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Abstract
The behaviour of a fluidized bed can be modeled based

on the Euler-Euler approach. This method has been fully

utilized in both three-dimensional (3D) and two-

dimensional (2D) systems for obtaining, for example,

the axial and radial distribution of fluidized bed

properties. However, the bed property such as void

fraction distribution along the flow direction can be of

great interest for a design purpose. To save

computational cost, an appropriate one-dimensional

(1D) model can be used to obtain the average bed

property along the vertical axis of a fluidized bed. In this

paper, a 1D model based on the Euler-Euler method is

presented. The results show that the model can be used

to describe the behaviour of a fluidized bed. With a

reasonable accuracy, the results also show that the 1D

model can predict the minimum fluidization velocity

and the superficial gas velocity at the onset of slugging

regime.

Keywords: Euler-Euler, bubbling, void fraction, flu-
idized bed, flow regime

 

1 Introduction 

The fluidized bed has wide industrial applications. Such 

applications include circulation of catalyst particles in a 

chemical reactor, pneumatic transport of particles and 

gasification of coal/biomass. In fluidized bed reactors, 

there is a good mixing of solids and fluid, and this 

enhances heat and mass transfer rates between the fluid 

and the particles. 

For the purpose of design and prediction of 

hydrodynamic behaviour of fluid-particle systems, 

several empirical and semi-empirical models have been 

developed. Moreover, the computational fluid dynamics 

has also been applied in such a multi-phase system. As 

in a single-phase system, the mass, momentum and 

energy transfers also govern the motions of fluid and 

particles in the bed. The interface momentum transfer 

between the phases influences the behaviour of the 

system. When a fluid flows through a bed of particles, 

the drag force acts continuously against the weight of 

the bed. At a certain fluid velocity, the bed begins to 

float in the fluid stream. This velocity is generalized as 

the minimum fluidization velocity. Previous studies 

have shown that at this fluid velocity, the interphase 

drag force corresponds to the net weight of the bed. This 

concept is used in deriving models for estimating the 

minimum fluidization velocity from the drag models 

(Kunnii and Levenspiel, 1991). Due to complexities 

arising from particle-particle interactions and particle-

wall interactions, it has been proven difficult to establish 

accurate fluid-particle interphase drag models to predict 

accurately the behaviour of fluidized beds. However, a 

number of drag models can be found in the literature 

(Taghipour et al, 2005; Beuzarti and Bournot, 2012; Li 

et al, 2009). 

Beyond the onset of bed fluidization, and with 

increasing superficial gas velocity, the agitation of 

particles in the bed increases. Different phase transitions 

can be observed when a bed is fluidized. As the fluid 

velocity increases, a fluidized bed passes through the 

bubbling regime, the turbulent regime, fast fluidization 

and the pneumatic conveying regime (Kunnii and 

Levenspiel, 1991). 

In this study, the focus is on modelling a bubbling 

fluidized bed. A number of models have been developed 

for such a regime. Davidson and Harrison (1965) 

developed a simple two-phase model based on a mass 

balance and experimental observations. The underlying 

assumption in this model is that two distinct phases, – 

bubble and emulsion exist throughout the bed. A more 

advanced model based on physics of mass, momentum 

and energy conservations have also been developed. 

Two widely used approaches to this model development 

are those based on the Euler-Euler and the Euler-

Lagrange methods (Crowe et al, 2012). Depending on 

the fluid-particle drag model and the numerical method 

employed, the two- and three-dimensional (2D and 3D) 

versions of these models have been proven successful in 

predicting the behaviour of fluid-particle multiphase 

systems. One major drawback is that the 2D and 3D 

models are highly computational time demanding. 

There is a limited number of studies based on a 1D 

model. Solsvik et al (2015) used a 1D model in a 

methane reforming studies, and Silva (2012) presented 

a non-conservative version of the model for simulating 
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the bubbling bed behaviour of a biomass gasification 

process. 

