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Abstract

Accurate estimation of flow in drilling operations at inflow
and outflow positions can lead to increased safety, opti-
mized production and improved cost efficiency. In this pa-
per, Dynamic Artificial Neural Network (DANN) is used
to estimate the flow rate of non-Newtonian drilling fluids
in an open channel Venturi-rig that may be used for es-
timating outflow. Flow in the Venturi-rig is estimated us-
ing ultrasonic level measurements. Simulation study looks
into fully connected Recurrent Neural Network (RNN)
with three different learning algorithms: Back Propaga-
tion Through Time (BPTT), Real-Time Recurrent Learn-
ing (RTRL) and Extended Kalman Filter (EKF). The sim-
ulation results show that BPTT and EKF algorithms con-
verge very quickly as compared to RTRL. However, RTRL
gives more accurate results, is less complex and compu-
tationally fastest among these three algorithms. Hence,
in the experimental study RTRL is chosen as the learn-
ing algorithm for implementing Dynamic Artificial Neural
Network (DANN). DANN with RTRL learning algorithm
is compared with Support Vector Regression (SVR) and
static ANN models to assess their performance in estimat-
ing flow rates. The comparisons show that the proposed
DANN is the most accurate model among three models as
it uses previous inputs and outputs for the estimation of
current output.

Keywords: drilling operations, open channel venturi
flume, non-Newtonian fluid, flow rate estimation, ultra-
sonic level measurements, recurrent neural network, real-
time recurrent learning

1 Introduction

In drilling operations, the drilling mud is circulated in a
closed loop starting from the mud tank into the wellbore
and back to the mud tank. The mud can be water-based,
oil-based or gas-based and is circulated during the drilling
operation, until the desired depth is reached. During cir-
culation, the rheological properties of drilling mud have
significant importance for the safe and efficient drilling
operation. The viscosity, density, and flow rate of circu-
lating mud play a vital role, in all the drilling operations.
(Caenn et al., 2011)

In general, drilling muds are non-Newtonian in nature,
and the viscosity of the mud along with other rheologi-
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cal properties govern the transport of rock cuttings while
drilling. (Caenn et al., 2011)

The density or mud weight is mainly responsible for
maintaining the pressure in the wellbore. Depending on
the types of the drilling operation and the reservoir, the
wellbore pressure or bottom-hole pressure (P,) is limited
within the pressure window given by formation pressure
(Pr) and formation fracture pressure (Prr). If the well-
bore pressure is less than the formation pressure (P, < Py),
the formation gasses and fluids will flow into the drilling
mud, and is called kick. The occurrences of kick should
be detected as early as possible during drilling operations.
If the early kick detection is ignored or is not detected,
it can lead to problems in maintaining the density of the
mud and in the extreme case, it can result in blow-out of
hydrocarbons on the rig, e.g. the Deepwater Horizon ex-
plosion, (Hauge and @ien, 2012). In the case of (P, > Py),
the high pressure circulating fluids may enter the forma-
tion pores, causing fluid losses. If the wellbore pressure is
further increased, beyond the formation fracture pressure
(P, > Pyy), the circulation fluid can fracture the formation
and cause an increased fluid loss, often called lost circula-
tion. The fluid loss will decrease the volume of the mud
in the circulation loop and in the mud tank, and will affect
the production, (Caenn et al., 2011).

A similar situation occurs frequently in geothermal
drilling. In geothermal drilling, one of the costly prob-
lems is lost circulation. that occurs when drilling fluid
is lost to the formation rather than returning to the sur-
face, preferably intact. The management of lost circula-
tion is important and requires the accurate measurement
of drilling fluid flow rate both into and out of the well.

Reliable detection of unusual conditions can allow the
use of low weight mud, efficient drilling, less formation
damage, and lead to lower drilling costs. Delta flow
method, i.e. calculating the difference between flows at
inflow and outflow points of the circulation mud, is one
of the best methods to detect kick and fluid loss, which
uses the flow measurements before and after the wellbore,
(Maus et al., 1979; Speers et al., 1987; Orban et al., 1987,
1988; Schafer et al., 1991; Kamyab et al., 2010). The dif-
ference in outflow and inflow measurements can be used
as an indication of unusual conditions while drilling. If the
flow rate before wellbore is less than the flow rate in the
return line, then it can be considered as an indication of
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early kick detection. Whereas, if the inflow is greater than
the outflow, it is an early indication of fluid loss. In ad-
dition, the flow rate of circulating fluid will determine the
transportation of rock cuttings. The flow velocity of the
circulation mud is often maintained higher than the set-
tling velocity of the rock cuttings for efficient transporta-
tion of cuttings. In addition to the delta flow method, other
methods of early kick detection are discussed in (Kamyab
et al., 2010; Mills et al., 2012; Ali et al., 2013; Patel et al.,
2013; Vajargah et al., 2013).

