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Abstract
In this work the Fuzzy Clustering technique was used to
perform radio frequency signals prediction. This tech-
nique was used with georeferencing maps of topography
and morphology for prediction of radio frequency power
levels, at the region of Viçosa - MG. The performance of
this method was evaluated through tests of propagation
and mapping for a 879.660 MHz signal, used in cellu-
lar mobile telephony. This method of prediction showed
excellent results in comparison with measurements of RF
power levels with a success rate greater than the classical
models of Okumura-Hata and Walfisch-Ikegami. Conse-
quently, this method can be very useful to the telecommu-
nications companies when making the RF cellular cover-
age prediction.
Keywords: RF prediction, fuzzy clustering, mobile tele-
phony

1 Introduction
The electromagnetic wave propagation between transmit-
ter and receiver antennas has its characteristics fundamen-
tally defined by the transmission medium between them.
The radio signal has to propagate with low distortion and
the received power must be adequately above the noise
level in order to be correctly decoded.

To analyse Radio Frequency (RF) signals we must con-
sider the electromagnetic waves, but also the topography
and morphology of the terrain and, in some cases, the me-
teorological, ionospheric and spacial waves conditions. If
these RF waves propagate in free space conditions, with
no occurrence of reflection, diffraction, refraction, absorp-
tion attenuation, we would have ideal conditions to obtain
the signal prediction.

In fact, the parameters of the medium where the electro-
magnetic waves propagate are strongly dependent on the
specific propagation area, as forests, deserts, lakes, moun-
tains, buildings, cities, and they also frequently vary due
to atmospheric conditions, as temperature, pressure, hu-
midity and noise.

2 Classical RF Prediction
The power signal strength, for a specific frequency, can be
determined using (1):

Pr = Pt −Lp, (1)

where Pr is the received power signal [dBm], Pt is Effec-
tive Isotropic Radiated Power (EIRP) [dBm] and Lp com-
putes the total losses between the transmitter and receiver
[dB].

These power losses can vary significantly due to the
environments and atmospheric conditions previously de-
scribed. The most usual way to compute the diffrac-
tion power losses are the Fresnel-Kirchoff equations
and classical propagation models are also usually imple-
mented in RF software predictions, as: Okumura-Hata,
Walfisch-Ikegami Lee, COST 231 Hata, and COST 231
Walfish-Ikegami (Parsons, 2000; Hata, 1980; Walfisch and
Bertoni, 1988; Lee, 1980; Ikegami et al., 1984). The
Okumura-Hata model is applied to urban and suburbans
environments. The signal strength attenuation is obtained
by (2):

Lp = 69.55+26.16log fc−13.82loght −a(hr)

+(44.9−6.55loght)logd,
(2)

where Lp is the signal attenuation [dB], fc is the frequency
[150-1500 MHz], d is the distance between the base and
mobile stations [1-20 km], ht is the effective height of the
base station [30-200 m] and a(hr) is the correction factor
for mobile antenna height, as (3),

a(hr) = (1.1log fc0.7)hr(1.56log fc0.8), (3)

where hr is the effective height of the mobile station [1-10
m].

The Walfisch-Ikegami model is used to predict the re-
ceived signal in urban and dense urban environments. The
signal attenuation when in a line-of-sight (LOS) situation
is estimated by (4):

Lp(LOS) = 42.6+20log fc +26logd. (4)

When in a non-line-of-sight condition (NLOS), the at-
tenuation is predicted by (5):

Lp(NLOS) = 32.4+20log fc +20logd
+Ldi f f +Lmult ,

(5)
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where fc is the frequency [MHz], d is the distance [km],
Ldi f f accounts for the diffraction losses on rooftops and
Lmult accounts for the multiple diffraction in multiple
buildings (Ikegami et al., 1984; Walfisch and Bertoni,
1988).

The coefficients for the equations of these classical pre-
diction models are based in experimental data and statisti-
cal analysis. Some problems arises due the fact that there
are different propagation environments. The RF predic-
tion in the traditional way, are carried out by adjusting the
coefficients of the equations in order to adjust them to a
particular region, aiming to decrease the prediction errors.

3 Fuzzy Clustering Prediction
The classic prediction models uses restricted and empiri-
cal approaches of the RF propagation problem in certain
regions. As opposite, the Fuzzy Clustering (Besdek, 1981)
prediction method does not use empirical equations for
calculating the received RF power (Pereira, 2000).

Fuzzy technology has been used in various areas of
knowledge, such as control, decision making, pattern
recognition, prediction of time series and state estimation
and also in RF prediction (Phaiboon, 2010; Pelusi et al.,
2014, 2013; Pelusi, 2012). It circumvents the resolution
of complex differential equations with multiple variables
applying the fuzzy rules and the compositional inference.