In this paper, the goal is to develop a detailed one-

dimensional model that predicts well the behaviour of a 

fluidized bed with less computational time. A 1D model 

based on the Euler-Euler approach is used to study the 

behaviour of glass bead particles in a bubbling bed. The 

simulated results are compared with experimental data 

obtained from a cold fluidized bed, and with the 

simulation results based on a three dimensional model. 

The simulated superficial gas velocity at the onset of 

slugging is compared with the result obtained from the 

correlation (Geldart, 1986). 

2 Computational Model 

2.1 Governing Equations 

The governing equations for the motions of fluid and 

particles in a fluidized bed are developed based on the 

Euler approach, and are given in (1) – (5). In the 

following, the subscripts “s” and “g" denote solid and 

gas. u and v are the respective gas and particle velocities,  

𝑔 is the acceleration due to gravity, β
d
 is the momentum 

transfer coefficient, and P, ε and ρ are the pressure, 

volume fraction and density, respectively. 𝑓 is the wall 

frictional factor. 

2.1.1 Continuity Equations 
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      Here, Dh = 4𝐴/Pwet is the bed hydraulic diameter, 

where 𝐴 is the bed cross-sectional area and Pwet is the 

wetted perimeter of the bed. μ
es

= 2𝜇 − λ is the phase 

equivalent dynamic viscosity. The solid pressure and 

solid stress due to collisions are based on the kinetic 

theory of granular flow. The constitutive equations of 

the model (1) – (5) are given in (6) - (10).  

2.1.3 Constitutive Equations 

 Gas phase (Gidaspow, 1994)             

              f
g
 = {

16Reg
-1  ;                  Reg≤2300 

0.0791Reg
-0.25 ;    Reg>2300

              (6)             

Reg = εgρ
g
uD/μ

g
 

 
 Solid phase (Gidaspow, 1994; Lathowers and 

Bellan, 2000) 
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    Here, θ is the granular temperature, g
0
 is the radial 

distribution function, e is the coefficient of restitution 

and dp is the single particle diameter. εmaxP is the solid 

fraction at maximum packing with a value of about 

0.7406. 𝜇 and λ  are shear and bulk viscosity, 

respectively. 

2.2 Drag Model 

There are number of drag models that can be found in 

literature. In this paper, the model proposed by 

Gidaspow (1994) is used. 

   β
d
 = {

β
dErg

 ;              εg≤0.8

β
dWY

 ;              εg>0.8 
                                          (11) 

 

Here, β
dErg

 and β
dErg

 are given by (12) and (13), 

respectively. 
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where 

 

Cd = {

24

Rep

(1 + 0.15Rep
0.687) ;          Rep<1000

0.44 ;                                        Rep≥1000
, 

Rep = 
εgρ

g
|u - v|

μ
g

dp. 

Cd is the drag coefficient and Rep is the particle 

Reynolds number. ∅s is the single particle sphericity. To 

avoid discontinuity in using the above drag model, a 

weighting function proposed by Lathowers and Bellan 

(2000) is used. 

 

                  β
d
 = (1 - ωd)β

dErg
 + ωdβ

dWY
                     (14)   

 

   ωd = 
1

π
tan-1 (150*1.75 (0.2 - (1 - εg)))  + 0.5         (15)   

2.3 Void Fraction Equation 

Another crucial issue is the prediction of void fraction 

εg along the bed. It is obvious that neither (1) nor (2) can 

predict the void if used alone. This is due to the 

dependency of void fraction on the relative velocity 

between the solid particles and the fluid. In the computer 

code MFIX, the solid volume fraction is obtained based 

on a guess-and-correction method (Syamlal, 1998). 

Effective application of this method requires a known 

function of solid pressure with the solid volume fraction. 