In literature (Maus et al., 1979; Speers et al., 1987;
Orban et al., 1987, 1988; Schafer et al., 1991; Kamyab
et al., 2010), there are different systems for measuring
delta flow. For inflow measurement, conventional pump
stroke counter, rotatory pump speed counter, magnetic
flow meter, Doppler ultrasonic flow meter or Coriolis
mass flowmeter can be used. For outflow measurement,
magnetic flowmeter, Doppler ultrasonic-based flowmeter,
standard paddle meter, ultrasonic level meter, a prototype
rolling float meter or open channel Venturi flowmeter can
be used. The scenario of inflow and outflow measure-
ment is completely different. For example, the inflow
measurement can be carried out using Coriolis mass flow
meter, more accurate but an expensive flowmeter. How-
ever, Coriolis mass flow meter is not suitable for outflow
measurements as the returning mud contains solid rock
cuttings, other formation particles, formation fluids and
gases. An overview of different flowmeters based on re-
liability and accuracy is given in (Schafer et al., 1991).
Based on this analysis, magnetic flowmeter or Doppler ul-
trasonic flowmeter are suitable for inflow measurements
and prototype rolling float meters for outflow measure-
ment. (Speers et al., 1987) presents the implementation of
delta flow method by using magnetic flowmeters at inflow
and outflow locations. The magnetic flowmeter is limited
in applications to conductive fluids or to only water-based
muds. In addition, magnetic flowmeters need some addi-
tional U-tube design in the return section. For lower flow
velocity of circulating fluids, the rock cuttings will settle
at the bottom of this U-tube. These problems are avoided
in open channel return line, in which efficient rock cut-
ting transportation and their easier separation from mud,
(Orban et al., 1987, 1988).

This paper presents the outflow measurement based on
open channel flow with a Venturi section. In an open chan-
nel flow, the upstream pressure relative to a reference level
in the control section of the loop structure can be used to
estimate the flow rate, (White, 2002). The control section
used in the flow loop is the Venturi flume. The flow mea-
surement is based on an extension of the application of the
well-known Venturi principle, to flow of fluid in an open
channel, (Skorpik, 2013). The constriction in the Venturi
section results in the transition of flow from subcritical to
supercritical flow in the vicinity of the throat, (Frenzel,
2011). For sufficiently long throat, the critical condition
occurs in the throat, giving the critical depth, (Geratebau,
2013). The level of the fluid in upstream is measured as
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the critical depth is identified. The level can be measured
using ultrasonic or RADAR level sensors and flow rate can
be calculated as a function of measured level.

To study the possibility of using Venturi flume in esti-
mating flow rate, a flow loop (i.e. Venturi rig) is available
in University College of Southeast Norway (USN), Pors-
grunn, Norway. For this Venturi rig, the CFD simulation
study of open channel flow measurement is investigated in
(Berg et al., 2013). The numerical algorithm using Saint
Venant equation is presented in (Agu and Lie, 2014a,b).
However, the developed numerical model is not applica-
ble for real-time monitoring and controlling purpose due
to the high computational cost. The study presented in
(Chhantyal et al., 2016b) shows the successful implemen-
tation of static Artificial Neural Network (ANN) and Sup-
port Vector Regression (SVR) techniques for flow mea-
surement in the test loop. The present study is a continua-
tion, where, Dynamic Artificial Neural Networks (DANN)
are investigated and implemented in the software used in
running, monitoring and controlling the flow loop.

In the following sections, the simulation study of fully
connected Recurrent Neural Network (RNN) with three
different learning algorithms for estimating the flow rate
of the non-Newtonian liquids is presented. Finally, the
experimental results of flow rate estimation using RNN,
ANN and SVR are discussed.

