
Dynamic Artificial Neural Network (DANN) MATLAB Toolbox
for Time Series Analysis and Prediction

Khim Chhantyal Minh Hoang Håkon Viumdal Saba Mylvaganam

Faculty of Technology, Natural Sciences, and Maritime Sciences, University College of Southeast Norway,
{khim.chhantyal,hakon.viumdal,saba.mylvaganam}@usn.no, m.hoang1304@gmail.com

Abstract
MATLAB⃝R Neural Network (NN) Toolbox can han-
dle both static and dynamic neural networks. Using
MATLAB⃝R NN Toolbox with recurrent neural networks
is not straight forward. We present a Dynamic Artificial
Neural Network (DANN) MATLAB toolbox capable of
handling fully connected neural networks for time-series
analysis and predictions. Three different learning algo-
rithms are incorporated in the MATLAB DANN toolbox:
Back Propagation Through Time (BPTT) an offline learn-
ing algorithm and two online learning algorithms; Real
Time Recurrent Learning (RTRL) and Extended Kalman
Filter (EKF). In contrast to existing MATLAB⃝R NN Tool-
box, the presented MATLAB DANN toolbox has a possi-
bility to perform the optimal tuning of network parameters
using grid search method. Three different cases are used
for testing three different learning algorithms. The simula-
tion studies confirm that the developed MATLAB DANN
toolbox can be easily used in time-series prediction ap-
plications successfully. Some of the essential features of
the learning algorithms are seen in the graphical user in-
terfaces discussed in the paper. In addition, installation
guide for the MATLAB DANN toolbox is also given.
Keywords: dynamic artificial neural network (DANN),
back propagation through time (BPTT), real-time recur-
rent learning (RTRL), extended Kalman filter (EKF), time
series

1 Introduction
Artificial Neural Networks (ANN) are computational
models consisting of many neurons in different layers with
varying degrees of interconnections between them. The
interconnection have weights assigned to them so that the
ANNs can be tuned thus enabling them to learn and adapt.
Feedforward or feedback networks are two broad classi-
fications of ANNs. Feedforward ANNs use current in-
puts and current outputs, whereas, feedback ANNs use
current and previous inputs and outputs. Feedback ANN
performs time-series predictions and is a dynamic net-
work. This type of network constitutes recurrent neural
networks (RNN) either partially or fully connected de-
pending on the extent of the feedback loops available in
the network. Fully connected RNNs have interconnected
feedback loops including self-feedback loops, whereas

partially connected RNNs do not have self-feedback loops
(Veelenturf and Gerez, 1999; Beale et al., 1992).

In an existing MATLAB R⃝ Neural Network Toolbox,
there is a possibility to use feedforward ANN for static
estimations and partially connected RNN for time-series
predictions. This paper presents a MATLAB toolbox that
can perform the empirical modeling using fully connected
RNNs with three different learning algorithms. The fol-
lowing sections present the overview of the developed
toolbox and the usage of the toolbox in three different
practical applications.

2 Overview of Toolbox
The developed Dynamic Artificial Neural Network
(DANN) toolbox consists of three main user interfaces,
which are DANN Menu, Parameter Tuning, and Plot
Menu. Each window consists of different elements as
given below.

2.1 DANN Main
DANN Main is the main window of MATLAB DANN
toolbox as shown in Figure 1. In this window, the user
can upload the data set, divide data sets, select valida-
tion check, include bias, select learning algorithm, define
learning parameters, select the number of previous inputs
and outputs, and finally train the model.

2.1.1 Uploading data set

A user needs to upload his/her data set to train the model
using MATLAB DANN toolbox. The format of the data
set should be in ‘.mat’ and each column should represent
the variables in the model, where the last column is an
output variable.

2.1.2 Division of data set

The uploaded data set should be divided into a training
set, validation set, and testing set. A user can choose the
percentage of data for training, validation and testing. Ex-
perience shows that 70% for the training set, 15% for both
validation and testing works fine for any learning algo-
rithms.

2.1.3 Validation check

A validation check is an option that prevents the over-
fitting of the network. Over-fitting and under-fitting are
most common problems encountered while dealing with

EUROSIM 2016 & SIMS 2016

568DOI: 10.3384/ecp17142568 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Figure 1. DANN Menu of MATLAB DANN toolbox: data upload, data division, selecting learning algorithms, and tuning learning
parameters.

data models. Under-fitting can be improved by either tun-
ing the learning rate or increasing the number of neurons
in the network. The concept of over-fitting in MATLAB
DANN toolbox is similar to the concept used in NN Tool-
box in MATLAB R⃝ (Beale et al., 1992). The main idea is
to terminate the RNN before the network gets over-fitted.
For early stop, Mean Squared Error (MSE) for both train-
ing and validation is continuously monitored. While train-
ing a network, learning algorithm builds a certain hypo-
thetical model for the network at each epoch.

The validation data are validated using the hypothetical
model at that particular epoch. While learning, the value
of MSE of training and validation data keep on reducing
and the training of the network gets better with increasing
epoch. However, the validation error can increase though
the error for training decreases, which occurs in cases of
over-fitting. The deterioration in the validation error can
be attributed to the training process with random behav-
ior (Beale et al., 1992). Therefore, the MATLAB DANN
toolbox will count six consecutive increments in the vali-
dation error before it stops the learning algorithm.

When the model is over-fitted, the trained model seems
to have good performance with training data, but it can
have a large error while testing with the new data set
(Beale et al., 1992). In other words, the trained model
is not a generalized model when it is over-fitted. The im-
plementation of validation check is presented in Case II in
Section 3. In case, if the validation check is not selected,
validation data will be part of the training data set.