To make RF predictions it was chosen the ViÃğosa/MG
region, which has an irregular topography and diverse
morphology, thus promoting the emergence of various
phenomena that influence the propagation of RF signals. It
was collected signal sample levels at a cellular frequency
of 879.660 MHz. Some of these samples were used for
training and others to test the success rate. In this work it
was used as input variables for the Fuzzy Clustering pro-
cessing (Besdek, 1981), some RF measured samples per-
formed in the field and georeferenced maps of topography
and morphology (Pereira, 2000).

The proposal of using the fuzzy method was to circum-
vent the difficult in the modeling process of the propaga-
tion physical problems, featuring an unknown RF propa-
gation environment from a group of known measurements,
providing continuous mapping of RF coverage throughout
a region. The method of RF signal strength prediction us-
ing Fuzzy Clustering and mapping is illustrated in Fig. 1
(Pereira, 2000).

Figure 1. Fuzzy Clustering RF prediction technique (Pereira,
2000).

The first step of the method consists in measuring the
RF signal. This was done through an automatic sampling
process for the RF levels in some points of interest in the
region under study. These measurements were performed

using an RF receiver coupled to a GPS within a moving
vehicle, thereby linking each measured RF signal level
with its longitude and latitude coordinates. The equipment
used was the HP E7474A equipped with the RF receiver
model E6452A controlled by the software Viper. This sys-
tem was developed by Agilent and adjusted to perform RF
power measurements by distance, every 10 meters of ve-
hicle movements.

In the second step it was carried out the pre-processing,
aiming the data standardization and formatting. Initially
it was calculated the distances, in relation to the transmit-
ting antenna, of the points at which the RF power mea-
surements were carried out.

For each point it was associated its information of the
altitude and the region type, extracted from georeferenced
maps of topography and morphology, as shown in Figs. 2
and 3. For each morphological type it was associated a
numeric value, as follows: Low vegetation (field) = 1, ru-
ral area (plantation) = 2, scarce buildings = 3, airport = 4,
forest (low vegetation bush) = 5, suburban area = 6, wa-
ter (fresh-water) = 7, urban area = 8 and forest (tree) = 9.
The altimetry and morphology databases were in the ter-
restrial ellipsoid model DATUM SAD69, cylindrical pro-
jection LAT/LON and had the planimetric resolution of 30
meters.

The use of databases with low planimetric resolution
may compromise the results of RF predictions. For the
RF signals predictions with higher frequencies, where the
wavelength is smaller, it will be required higher resolution
databases in order to better characterize the propagation
environment and thus preserve the RF quality prediction.

All these data form a numerical table, so that each mea-
surement point has now information on: longitude, lati-
tude, distance, altitude, region type and RF level. These
are the input variables for the Fuzzy Clustering process-
ing.

Figure 2. Georeferenced elevation contours map.

The variables previously obtained were used to train
the Fuzzy Clustering process (Besdek, 1981), illustrated
in Figs. 4 and 5, carried out in the two following distinct
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Figure 3. Georeferenced type region map.

steps.
In the first step, it was setted the number of fuzzy

rules and their properties using the Grouping Estima-
tion method that performs the following algorithm (Chiu,
1994; Yager and Filev, 1994):

1. A data vector with many neighboring data vectors
have a high potential value;

2. The vector data with the greatest potential was the
first assembly center;

3. An amount of potential from each data vector was
subtracted as a function of distance from the first as-
sembly center. The data vectors near from the first
assembly center will have very limited potential, and
therefore should not be selected as next assembly
center;

4. It was selected the data vector with the largest re-
maining potential, as a second assembly center;

5. The number of clusters centroids was determined by
(6):

P∗k < εP∗1 , (6)

where P∗k is the potential value of the k− th cluster center,
ε is a small decimal number between 0.15 and 0.50, and
P∗1 is the potential value of the first assembly center.

In the second step, it was performed an optimization
of the resulting rules. The Fuzzy Model Identification
method was used to convert the parameters optimization
of the resulting equations using a Linear Least Squares
Estimation, as follows:

1. x∗i are considered cluster centers, and will be the
fuzzy rules that describe the system behavior;

2. x∗i are decomposed in: y∗i (input variables) and z∗i
(output variables). Being y the input vector, the value
of relevance of the rule i is defined as (7):

µi = e−α‖y−y∗i ‖
2
, (7)

where α is a constant. The output vector, z is calculated
by (8):

z =
∑

c
i=1 µiz∗i

∑
c
i=1 µi

, (8)

z∗i is considered a linear function of the input variables, as
in the Takagi-Sugeno model (Sugeno, 1985):

z∗i = Giy+hi, (9)

where Gi is a constant matrix (m− n) · n, and hi is a con-
stant column vector with m− n elements. To convert the
parameter optimization problem of (9) in a Linear Least
Squares Estimation problem, it was defined:

ρi =
µi

∑
c
i=1 µ j

. (10)

Equation (8) can be rewritten as (11)

z =
c

∑
i=1

ρiz∗i =
c

∑
i=1

ρi(Giy+hi), (11)

or (12)

zT =
[
ρ1yT ρ1 ... ρcyT ρc

]


GT
1

hT
1
...