With the assumption that both solid particles and 

fluid have a constant density over the bed, the void 

fraction equation is established based on (1) and (2) 

(Gidaspow, 1994). However, due to changes of fluid 

pressure in the bed, there could be slight changes in the 

fluid density, which may influence the bed behaviour. In 

this paper, a new version of the void equation developed 

based on the continuity equations for gas and solid 

phases, is introduced. The new void equation, described 

below, partially accounts for the effect of fluid density 

variation. 

              αv

∂εg

∂t
 + vm

∂εg

∂z
 = εsεgρ

rg

∂vr

∂z
                          (16) 

 
Here, 𝑣𝑟 = 𝑣 − 𝑢 is the relative velocity between the 

solid particles and the fluid. vm and αv  are mixture mass 

velocity and relative volume fraction, respectively, and 

are expressed as 

 

                   αv = εgρ
rg

 + εs,                                       (17)                           

                   vm = εgρ
rg

v + εsu.                                   (18)  

 

 

 

 

 

 

 

                                  

 

where, ρ
rg

= ρ
g
/ρ

ref
 is the reduced gas density. The gas 

density is obtained, assuming the ideal gas behaviour, 

ρ
g

=
Pg

𝑅𝑇
. 

2.4 Minimum Fluidization Velocity 

The onset of fluidization occurs at a certain velocity 

where the net weight of the bed balances the drag force 

between the fluid and the bulk of particles in the bed. 

The minimum fluidization velocity, Umf can be obtained 

from 

               Umf = 
μ

g

ρ
g
dp

Rep.mf.                                      (19) 

 

The particle Reynolds number at minimum 

fluidization condition Rep.mf is based on the Ergun’s bed 

pressure drop model (Ergun, 1952), 

 

150
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εmf
3 ∅s

2 Rep.mf + 1.75
1

εmf
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Rep.mf
2  = Ar,                (20) 

 

where Ar is the Archimedes number, expressed as 

                     Ar = 
d𝑝

3
ρ

g
(ρ

s
 - ρ

g
)g

μ
g
2

.                                 (21) 

 

Here, εmf is the bed void fraction at the minimum 

fluidization condition. Umf and εmf are bed properties, 

and either of them must be known for the other to be 

calculated from (19) – (21). A number of empirical 

correlations for εmf are available (Kunnii and 

Levenspiel, 1991), but this paper uses the correlation 

proposed by Wen and Yu (1966). 

                          
1

∅sεmf
3 ≈14                                         (22) 

3 Experimental setup 

The experimental setup consists of a vertical cylindrical 

column of height 1.4 m and base diameter 0.084 m. The 

rig is fitted with ten pressure sensors, measuring the 

fluid pressure in the column up to the height of about 1.0 

m. Compressed air at ambient temperature is used as the 

fluidizing medium. The bottom of the column is fitted 

with a porous plate. The porous plate ensures even 

distribution of air within the bed. 

Thapa and Halvorsen (2013) conducted experiments 

with this cold fluidized bed rig using glass beads 

particles (particle size 350 µm) at a bed height of 0.32 

m (see Figure 1). The experimental data used in this 

paper are those reported in Thapa and Halvorsen (2013). 

EUROSIM 2016 & SIMS 2016

577DOI: 10.3384/ecp17142575       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



               

Figure 1. Physical Dimension of the fluidized bed 

column. 

4 Simulations 

The solution of the model described in Section 2 for the 

fluid-particle system is based on the finite volume 

method with staggered grids. The models are discretized 

in space using the first order upwind scheme, and in time 

based on the implicit method. The SIMPLE algorithm is 

used for the pressure-velocity coupling. The entire 

codes for the system are implemented and run in 

MATLAB. The properties of fluid and particles used in 

the computation are summarized in Table 1. 

4.1 Fluidized bed regimes 

In addition to simulating a bubbling fluidized bed, the 

transitions between different regimes for a fluidized bed 

are simulated using the 1D model. The flow transition 

from one regime to another depends on a number of 

factors. These include the bed particle size, the size 

distribution, the superficial gas velocity and the relative 

size between the bed height and the bed diameter. For a 

bed with Geldart B particles, the particle size and size 

distribution do not influence slugging in the bed 

(Baeyens and Geldart, 1974). As given in Yang (2003), 

slugging will occur if 
h0

𝐷ℎ
> 2. The minimum gas 

velocity for the onset of slugging can be obtained from 

(23) (Geldart, 1986) as used in Xie et al (2008). 