2.1.4 Bias
It is an offset value added to the output of the neurons. It is
often important to include bias in each neuron while con-
structing a neural network model. MATLAB DANN tool-
box facilitates a choice to include or exclude bias terms in
the network.

2.1.5 Learning algorithm
In this toolbox, there are three learning algorithms. The
user can select any one of these algorithms based on the
requirements regarding complexity, accuracy and applica-
tion.

Back Propagation Through Time (BPTT) BPTT is
an extension of gradient-based backpropagation algorithm
that is used in feedforward ANN. The idea in BPTT is to
unfold the RNN architecture into feedforward ANN ar-
chitecture using an arbitrary number of folds. The BPTT
architecture for the neural network with two neurons is
shown in Figure 2. The network with BPTT algorithm
is less complex compared to other learning algorithms.
However, the complexity and the memory requirement in-
crease when the number of folds increases. (Williams,
1992)

Real Time Recurrent Learning (RTRL) RTRL is one
of most accepted real-time learning algorithms for RNN.
In RTRL, the gradients at time ‘t’ are computed using
the propagation of gradients at previous time steps (Mak
et al., 1999; Mandic and Chambers, 2000; Budik, 2006).
The underlying RTRL architecture is shown in Figure 3,

EUROSIM 2016 & SIMS 2016

569DOI: 10.3384/ecp17142568 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Figure 2. Architecture for Back Propagation Through Time
(BPTT) learning algorithm with two neurons and n numbers of
folding. (Haykin, 2009)

where x, y, N and d are inputs, outputs, number of neurons
and unit time delay respectively. Based on the complexity,
RTRL is the simplest online learning algorithm. However,
the algorithm converges slowly and requires large memory
for storage. (Williams, 1992)

Figure 3. A general architecture for Real Time Recurrent Learn-
ing (RTRL) and Extended Kalman Filter (EKF) learning al-
gorithms showing self-feedback and feedback loops within the
neurons. Vectors x and y as input and output with d as the delay.

Extended Kalman Filter Learning (EKF) EKF can be
used as a supervised on-line learning algorithm to tune
the weights of RNN. In EKF, the state vector consists of
weights and the locally induced outputs of each neuron in
the network. Regarding convergence, EKF is the fastest
algorithm among the algorithms presented in the MAT-
LAB DANN toolbox. The order of computational com-
plexity for EKF is the same as for RTRL, and the storage
requirement is larger for EKF. The general architecture for
EKF learning is shown in Figure 3. (Williams, 1992)

The main problem using gradient-based learning algo-
rithms is vanishing gradient problem. As a solution to
this problem, the German researcher Sepp Hochreiter and
Juergen Schmidhuber introduced recurrent net with Long
Short-Term Memory (LSTM) units (Haykin, 2009). In re-
cent publications (Sak et al., 2014; Zen and Sak, 2015),
LSTM RNN architectures are implemented because of
their accuracy.

2.1.6 Learning parameters

The parameters of learning algorithms such as the number
of neurons, learning rate, the maximum number of epochs
and number of folds are discussed in this section.

Number of neurons The neurons and the connections
between the neurons are essential features of a neural net-
work. The number of neurons plays a vital role in the per-
formance of the neural network. Too few neurons may not
completely describe the dynamics of the system, and too
many neurons can increase the complexity of the network
(Haykin, 2009; Siddique and Adeli, 2013). Therefore, an
optimal selection of a number of a neuron is one of the
most important aspects of neural network modeling. In
MATLAB DANN toolbox, each neuron is associated with
the sigmoid function with the range [0, 1].

Learning rate The learning rate determines the rate of
learning of gradient-based learning algorithms like BPTT
and RTRL. The range of learning rate is [0, 1] and deter-
mines the converging efficiency while learning. The very
small value of learning rate will slow down the learning
algorithm and may require a large number of epochs to
converge to a solution. Whereas the high value of learning
rate can converge quickly, but it might have large varia-
tions and fluctuations in MSE of a training data. (Haykin,
2009; Siddique and Adeli, 2013)

Maximum number of epoch In MATLAB DANN tool-
box, there are two stopping criterions. One of them is val-
idation check, which is already discussed. Another way of
stopping the training is the maximum number of epochs.
A user can select a maximum number of epochs for the
training using DANN Menu.

Number of folds The number of folds is a parameter for
BPTT learning. The default selection is ‘3’, which is the
minimum possible value that can be selected for a given
number of folds.

2.1.7 Past inputs and outputs

In applications involving prediction of time-series, the
current output depends on the previous inputs and outputs.
MATLAB DANN toolbox allows a user to select a num-
ber of previous inputs and previous outputs as additional
inputs to find the output at the current time. By default,
if the values are selected as ‘0’ for both input and output,
MATLAB DANN toolbox will use one previous output
from each neuron.

2.1.8 Additional parameters

In EKF learning algorithm, a user must assign three more
parameters for learning, which are Sigma_U, Sigma_W,
and Sigma_O in MATLAB DANN toolbox. These param-
eters are tuning parameters for the output of each neuron
as a state, weights as a state and output of the network re-
spectively. These parameters are responsible for Kalman
gain calculation for the states (i.e. output of neuron and
weight) and determine the update of the output of each
neuron and the weight connections between the neurons
(Williams, 1992). As the simulation stops, the parame-
ters, weights and other information regarding the simula-
tion are saved in the workspace in MATLAB R⃝.

