Sludge Process
	Mass balances and expression for the sludge age
	The settler

	ASP with ideal settler model
	Steady-state solutions
	Substrate input-output relationship for constant sludge age

	ASP with DZC settler model
	Steady-state solutions
	Substrate input-output relation for constant sludge age

	An approximation for S* given 0
	Numerical example
	Theorem 1
	Theorem 2

	Conclusions
	Introduction
	Materials and Methods
	Gaussian Mixture Models
	GMM based fault detection criteria

	Case Study: Monitoring a Secondary Settler
	Results 
	Discussions
	Conclusions
	Introduction
	Industrial Process Description
	SIAAP Waste water and sewage Sludge Treatment Process
	Incineration Process
	The Furnace
	The Heat Exchanger


	Identification Process Overview
	Sludge Incineration sub-models: Input-output interaction.
	Identification Strategy

	Validation Methods
	Absolute Criteria
	Relative reference-model criteria

	Results and Discussions
	Relative Reference-Model Criteria Results

	Conclusion
	1 Introduction
	2 Modelling
	2.1 Basic Process Components
	2.2 Boiler Evaporator Loop
	2.3 Test Model

	3 Simulation Tests
	3.1 Comparison of Numerical Solvers
	3.2 Effects of Initial State and Parameters

	4 Conclusions
	Introduction
	TCP-100 solar field description
	Mathematical modeling of TCP-100 solar field
	 Optical and geometric efficiencies
	Characteristics of the heat transfer fluid
	Thermal losses

	Simulations
	Conclusion
	Introduction
	Description of a Basic Gas Turbine Model
	Compressor
	Combustion Chamber
	Turbine Module

	Computational Causality And Conditions for Numerical Convergence
	First Principles Compression and Expansion Maps
	Compression Case
	Expansion Case

	Simulation Results
	Conclusion
	Appendix
	Introduction
	Modelling methodology, libraries and tools
	Plant Description
	Innovative aspects
	OTSG topology

	Device modelling
	Re-used components
	Custom component models
	Separator
	Feedwater heater
	Deaerator
	MS fluid model


	Plant modelling
	OTSG model
	Turbine model
	Feedwater preheaters train
	Plant control system
	Complete plant model

	Simulation objectives - methodology
	Simulation performance
	Conclusion
	Introduction
	Formal Problem Statement and SVM
	SVM by Set-Valued Training Data
	A Modification of the AdaBoost
	Imprecise Updating Weights of Robots
	Conclusion
	Introduction
	Methodology
	Power grid connection
	Electrolyser
	Interim gas storages
	Methanation
	MEA CO2 capture
	CH4 compression

	Control sequences
	CH4 compression
	Start-up
	Power grid connection
	Methanation reactor
	Electrolysers
	Interim gas storages
	CH4 compression

	Shutdown
	Methanation reactor
	CH4 compression
	Interim gas storages
	Electrolysers


	Results
	Conclusion and future work
	Acknowledgment
	Introduction
	Mathematical Model
	Assumptions
	Development of Model
	Material Balance
	Energy Balance
	Heat Exchanger


	Simulation Results and Discussion
	Simulation Results
	Comparison with Previous Work

	Conclusions
	1 Introduction
	2 Herding behavior of rhinos
	2.1 A synoptic model of space use
	2.2 Population size updating model

	3  Rhino herd (RH) algorithm
	3.1 Synoptic model
	3.2 Population size updating model
	3.3 RH algorithm

	4 Simulation results
	5 Discussions and conclusions
	Acknowledgements
	References

	Introduction
	Structure and Kinematics of the Double-Spiral Mobile Robot
	Structure
	Forward kinematics
	Gripper positions
	COG

	NESM
	Numerical Case Study
	Conditions and methods
	Results

	Discussion
	Conclusion
	Introduction
	Data analysis
	Nonlinear scaling
	Interactions
	Uncertainty
	Natural language

	Recursive analysis
	Scaling
	Interactions
	Fuzzy logic
	Smart adaptive systems

	Temporal analysis
	Trend indices
	Fluctuations
	Changes of operating conditions

	Conclusion
	Introduction
	MOEA/D
	Algorithm
	Focused Issue

	Proposed Method: Chain-Reaction Initial Solution Arrangement
	Aim and Concept
	Method

	Experimental Settings
	Results and Discussion
	Search Performance at Final Generation
	Search Performance over Generations

	Conclusions
	Introduction
	Modeling demand-side management
	Markets
	Actors
	Other elements

	Controlling consumption
	Optimizing scheduling
	Controlling (via) frequency

	Discussion and conclusions
	Introduction
	Components and Parameters of Musical Expression
	Learning Support System of Musical Representation
	Generation of Example of Musical Expression
	Construction of Kansei Space
	Image Estimation
	Parameter Values Estimation using Fuzzy Inference
	Interactive Modification of Musical Expression

	Comparison of Parameter of Musical Expression
	Advice for Parameter of Musical Expression

	Range of Learner's Musical Expression on Kansei Space
	Estimation of Range of Musical Expression
	Advice about Impression


	Experiment
	Results and Discussions

	Conclusion
	Introduction
	Formulating the GA Optimization
	The Problem Encoding
	The Objective Function (Fitness)
	Selecting The GA Operators
	Tuning the GA Parameters

	FPGA Implementation
	GA's HDL Entities
	Fitness
	Selection
	Crossover
	Mutation
	Generating Pseudo Random Sequences
	Replacement

	Performance Evaluation
	Functional Verification
	Fitness
	Selection
	Replacement
	Crossover
	Mutation
	LFSRs
	Comparator


	Integrating GA into the SoC
	Interfacing GA with the HPS
	Controlling GA from the Linux host

	Conclusion and Future Work
	Introduction
	Related Work
	Earthmoving Simulator
	Workspace Subdivision with Scoop Area
	High Point and Zero Contour Methods
	Simulation Results and Discussion
	Conclusion and Future Work
	Introduction
	SDNized Wireless LAN Testbed
	 Central Manager
	 Aggregator and Transport Network
	 Network Edge
	 Android Measurement Application
	Experiment Automation

	Mobility Management - A Use-Case Scenario Implementation
	Mobility Handling in Developed Testbed
	Logging 
	Running the Experiment
	Parsing and aggregating results


	Conclusion