2 Dynamic Artificial Neural Network

ANN can be of the static or dynamic type. Static ANN
or feedforward ANN type uses current inputs and current
outputs whereas, DANN uses current and previous inputs
and outputs for modeling purpose. Further, DANN can be
partially connected RNN or fully connected RNN based
on the feedback loops. Fully connected RNNs have self-
feedback loops, and partially connected RNNs does not
have self-feedback loops (Dijk, 1999). Some useful de-
tails of the MATLAB Toolbox DANN are given in the
companion paper in this volume (Chhantyal et al., 2016a).

The delta flow measurement discussed in Section 1 is a
dynamic problem, where the previous information about
the kick detection and fluid loss is important for the cur-
rent measurement. Therefore, fully connected RNN is
used for modeling, the estimation of the flow rate being
based on the level measurements in the open channel Ven-
turi flow loop. For the estimation of the flow rate, three
different learning algorithms are used. These algorithms
are presented here briefly.

2.1 Back Propagation Through Time (BPTT)

BPTT is an extension of gradient-based back propagation
algorithm that is used in static ANN. The idea in BPTT
is to unfold the RNN architecture into feedforward ANN
architecture in an arbitrary number of time steps or folds.
These folds make the error to propagate even further in
time, so it is called back propagation through time. How-
ever, the number of folds are usually low to avoid deep
network and this approach is called is often called trun-
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Figure 1. A general architecture for Back Propagation Through
Time (BPTT) learning algorithm with N number of neurons and
n numbers of foldings.

cated BPTT. In general, recurrent weights are simply du-
plicated over the folds while unfolding, (Boden, 2001).
The basic BPTT architecture is shown in Figure 1. The
computational complexity of BPTT is of order O(N?) and
the storage requirement is of order O(N?), where N being
number of neurons and n is the arbitrary number of folds.
The drawbacks of BPTT are; it is an offline learning algo-
rithm and requires large memory to store state information
at different folds (Williams, 1992).

2.2 Real Time Recurrent Learning (RTRL)

RTRL is one of the most used real-time learning algo-
rithms for RNN. In RTRL, the gradients at timet are com-
puted based on the gradients at previous time steps. The
gradient information is propagated in time (Mak et al.,
1999; Mandic and Chambers, 2000; Budik, 2006). The
basic RTRL architecture is shown in Figure 2. The con-
nections with blue color are the additional self-feedback
and feedback connections, which is not included in static
ANN. These additional connections make the network get
previous input values and output values and consider them
as additional internal inputs in the current time. By doing
this, a network can work dynamically. However, RTRL
algorithm suffers from slow convergence, which is typical
for all gradient-based algorithms. Mandic and Chambers,
(Mandic and Chambers, 2000) has presented an RTRL-
based learning algorithm with an adaptive learning rate
that can improve the convergence performance. RTRL
further suffers from the large computational complexity
of the order of O(N*) and even critically with a storage
requirement of the order of O(N 3), (Williams, 1992).

2.3 Extended Kalman Filter Learning (EKF)

EKF is a recursive algorithm that computes state estima-
tions based on the previous state information at the cur-

Qutput
Inputs

Figure 2. A general architecture for Recurrent Neural Network
(RNN) with self-feedback and feedback loops from neurons.
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rent time, (Kim, 2011). EKF can be used as a supervised
on-line learning algorithm to determine the weights of an
RNN. In EKF learning algorithm, the state vector consists
of weights and the locally induced outputs of each neu-
ron in the network. Regarding convergence to a solution,
EKF is very fast compared to BPTT and RTRL. The order
of computational complexity for EKF is same as RTRL,
O(N*), and the storage requirement increases to the or-
der of O(N*) for EKF. The RTRL algorithm is identical to
the simplified EKF algorithm, and the architecture is the
same, (Williams, 1992).

3 Experimental Set-up

To develop RNN models, model-drilling fluid is circulated
in the flow loop. The circulated fluid is visco-plastic in
nature with the fluid properties of density at 1136 kg/m3
and a viscosity ranging from 23 — 180 [centipoise] for the
500 — 1 [s~!] shear rate. Figure 3 shows the open chan-
nel section of flow rig with a Venturi constriction and
three ultrasonic level sensors. The mass flow measure-
ment is performed using Coriolis mass flow meter and
is considered as a reference for RNN models. Recent
study shows that the level measurements at the throat (LT-
18), the level of the downstream (LT-17) and the level of
the upstream (LT-15) are highly correlated to flow rate
(Chhantyal et al., 2016b). Therefore, these variables are
considered for modeling and are given in Table 1 and some
concurrent measurements from these three ultrasonic sen-
sors are shown in Figure 4, along with simultaneous mea-
surements of flow from a Coriolis meter.