EUROSIM 2016 & SIMS 2016

570DOI: 10.3384/ecp17142568 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

2.2 Parameter Tuning
In any implementation of ANN, tuning of parameters is
one of the biggest challenges. The optimal selection of
network parameters can only lead to a good model. Con-
trary to existing MATLAB R⃝ Neural Network Toolbox,
MATLAB DANN toolbox has a facility to tune the pa-
rameters optimally. In DANN Main, if you click on Tun-
ing button, Parameter Tuning window will open as shown
in Figure 4. The optimal tuning is based on the grid search
method, and optimality is evaluated using Mean Absolute
Percentage Error (MAPE). In the left panel of the win-
dow, a user can assign lower limit, higher limit and an
increment to each parameter and start tuning. At the end
of the tuning, optimal values of the parameters are dis-
played in the right panel of the window with minimum
MAPE. Usually, parameter tuning takes a long time, so
MATLAB DANN toolbox provides an option to get noti-
fication alarm. It is to be noted that a user must upload
data, select learning algorithm, decide to or not to include
bias and validation check before starting the tuning pro-
cess. Thus, obtained optimal parameters can be used for
training the model.

Figure 4. Parameter Tuning window of MATLAB DANN tool-
box that allows a user to tune the optimal parameters based on
grid search method.

2.3 Plot Menu
Plot Menu window pops-up when the simulation is com-
pleted as shown in Figure 5. It consists of five differ-
ent types of plots, which are performance plot, regression
plot, prediction plot, parameter plot, and error plot.

2.3.1 Performance plot

It shows the MSE for training data set and validation error
for each epoch.

2.3.2 Regression plot

It compares the target output and model prediction in
terms of squared correlation coefficient such that ‘0’
meaning not related at all and ‘1’ meaning highly corre-
lated to each other.

2.3.3 Prediction plot

It shows the test data and model prediction with MAPE
between them.

Figure 5. Plot Menu of MATLAB DANN toolbox with different
plots for the analysis of the model.

2.3.4 Parameter plot

It shows the states of five different randomly chosen
weights at different epochs. The analysis using param-
eter plot is very efficient if you are working with some
system identification problems. In that case, one can vi-
sualize how the weights change with epochs. The steady
state values of the weights after some epochs are the model
parameters in typical system identification problems.

2.3.5 Error plot

It shows the error between the target value and the model
prediction for each test samples.

2.4 Additional information
The MATLAB DANN toolbox has additional help options
for the users. A user can get general information in Q&A
section inside the Help Window. With a right-click in
any parameter name, action buttons or selection options,
a prompt help window related to that expression will pop
up.

The MATLAB DANN toolbox in the current version
has the following limitations:

(a) The toolbox is not yet ready for linking to Simulink.

(b) The toolbox handles Multiple Input Single Output
(MISO) scenario and needs some modification to ad-
dress Multiple Input Multiple Output (MIMO) sce-
narios.

(c) The execution time needed for the current version
can be reduced.

2.5 Installing the MATLAB DANN toolbox
The first step in installing MATLAB DANN toolbox is
to download installation file. Double-click in the down-
loaded installation file will direct to the installation pro-
cess in the MATLAB R⃝. It is recommended to have a
MATLAB R⃝ version 2014 or later.

3 Case Studies
In this section, the usage of the MATLAB DANN tool-
box in three different practical applications is discussed.

EUROSIM 2016 & SIMS 2016

571DOI: 10.3384/ecp17142568 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

These three different cases use the data set from an exper-
imental flow rig, and example data sets from MATLAB R⃝

Neural Network Toolbox. To give a better understanding
in analyzing the simulation results, different sets of plots
are investigated under these cases.

3.1 Case I: BPTT learning algorithm for flow
measurement

In drilling operations, the flow rates of drilling mud at in-
flow and outflow positions can be used to detect kick and
fluid loss. An open channel flow loop is available at Uni-
versity College of Southeast Norway (USN) for the study
of outflow measurement. The data set with three level
measurements as inputs and a flow measurement as the
single output are taken from the flow loop for the analysis
of BPTT learning algorithm in MATLAB DANN toolbox.
Figure 6 and Figure 7 show the regression plot and pre-
diction plot for flow estimation using BPTT learning algo-
rithm in the toolbox. The simulation results show that the
BPTT learning algorithm provided by MATLAB DANN
toolbox is capable of mapping the inputs and outputs with
high accuracy.

Figure 6. The regression plot for flow measurement using BPTT
learning algorithm, with a correlation of 96% between the target
values and the model prediction values. Data set from an exper-
imental flow rig at USN.

3.2 Case II: EKF learning algorithm for tem-
perature measurement

To analyze the performance of EKF learning algorithm, an
example data set provided by MATLAB R⃝ Neural Network
Toolbox is used. The data set of a liquid-saturated steam
heat exchanger consists of time-series liquid flow rate and
liquid outlet temperature, used as input and output to the
ANN feedback network respectively. Figure 8 and Fig-
ure 9 show the performance plot and prediction plot for
fully connected RNN with EKF learning algorithm. The
learning algorithm has an early stop at 8 epochs due to
the validation check with MSE of 0.015. The low value
of MAPE in prediction plot shows that the EKF learning
algorithm with validation check is able to generalize the

Figure 7. The prediction plot for flow measurement using BPTT
learning algorithm with a MAPE of 3.1%. Data set from an
experimental flow rig at USN.

model and avoid over-fitting.

Figure 8. The performance plot for temperature measurement
using EKF learning algorithm. The best validation performance
is 0.015351 at epoch 8. Data set from MATLAB R⃝ Neural Net-
work Toolbox.

3.3 Case III: RTRL learning algorithm for
mortality prediction

Another example data set provided by MATLAB R⃝ Neural
Network Toolbox is used to investigate the performance
of RTRL learning algorithm. The data set is a Pollu-
tion mortality data set that consists of eight input vari-
ables (Temperature, Relative humidity, Carbon monoxide,
Sulfur dioxide, Nitrogen dioxide, Hydrocarbons, Ozone,
and Particulates) and total mortality as an output variable.
Figure 10 to Figure 13 shows the simulation results for
mortality prediction using RTRL learning algorithm using
MATLAB DANN toolbox.