GT
c

hT
c

 , (12)

where zT and yT are line vectors. With a collections of n
input data points y1,y2, ...,yn the resultant output collec-
tion is (13):

zT
1
...

zT
n

=

[
ρ1,1yT

1 ρ1,1 ... ρc,1yT
1 ρc,1

ρ1,nyT
n ρ1,n ... ρc,nyT

n ρc,n

]


GT
1

hT
1
...

GT
c

hT
c ,

 (13)

where ρi, j denotes ρi valued in y j.
The first matrix on the right side of (13) is constant,

while the second contains all the parameters to be opti-
mized. To minimize the squared error between the output
model and the training data, it was applied to the prob-
lem the Linear Least Squares Estimation technique (Chiu,
1994).

In the Least Squares Estimation process, (13) was
placed in the form (14):

AX = B, (14)

where B is the output data matrix, A is a constant matrix
and X is the matrix of the parameters to be estimated.
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The pseudo-inverse solution that minimizes

‖AX−B‖2 (15)

is given by (16):

X = (AT A)−1AT B. (16)

The (AT A)−1 calculation is computationally time con-
suming when AT A is a large array. The size of AT A is
given by c(n+1) ·c(n+1). Numerical problems also arise
when AT A is almost singular. To solve these problems it
was used the Recursive Least Squares method and X is
obtained via the iterative formula (17) (Chiu, 1994):

Xi+1 = Xi +Si+1ai+1
(
bT

i+1−aT
i+1Xi

)
(17)

and (18)

Si+1 = Si−
Siai+1aT

i+1Si

1+aT
i+1ai+1

, (18)

where Xi is the X value estimated at i− th iteration, Si is
a covariance matrix c(N + 1) ·C(N + 1), aT

i is the i− th
row vector of A and bT

i is the i− th vector B. The Least
Squares Estimation of X matches the Xn value.

After the training was performed the Fuzzy Clustering
activation processing was activated with the Longitude,
Latitude, Distance, Altitude and Region Type data. The
training data are the blue crosses and the activation data
are the green crosses, as illustrated in Fig. 6. The activa-
tion grid was obtained from topography and morphology
georeferenced maps. The spacing between grid points is
the planimetric resolution of the maps. The results of this
step are the RF levels at each point of the grid, forming a
continuous mapping (Pereira, 2000).

Figure 4. Processing Fuzzy Diagrams Blocks.

In the last step it was carried out the integration of the
street map with the continuous mapping of RF levels. The
RF levels were related with colors. These colors were
superimposed on the streets in the region under study in
order to facilitate the RF level preview of the important

Figure 5. Verification Training.

Figure 6. Training and Activation Points.

points. As a result, it was obtained the RF coverage map
for the study area as in Fig. 7.

4 Analysis
The results of the RF Fuzzy Clustering Prediction method
were compared with the results of the conventional pre-
diction methods. To this end, it was used two measured
data sets that were not used in the fuzzy prediction pro-
cess. These two measured data sets were compared with
the data obtained from the predictions. The mean absolute
errors from the realized prediction methods can be seen in
Table 1.

In Table 1 it is presented the comparison between the
hit rate using the Fuzzy Clustering Prediction method and
empirical techniques. The Fuzzy Clustering Prediction
method was applied in three different scenarios: 3 (Longi-
tude, Latitude and Distance), 4 (Longitude, Latitude, Dis-
tance and Altitude) and 5 (Longitude, Latitude, Distance,
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Figure 7. RF prediction with the Street Map.

Altitude and Region Type) input variables. It is evident the
superiority of Fuzzy Clustering method in relation to the
Okumura-Hata and Walsfish Ikegami classical methods.

Table 1. Arithmetic mean of the absolute errors of predictions

RF Prediction
Method

Data Set 1
[dB]

Data Set 2
[dB]

Okumura-Hata 9.8596 18.0591
Walfisch-Ikegami 16.7718 10.8308
Fuzzy Clustering
3 input variables 5.9252 10.8028

Fuzzy Clustering
4 input variables 5.9537 9.5681

Fuzzy Clustering
5 input variables 5.9645 8.2682

5 Conclusions
The use of altimetry, morphology database and RF geo-
referenced sample levels can characterize the propagation
environment and in conjunction with the fuzzy logic pro-
cessing provides small errors in RF predictions.

This method of prediction showed excellent results in
comparison with the actual RF power levels, with a suc-
cess rate greater than some classical models as Okumura-
Hata and Walfisch-Ikegami.

Using the prediction method developed in this work it
was generated a continuous RF coverage mapping inte-
grated to the street layout of the study area, becoming an
application of fuzzy logic in the telecommunications area.

The method described in this paper can be used by wire-
less telecommunications companies to perform RF pre-
dictions quickly and accurately. It also includes carries
operating with different frequencies or other regions with
different characteristics.

The Fuzzy Clustering RF prediction process, described
in this work, together with high resolution databases may

assist in the deployment of future mobile telecommunica-
tions networks.
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