For the mass flow rate range of 250-500 [kg/min], 1800
data samples for each variable are measured. The data
samples are normalized in the range of (0-1). Out of 1800
normalized data samples, 70%, 15% and 15% of data are
selected as training, validation, and test sets respectively.

4 Results

This paper presents results from both simulations based
on the three models and practical implementation of RNN
for flow rate measurement in an open channel flow loop.

4.1 Simulation Study

RNN is implemented using all the three learning algo-
rithms discussed in Section 2. Table 2 shows the optimal
parameters used in the simulations. These optimal param-
eters are determined using grid search method and the op-
timization is done using Mean Absolute Percentage Error
(MAPE). Apart from these parameters, number of neurons
selected is 7, learning rate is 0.1 and number of folds for
BPTTis 7.

Figure 5 shows the comparison of RNN with different
algorithms. As discussed in Section 2, EKF learning algo-
rithm can quickly converge to a solution. From Figure 5
showing the MSE, it can be seen that EKF converges well
before 20 epochs, BPTT converges around 100 epochs,
and RTRL takes around 300 epochs to converge. The con-
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Table 1. Input and output variables used for developing RNN models with the range and variable type.

Variables Range Units Type
Upstream level measurement 31.2-107.5 mm Input
Level measurement at the throat ~ 28.9 - 78.3 mm Input
Downstream level measurement  44.3 106.6 mm Input
Mass flow rate 250-500  kg/min Output

(a)

Ultrasonic Level sensors

—®

Cariolis meter

Mud Tank

(b)

Figure 3. a) An open channel with Venturi section and three
level sensors, LT-15, LT-17 and LT-18, with an arrow showing a
flow direction. (b) Extremely simplified P&ID for the Venturi-
rig flow loop with the measurands used in this study, viz. ultra-
sonic level sensors and FT-Coriolis mass flowmeter.

verging efficiency of these algorithms can be observed us-
ing the state parameters, which are weights of the neural
network. Figure 6 shows the states of some of the weights
while training a network. The state representation shows
that the states in EKF and BPTT algorithms go to steady
state very quickly. However, RTRL needs numerous train-
ing epochs for achieving steady states.

Figure 7 shows the estimations of different learning al-
gorithms with reference to flow measurements from Cori-
olis mass flowmeter. The simulation results show that all
the models using different learning algorithms are capable
of describing the dynamics of the reference flow measure-
ments well. RTRL has minimum MAPE out of the three
models used, as shown in Table 2.
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Figure 4. Input and output variables used for developing RNN
models. First plot shows three level measurements with LT-15,
LT-17 and LT-18. Second plot shows flowrate measurement us-
ing Coriolis mass flowmeter.

4.2 Experimental Study

The experimental study involves the implementation of
simulation study in the Venturi rig. Despite slow conver-
gence, RNN with RTRL learning algorithm is selected for
its accuracy, less complexity, and faster computation. The
algorithms for both BPTT and EKF have complex archi-
tectures and they are computationally demanding. This
makes RTRL a suitable choice for implementing in the
Venturi rig for the flow estimation. Figure 8 shows the
experimental results obtained using model-drilling fluid in
the test Venturi rig. The flow rate estimation using RNN is
compared with the estimation previously made using static
ANN and SVR. The comparison shows that RNN has bet-
ter performance than other empirical models. The MAPE
for RNN, ANN and SVR are 5.6%, 8.5%, and 7.7% re-
spectively.

For the future work, we will try to improve the sensor
measurements using suitable signal processing. As shown
in Figure 4, the output mass flowrate using Coriolis mass
flowmeter is less noisy as compared to the three input level
measurements. Since the model completely depends on
the data, we will work on online signal processing of level
sensor measurements to reduce the noise in the measure-
ments. In Figure 7 and Figure 8, we can see discontinuous
peaks in the predictions of all the empirical models. By
implementing these three models as an integral part of the
processing algorithms (signal and control), we believe that
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Table 2. Optimal parameters for different learning algorithms.