The parameter plot as shown in Figure 10 shows the
states of randomly chosen weights of the network. As dis-
cussed in Section 2, it takes longer time for the weights to
converge to a steady state when using RTRL.

EUROSIM 2016 & SIMS 2016

572DOI: 10.3384/ecp17142568 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Figure 9. The prediction plot for temperature measurement us-
ing EKF learning algorithm with a MAPE of 0.9%. Data set
from MATLAB R⃝ Neural Network Toolbox.

The regression plot as in Figure 11 illustrates that the
predictions using RTRL are highly correlated with the tar-
get values with a correlation of 92%. The MAPE between
the predicted values and target values are 2.93% as shown
in Figure 12. The error in each sample is shown in the
error plot in Figure 13.

Figure 10. The state plot for mortality time-series prediction us-
ing RTRL learning algorithm. Data set from MATLAB R⃝ Neural
Network Toolbox.

4 Conclusions
The existing MATLAB⃝R Neural Network Toolbox has
a possibility to use both static and dynamic neural net-
works. However, it is not possible directly use the tool-
box to fully connected recurrent neural networks. For this
reason, this study presents the Dynamic Artificial Neu-
ral Network MATLAB toolbox that gives an opportunity
to use the fully connected neural network for time-series
predictions. The toolbox consists of three different learn-
ing algorithms, where Back Propagation Through Time
(BPTT) is an offline learning algorithm, Real Time Recur-
rent Learning (RTRL) and Extended Kalman Filter (EKF)

Figure 11. The regression plot for mortality time-series pre-
diction using RTRL learning algorithm with 92% correlation
between target values and model predictions. Data set from
MATLAB R⃝ Neural Network Toolbox.

Figure 12. The prediction plot for mortality time-series predic-
tion using RTRL learning algorithm with MAPE of 2.93%. Data
set from MATLAB R⃝ Neural Network Toolbox.

Figure 13. The error plot for mortality time-series prediction
using RTRL learning algorithm with 9 units as the highest error
in the test samples. Data set from MATLAB R⃝ Neural Network
Toolbox.

EUROSIM 2016 & SIMS 2016

573DOI: 10.3384/ecp17142568 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

learning algorithm are online learning algorithms. Main
details and guides for installing and using the developed
toolbox are presented in this paper.

To demonstrate the features of the MATLAB DANN
toolbox, three different practical problems are considered
using three different learning algorithms. The simulation
studies presented in this paper show that the developed
toolbox can be used in applications involving time-series
predictions. In addition, the developed toolbox has a ded-
icated option for the optimal tuning of parameters.

This Toolbox can be used in financial market trending
studies with some modification similar to (Pelusi et al.,
2014).

This work is meant for academic use with particular fo-
cus on the students using the existing MATLAB R⃝ Neural
Network Toolbox. In future, other different learning al-
gorithms can be included in the developed toolbox with
some programming efforts.

Acknowledgement
The Ministry of Education and Research of the Norwe-
gian Government is funding Khim Chhantyal’s PhD stud-
ies at University College of Southeast Norway (USN).
Minh Hoang was partly involved in the development of
this paper in conjunction with his master thesis at USN in
2016, (Hoang, 2016). The authors at USN appreciate the
collaboration with and support from STATOIL for the rig
used in the current studies for generation of time series of
flow rates. We appreciate the expert advice on drilling op-
erations by Dr. Geir Elseth of STATOIL. In addition, we
acknowledge the practical work done by various groups of
bachelor and master students of USN in conjunction with
this project. Part of the work done is associated with the
project SEMI-KIDD funded by the Research Council of
Norway.

References
Daniel Borisovich Budik. A Resource Efficient Localized

Recurrent Neural Network Architecture and Learning
Algorithm. Master Thesis, University of Tennessee,
2006.

Danilo P Mandic and Jonathon A Chambers. A
normalised real time recurrent learning algo-
rithm. Signal processing, 80(9):1909–1916, 2000.
doi:10.1016/S0165-1684(00)00101-8.

Danilo Pelusi, Massimo Tivegna, and Pierluigi Ippoliti.
Intelligent algorithms for trading the euro-dollar in the
foreign exchange market. In Mathematical and Sta-
tistical Methods for Actuarial Sciences and Finance,
pages 243–252. Springer, 2014. doi:10.1007/978-3-
319-02499-822.

Haşim Sak, Andrew Senior, and Françoise Beaufays.
Long short-term memory recurrent neural network ar-
chitectures for large scale acoustic modeling. In Fif-

teenth Annual Conference of the International Speech
Communication Association, 2014.

Heiga Zen and Hasim Sak. Undirectional long short-term
memory recurrent neural network with recurrent
output layer for low-latency speech synthesis. In
Acoustics, Speech and Signal Processing (ICASSP),
2015 IEEE International Conference on, pages 4470-
4474. IEEE, 2015. doi: 10.1109/
ICASSP.2015.7178816.

r LPJ Veelenturf and Ir SH Gerez. Analysis of recurrent
neural networks with application to speaker indepen-
dent phoneme recognition. 1999.

Man-Wai Mak, Kim-Wing Ku, and Yee-Ling Lu. On
the improvement of the real time recurrent learn-
ing algorithm for recurrent neural networks. Neuro-
computing, 24(1):13–36, 1999. doi: 10.1016/S0925-
2312(98)00089-7.

Mark Hudson Beale, Martin T Hagan, and Howard B De-
muth. Neural Network ToolboxT M User’s Guide. 1992.

Minh Hoang. Viscosity measurement of non-Newtonian
fluids. Master Thesis, University of South East Norway,
Norway, 2016.

Nazmul Siddique and Hojjat Adeli. Computational intel-
ligence: synergies of fuzzy logic, neural networks and
evolutionary computing. John Wiley & Sons, 2013.

Ronald J Williams. Some observations on the use of the
extended Kalman filter as a recurrent network learning
algorithm. College of Computer Science, Northeastern
University, 1992.

Simon Haykin. Neural networks and learning machines,
volume 3. Pearson Upper Saddle River, NJ, USA,
2009.

EUROSIM 2016 & SIMS 2016

574DOI: 10.3384/ecp17142568 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	Introduction
	Calculation formulas
	Calculation of Intra-Ocular Lens for Non-Normal Eyes

	Back ground of studies
	Artificial Neural Network
	Real data
	Collected Data
	Specification of Patients Data Selected for Collection
	Specification of Preprocessing Parameters

	Results
	Objective
	ANN training
	ANN settings
	Results

	Conclusion
	Future work
	Introduction
	Homeostasis, Disturbance Rejection and Set Point Tracking
	Controller Motifs

	Results
	Dynamic Properties of Controller Motifs
	Tuning of Individual Controllers

	Conclusions
	Introduction
	Modelling the pharmacokinetics of propofol
	The 3-compartmental model
	Effect-site concentration model
	Model parameters

	Model verification
	Simulation results
	Propofol inflow
	Plasmatic concentration
	Effect-site concentration
	Evaluation of the predictive quality of the model

	Conclusion
	Introduction
	Modular Model Predictive Control Concept
	Building Setup
	Modular Predictive Control Concept

	Energy Supply Level - ESS - Models
	Linear Models
	Hybrid Models

	Model Predictive Controllers
	Objective Function
	LMPC
	MI-MPC

	Simulation Results
	Simulation Setup
	Demonstration of MPCC Performance
	Comparison between MPCC and RBC

	Conclusion
	Introduction
	Data Properties
	Macro Money Systems in QEs
	Behavior in QE1=(2008m11,2010m06)
	Behavior in QE2+=(2010m11,2012m08)
	Behavior in QE3=(2012m09,2014m10)

	Transmission Path of Housing Price from Reserve to Economic Activity
	Decomposition of M2 into Transaction and Precautionary Money Demands in (1975m10, 2016m03)
	Estimation of Precautionary Money Demand
	The Role of Business Condition u(t)=napm-50 in Transmission Mechanism of QEMP during QE1, QE2+ and QE3

	Conclusion
	Introduction
	Mathematical Model
	Model Parameters and Geometry
	Results and Discussions
	Conclusions
	Introduction
	Field Excitation Control
	Capability Curve
	Classical Control

	Concept and Formulation of MPC
	MPC as Excitation Control
	Modeling and Control Workflow

	Tuning the MPC Controller
	Time Response
	Open Circuit Conditions

	First-swing Angle Stability Enhancement
	Long-term Voltage Stability Enhancement
	Steady-state Voltage Stability
	Power System Simulator
	LTVS Simulations

	Discussion
	Conclusion
	Introduction
	Grid impedance model
	Impedance-based instability studies
	Practical implementation
	Conclusion
	Aknowledgements
	Introduction
	Literature Review
	Circulating Fluidized Bed Boilers
	Characteristics of RDF
	Agglomeration

	Methodology
	Description of Model
	Mass and Energy Balances
	Hydrodynamics

	Results and Discussion
	Validation
	Agglomerate Prediction

	Conclusion
	Introduction
	Theory
	Stability of Grid-Connected System
	Maximum-Length Binary Sequence

	Implementation in dSPACE
	System Setup
	Experiment

	Conclusions
	Introduction
	Governing Equation for Flow Modeling
	KP Numerical Scheme
	Simulation of the River Flow
	Results and Discussion
	Simulation Results
	Simulation Results for Numerical Stability Analysis

	Conclusion
	Introduction
	Air preparation process
	Fuzzy identification
	Takagi-Sugeno fuzzy model
	Fuzzy clustering

	Data collection
	Structure selection
	Input and output variables
	Representation of the systems' dynamics
	Fuzzy models granularity

	Fuzzy clustering and model validation
	Comments on resulting model performance

	Control experiments
	PID control
	Supervisory logic

	Conclusions
	Introduction
	First step - DES model
	Second Step - Portfolio optimization

	Stochastic DES model through markovian properties
	Product-Form Networks - Convolution algorithm
	Marginal probability
	Mean response time

	Load-haulage cycle
	DES model: Load-haulage system
	Project portfolio formulation
	Conclusion
	Introduction
	Overview of the Method
	Computing the Encounter Probabilities
	Example

	State Transition Matrix
	Projectile with a Single Sensor Fuzed Submunition
	Example
	Projectile with Two Sensor Fuzed Submunitions

	Failure Probability of the System
	Conclusion
	Hydro-pneumatic Accumulator
	Recent Research
	Purpose of This Study

	Logical Structure of Simulation Model
	Physics of Piston Type Hydro-Pneumatic Accumulator
	Nitrogen gas
	Mechanical Structure
	Hydraulic Fluid

	Conceptual Model

	Mathematical Model
	Equations for Nitrogen Gas
	Equations for Piston
	Equations for Friction
	Equations for Hydraulic Fluid
	Equations for Orifice

	Modelling in MATLAB/Simulink
	Calibration and Validation of the Simulation Model
	Testing Setup
	Laboratory Tests
	Validation

	Conclusion
	Introduction
	Contributions
	Setup for the analysis
	Experimental data
	Compressor Map
	Compressor Isentropic Efficiency
	Corrected Mass Flow
	Data Treatment