Learning algorithms  Epochs  Number of previous inputs ~ Number of previous outputs  Mape [%]
BPTT 200 1 3 2.97
RTRL 500 4 4 2.55
EKF 20 4 4 3.70
e MSE plot for EKF w MSE piot for BPTT Snwmwmmwmmmm
w w' w w' 500 J
= =
w 1w \\_ ] z 50l |
w? w3 --E..
L] 5 10 145 2 L] S 100 150 P ] o A - ~
Epocirs Epochs =
MSE piot for RTRL o
e : ‘ £ wl |
5
w w' e "y 1
E Reference
2 s BPTT
w Lﬁ 250 ——RTRL 1
EKF
1“:!0 50 L 150 1) 251 3 35 AlHk A5 B . (] L L L 1 1
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Figure 5. Mean Squared Error (MSE) plot for three different
learning algorithms in RNN. Simulation results.

State plot for EKF

State plot for BPTT

Walghte

Figure 6. Different weights of the network in a state plot illus-
trating the convergence of the learning algorithms. Simulation
results.

our model can be trained and operated with less noisy data
resulting in improved predictions.

5 Conclusions

One way of having safe and efficient drilling operation
is by continuously monitoring the properties of drilling
mud. Any unwanted change in fluid properties can lead
to two main problems; the influx of formation fluid and
circulation fluid loss. The delta flow measurement while
drilling is one of the best methods to detect the early
influx or early fluid loss. In this paper, we introduced
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Figure 7. Comparison of flow rate estimation of Recurrent Neu-
ral Network (RNN) with three different learning algorithms with
respect to Coriolis mass flow measurement as a reference mea-
surement. Simulation results.

of inmations with the

Reference
E|——RNN o T

Flowrate [kg/min]
EEE?_EEIEEE’

=
-
E

Figure 8. Comparison of flow rate estimations of a Dynamic
Artificial Neural Network with Real Time Recurrent Learning
algorithm (MAPE of 5.6%), a static Artificial Neural Network
model (MAPE of 8.5%) and a Support Vector Regression model
(MAPE of 7.7%) with respect to the Coriolis mass flow measure-
ment as a reference flow measurement. Based on experiments
using the Venturi-rig.

dynamic Artificial Neural Network to estimate the flow
rate of non-Newtonian drilling fluids in an open channel
venturi flume, which can be used for outflow measure-
ment while determining delta flow. With Recurrent Neu-
ral Network, we simulated three different learning algo-
rithms; Back Propagation Through Time, Real-Time Re-
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current Learning and Extended Kalman Filter algorithm.
The simulation results show that BPTT and EKF converge
very quickly as compared to RTRL algorithms. Whereas,
RTRL algorithm is more accurate, less complex and com-
putationally faster than other two algorithms. So, based on
this simulation analysis, RNN with RTRL algorithm is se-
lected for the practical implementation. In the Venturi rig,
RNN model with RTRL is implemented along with static
ANN and Support Vector Regression (SVR) models. The
experimental estimations of flow rates with respect to ref-
erence flow rate using Coriolis mass flowmeter show that
the estimates based on RNN model has higher accuracy
compared to ANN and SVR models. This improved per-
formnce is due to the fact that RNN contains previous in-
puts and outputs as additional inputs for the current time,
which are not considered in static ANN and SVR models.
This study shows that non-intrusive ultasonic level mea-
surements of the drilling fluid in an already existing open
Venturi channel is a possible alternative to expensive de-
vices such as Coriolis mass flowmeters to measure flow of
drilling fluid.
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Appendix

List of symbols and abbreviations

Symbol  Quantity

ANN Artificial Neural Network

BPTT  Back Propagation Through Time
CFD Computational Fluid Dynamics
DANN  Dynamic Artificial Neural Network
EKF Extended Kalman Filter

n Number of folds

LT Level Transmitter

MAPE Mean Absolute Percentage Error
MSE Mean Squared Error

N Number of neurons

(0] Order

b, Bottom hole pressure

Py Formation pressure

Pry Formation fracture pressure
RNN Recurrent Neural Network
RTRL  Real Time Recurrent Learning
SVR Support Vector Regression

Time
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