	 Pressure Losses in Gas Stand
	Pressure Loss in Straight Pipe
	Friction Factor - Laminar Flow
	Friction Factor - Turbulent Flow
	Pressure Loss In Bend
	Pressure Loss in Inlet Nozzle and Outlet Diffuser
	Adjust Measured Data
	Calculate New Compressor Efficiency

	Effect of pressure losses on measured compressor efficiency
	Compressor and Pipes Dimensions
	Case 1: Straight Pipes
	Case 2: Pipes with Diffuser and Nozzle
	Case 3: Pipes with Diffuser, Nozzle and Bend

	Summary and Discussion
	Future Work
	Conclusion
	Introduction
	Traffic Regulation: Stage selection
	Signal Control Schemes
	Pre-timed network control
	Max-Pressure Practical (MPract)

	Modelling and Simulation Overview
	An event-driven approach
	PointQ design

	Case Study-Data description
	From theory to applications
	System Stability
	Trajectory Delay Measurement
	Queue Delay Measurement
	Varying Traffic Conditions

	 PointQ versus AIMSUN Network Performance
	Evolution of phase (137,154)
	Evolution of phase (254,237)

	Conclusion
	Introduction
	Background
	MVB and Master Transfer
	Multifunction Vehicle Bus
	Mastership Transfer

	Model Checking with temporal logic

	System Modelling
	Bus Administrator Modelling
	basic data structure
	finite state machine of Bus Administrator

	Communication and Timing Modelling
	communication mechanism of BusAdmin
	timing mechanism

	Property Modelling
	Property Classification
	safety property
	liveness property

	Live sequence charts
	Observer Automata modelling

	Experiments
	Conclusion
	Introduction
	Experimental data
	Modeling
	Compressor
	Turbine
	EGR Blowers
	Auxiliary Blower
	Exhaust Back Pressure
	Combustion Species and Thermodynamic Parameters

	Parameterization Procedure
	Complete stationary parameterization
	Dynamic estimation

	Model Validation
	Conclusions
	Nomenclature
	Introduction
	Fundamentals
	Safe Active Learning
	The high pressure fuel supply system

	Design and Implementation
	Training of the hyperparameters
	The discriminative model
	The risk function
	The path to the next sample
	The algorithm

	Evaluation
	Evaluation in simulation
	Evaluation at a test vehicle

	Conclusion
	Introduction
	Modelling
	Centre of Gravity
	Aerodynamic Forces
	Definition of Angles
	Lever Arms
	Catenary
	Equations of Motion
	Velocities
	Self Stabilisation
	Complete Model

	Model Parameters
	Simulation Results
	Gliding Flight
	Towing Process

	Conclusions
	Introduction
	Context
	Compton scattering tomography (CST)

	Modelling of the new CST modality
	Proposed setup by back-scattering
	Direct problem : Image formation
	The half-space Radon transform (HRT)
	Image formation

	Inverse problem : Object Reconstruction
	Inversion of the HRT
	Filtered back-projection

	Simulation of the new CST modality
	Energy resolution of the detector
	Spatial discretization
	Window functions

	Conclusion and perspectives
	Introduction
	Powertrain model
	Problem formulation
	Tip-in problem constraints
	Boundary conditions for the tip-in problem
	Path constraints during tip-in

	Optimal control problem formulation
	Numerical solution of optimal control problems

	Optimal control results
	Extreme transients
	Compromise between time, Jerk and energy
	Jerk-Energy trade-off
	Efficient state and control transients

	Conclusions
	An Improved Kriging Model Based on Differential Evolution
	1 Introduction
	2 Theory of kriging model
	3 Kriging model based on DE algorithm
	3.1 Theory of DE algorithm
	3.2 Kriging interpolation based on DE algorithm
	3.3 Process of kriging Model based on DE algorithm

	4 An engineering example
	4.1 Setting DE algorithm parameters
	4.2 Data preprocessing
	4.3 Model computation and optimization

	5 Conclusion
	Introduction
	Model for slug flow
	Simulation for slug flow
	State estimation
	Control strategies
	Model predictive control
	PI control

	Simulation results and discussion
	Control structure I
	Control structure II
	Control structure III

	Computational time for MPC
	Maximum valve opening
	Conclusion
	Introduction
	Description of the loading bridge
	Modelling with Modelica
	Package of mechanical components Mechanics
	Package of causal components Blocks
	Structure and components of the overall model
	Model of the loading bridge
	World
	Cart
	Pendulum
	Drive

	Controller in Matlab Simulink environment
	Experiments
	Open loop experiments
	Closed loop experiments

	Conclusion
	Introduction
	MMT - Mathematics, Modelling and Tools
	Structure of MMT
	Usage of MMT

	Maple T.A. - Maple Testing and Assessment
	Structure MTA
	Usage MTA
	Mathapps
	MTA - Moodle Connector

	Case Study
	Conclusion
	Outlook
	Introduction
	Signal processing
	DFT and derivatives
	lp-norms and MIT-indices
	Nadaraya-Watson nonparametric regression

	Measurements and gearbox properties
	Load haul dumper front axle
	Water power station gearboxes

	Calculations from the LHD measurements
	Calculations from the WPS measurements
	Conclusion
	Introduction
	Preliminaries
	Problem Statement
	Vector Smoothing Splines

	Trajectory Planning
	Trajectory between Two Lines
	Centerline and Intermediate Time Instants
	Smoothing Spline Trajectory

	Numerical Examples
	Path with Piecewise Linear Boundaries
	Path in Obstacle Avoidance Problem

	Concluding Remarks
	Introduction
	Literature Review
	Dynamic multi-workstation model based on electrical components

	Simulation Model with a PI Controller
	Test and Results
	Final Remarks
	Introduction
	Related Work
	Methodology
	DataSet

	Semantic Identification Through Multiple Classifiers
	Global Feature Extraction through Wavelet Decomposition
	Deep Learning of Neural Network

	Image Retrieval
	Performance Analysis
	Conclusion
	Motivation
	Related work
	Data set and pre-processing
	Defining the curvature of a steel plate
	Experiment
	Discussion
	Conclusion
	Introduction
	New Evolutionary Computation
	Island model parallel distributed in NN-DEGA
	Self-adaptive using Neural Network
	Reconstruction of differential vector
	Elite strategy

	Numerical Experiments
	Benchmark Functions
	Experiment Results
	Comparison for Robustness

	Conclusion
	Introduction
	Classical RF Prediction
	Fuzzy Clustering Prediction
	Analysis
	Conclusion
	Introduction
	Dynamic Artificial Neural Network
	Back Propagation Through Time (BPTT)
	Real Time Recurrent Learning (RTRL)
	Extended Kalman Filter Learning (EKF)

	Experimental Set-up
	Results
	Simulation Study
	Experimental Study

	Conclusion
	Introduction
	Overview of Toolbox
	DANN Main
	Uploading data set
	Division of data set
	Validation check
	Bias
	Learning algorithm
	Learning parameters
	Past inputs and outputs
	Additional parameters

	Parameter Tuning
	Plot Menu
	Performance plot
	Regression plot
	Prediction plot
	Parameter plot
	Error plot

	Additional information
	Installing the MATLAB DANN toolbox

	Case Studies
	Case I: BPTT learning algorithm for flow measurement
	Case II: EKF learning algorithm for temperature measurement
	Case III: RTRL learning algorithm for mortality prediction

	Conclusion
	Modeling and Simulation of Train Networks Using Max-Plus Algebra
	1. Introduction
	2. Max-plus algebra
	3. Scheduled max-plus linear systems
	4. Timetable stability
	4.1 Delay sensitivity analysis
	4.2 Dynamic Delay Propagation
	4.3 Recovery Matrix

	5. Conclusion
	Introduction
	Construction of DBN metamodels
	Utilization of DBN metamodels
	Example analysis - simulated operation of air base
	Conclusion
	Introduction
	Metastable liquids

	Model for two phase flow and phase transition
	The van der Waals equation of state

	Solver
	Stiff pressure relaxation
	Stiff thermodynamic relaxation

	Experiments
	Simulation set-up
	Results and discussion
	Conclusion
	Introduction
	ParModelica
	Previous Research on PDEs in Modelica
	Partial Differential Equations (PDE)
	Explicit Form

	Numerics
	Discretisation
	Runge-Kutta with Variable Step Length

	General-Purpose Computing on Graphics Processing Units (GPGPU)
	PDEs in Modelica
	Algorithmic Modelica and ParModelica
	Solver Framework
	User Defined State Derivative and Settings
	Types Used by the Solver
	Solvers

	Use Case — Heat in Plane
	Poor Insulation and Constant Temperature
	Constant Temperature Depending on Location

	Performance Measurement
	Pros & Cons of Solver Written in Modelica
	Conclusions
	Blood Flow in the Abdominal Aorta Post 'Chimney' Endovascular Aneurysm Repair
	1 Introduction
	2 Methodology
	2.1 Governing Equations
	2.2 Anatomical Model
	2.3 Numerical Model
	2.4 Numerical Discretization

	3 Results
	3.1 Validation
	3.2 Flow Patterns
	3.3 Flow Regime

	4 Discussion and Conclusions
	Introduction
	Spin-Image Algorithm
	The Proposed Parallel Spin-Images Algorithm
	Results and Analysis
	Platform Specification
	Experimental Data
	Results

	Conclusions and future work
	Introduction
	Overview of Python API
	Goal
	Installing the OMPython Extension
	Status
	Description of the API
	Python Class and Constructor
	Utility Routines, Converting Modelica FMU
	Getting and Setting Information
	Operating on Python Object: Simulation, Optimization
	Operating on Python Object: Linearization

	Use of API for Model Analysis
	Case Study: Simple Tank Filled with Liquid
	Model Summary
	Modelica Encoding of Model
	Use of Python API
	Basic Simulation of Model
	Parameter Sensitivity/Monte Carlo Simulation

	Discussion and Conclusions
	Introduction
	Related Work
	Virtual Testing of Open embedded Systems
	Simulator Coupling for Network Simulation
	Network Fault Injection Testing
	Case Study
	Conclusions and future work
	Validation Method for Hardware-in-the-Loop Simulation Models
	1 Introduction
	2 Validation Methods
	2.1 Open-Loop Operation
	2.2 Independent Closed-Loop Operation
	2.3 Compensated Closed-Loop Operation

	3 Related Work
	3.1 Example Circuit
	3.2 Simulation Models

	4 Simulation Results
	4.1 Models with Different Switching Delays
	4.2 Discrete-Time Models
	4.3 Fixed-Point Models

	5 Conclusion
	Introduction
	Control Engineering: The Teacher's Challenge
	New Curriculum For Teaching Automatic Control
	Luma Activity
	Conclusion
	Introduction
	The Activated Sludge Process
	Mass balances and expression for the sludge age
	The settler

	ASP with ideal settler model
	Steady-state solutions
	Substrate input-output relationship for constant sludge age

	ASP with DZC settler model
	Steady-state solutions
	Substrate input-output relation for constant sludge age

	An approximation for S* given 0
	Numerical example
	Theorem 1
	Theorem 2

	Conclusions
	Introduction
	Materials and Methods
	Gaussian Mixture Models
	GMM based fault detection criteria

	Case Study: Monitoring a Secondary Settler
	Results
	Discussions
	Conclusions
	Introduction
	Industrial Process Description
	SIAAP Waste water and sewage Sludge Treatment Process
	Incineration Process
	The Furnace
	The Heat Exchanger

	Identification Process Overview
	Sludge Incineration sub-models: Input-output interaction.
	Identification Strategy

	Validation Methods
	Absolute Criteria
	Relative reference-model criteria

	Results and Discussions
	Relative Reference-Model Criteria Results

	Conclusion
	1 Introduction
	2 Modelling
	2.1 Basic Process Components
	2.2 Boiler Evaporator Loop
	2.3 Test Model

	3 Simulation Tests
	3.1 Comparison of Numerical Solvers
	3.2 Effects of Initial State and Parameters

	4 Conclusions
	Introduction
	TCP-100 solar field description
	Mathematical modeling of TCP-100 solar field
	 Optical and geometric efficiencies
	Characteristics of the heat transfer fluid
	Thermal losses

	Simulations
	Conclusion
	Introduction
	Description of a Basic Gas Turbine Model
	Compressor
	Combustion Chamber
	Turbine Module

	Computational Causality And Conditions for Numerical Convergence
	First Principles Compression and Expansion Maps
	Compression Case
	Expansion Case

	Simulation Results
	Conclusion
	Appendix
	Introduction
	Modelling methodology, libraries and tools
	Plant Description
	Innovative aspects
	OTSG topology

	Device modelling
	Re-used components
	Custom component models
	Separator
	Feedwater heater
	Deaerator
	MS fluid model

	Plant modelling
	OTSG model
	Turbine model
	Feedwater preheaters train
	Plant control system
	Complete plant model

	Simulation objectives - methodology
	Simulation performance
	Conclusion
	Introduction
	Formal Problem Statement and SVM
	SVM by Set-Valued Training Data
	A Modification of the AdaBoost
	Imprecise Updating Weights of Robots
	Conclusion
	Introduction
	Methodology
	Power grid connection
	Electrolyser
	Interim gas storages
	Methanation
	MEA CO2 capture
	CH4 compression

	Control sequences
	CH4 compression
	Start-up
	Power grid connection
	Methanation reactor
	Electrolysers
	Interim gas storages
	CH4 compression

	Shutdown
	Methanation reactor
	CH4 compression
	Interim gas storages
	Electrolysers

	Results
	Conclusion and future work
	Acknowledgment
	Introduction
	Mathematical Model
	Assumptions
	Development of Model
	Material Balance
	Energy Balance
	Heat Exchanger

	Simulation Results and Discussion
	Simulation Results
	Comparison with Previous Work

	Conclusions
	1 Introduction
	2 Herding behavior of rhinos
	2.1 A synoptic model of space use
	2.2 Population size updating model

	3 Rhino herd (RH) algorithm
	3.1 Synoptic model
	3.2 Population size updating model
	3.3 RH algorithm

	4 Simulation results
	5 Discussions and conclusions
	Acknowledgements
	References

	Introduction
	Structure and Kinematics of the Double-Spiral Mobile Robot
	Structure
	Forward kinematics
	Gripper positions
	COG

	NESM
	Numerical Case Study
	Conditions and methods
	Results

	Discussion
	Conclusion
	Introduction
	Data analysis
	Nonlinear scaling
	Interactions
	Uncertainty
	Natural language

	Recursive analysis
	Scaling
	Interactions
	Fuzzy logic
	Smart adaptive systems

	Temporal analysis
	Trend indices
	Fluctuations
	Changes of operating conditions

	Conclusion
	Introduction
	MOEA/D
	Algorithm
	Focused Issue

	Proposed Method: Chain-Reaction Initial Solution Arrangement
	Aim and Concept
	Method

	Experimental Settings
	Results and Discussion
	Search Performance at Final Generation
	Search Performance over Generations

	Conclusions
	Introduction
	Modeling demand-side management
	Markets
	Actors
	Other elements

	Controlling consumption
	Optimizing scheduling
	Controlling (via) frequency

	Discussion and conclusions
	Introduction
	Components and Parameters of Musical Expression
	Learning Support System of Musical Representation
	Generation of Example of Musical Expression
	Construction of Kansei Space
	Image Estimation
	Parameter Values Estimation using Fuzzy Inference
	Interactive Modification of Musical Expression

	Comparison of Parameter of Musical Expression
	Advice for Parameter of Musical Expression

	Range of Learner's Musical Expression on Kansei Space
	Estimation of Range of Musical Expression
	Advice about Impression

	Experiment
	Results and Discussions

	Conclusion
	Introduction
	Formulating the GA Optimization
	The Problem Encoding
	The Objective Function (Fitness)
	Selecting The GA Operators
	Tuning the GA Parameters

	FPGA Implementation
	GA's HDL Entities
	Fitness
	Selection
	Crossover
	Mutation
	Generating Pseudo Random Sequences
	Replacement

	Performance Evaluation
	Functional Verification
	Fitness
	Selection
	Replacement
	Crossover
	Mutation
	LFSRs
	Comparator

	Integrating GA into the SoC
	Interfacing GA with the HPS
	Controlling GA from the Linux host

	Conclusion and Future Work
	Introduction
	Related Work
	Earthmoving Simulator
	Workspace Subdivision with Scoop Area
	High Point and Zero Contour Methods
	Simulation Results and Discussion
	Conclusion and Future Work
	Introduction
	SDNized Wireless LAN Testbed
	 Central Manager
	 Aggregator and Transport Network
	 Network Edge
	 Android Measurement Application
	Experiment Automation

	Mobility Management - A Use-Case Scenario Implementation
	Mobility Handling in Developed Testbed
	Logging
	Running the Experiment
	Parsing and aggregating results

	Conclusion