 

Ums = Umf + 0.0016(60Dt
0.175 -  hmf)

2
 + 0.07(gDt)

0.5
(23) 

    Here, all the length units are expressed in (cm), and 

hmf is the bed height at minimum fluidization condition. 

4.2 Initial and Boundary Conditions 

Initially, the fluid pressure distribution is assumed 

hydrostatic, and the fluid velocity is considered uniform 

throughout the column, as described in Table 2. The 

inlet fluid pressure is assumed fixed, and it corresponds 

to the total weight of particles in the bed.  Since the 

focus is on a bubbling bed, the outlet solid volume 

fraction is fixed to zero, while the fluid pressure at exit 

is taken to be atmospheric. The inlet boundary value for 

the solid volume fraction is dynamic, and then obtained 

appropriately from the void propagation equation. 

5 Results and Discussion 

Thapa and Halvorsen (2013) used the experimental rig 

described above to study the fluid-particle behaviour in 

a bed with particles having an average diameter of 350 

µm. The pressure drop values across the bed were 

recorded for different superficial gas velocities (0.05 – 

0.40 m/s). The minimum fluidization velocity obtained 

by plotting the pressure drops against the superficial gas 

velocity, is about 0.15 m/s. This result shows that the 

theoretical minimum fluidization velocity specified in 

Table 1 for the bed, is about 14% lower than the 

experimental value. 

Table 1. Parameters for model computations. 

Parameters Values Units 

Particle diameter, dp 350 µm 

Particle sphericity, ∅s 1.0 - 

Particle density, ρ
s
 2500 kg/m3 

Gas density, ρ
g
 1.186 kg/m3 

Gas viscosity, μ
g
 1.78x10-5 Pa.s 

Gas constant, R 0.287 kJ/(kg-

K) 

Gas temperature, T 25 0C 

Gas reference pressure, Pref 1.0 bar 

Initial bed height, h0 0.32 m 

Initial solid volume fraction, ε0 0.52 - 

Minimum fluidization velocity 

(19), Umf 

0.129 m/s 

Bed height at minimum 

fluidization,  hmf 

0.32 m 

Superficial gas velocity, U0 0.05 – 

0.40 

m/s 

Maximum solid volume 

fraction, εsmax 

0.63 - 

Restitution coefficient, e 0.90 - 

Simulation time step 0.001 s 

No of cells 125 - 

 

H = 1.4 m

h0 = 0.32 m

Air in

Air out

Dp = 0.084 m
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Table 2. Initial and boundary conditions. 

 

 

 

 

Initial 

Conditions 

0 ≤ z ≤ h0 

p
g
(0, z) = ε0ρ

s
g(h0 - z) 

εs(0, z) = ε0 

 

h0 < z ≤ H 

Pg(0, z) = 0 

𝜀𝑠(0, z) = 0 
 

0 ≤ z ≤ H 

u (0, z) = U0/εg 

v(0, z) = 0 

 

 

Inlet Boundary 
u(t, 0) = U0 

v(t, 0) = 0 

p
g
(t, 0) = ε0ρ

s
gh0 

 

 

Outlet 

Boundary 

p
g
(t, H) = 0 

εs(t, H) = 0 

 

 

Figure 2 compares the simulated fluid pressure with 

the experimental data. The simulated results are 

obtained from the 1D model presented here and a 3D 

model reported by Thapa and Halvorsen (2013). As can 

be seen, the simulated data agree well with the 

experimental results at a height of 0.13 m above the 

distributor. At this height, the predictions from the 1D-

model are better compared with the predictions from the 

3D models. At the height of 0.23 m, the 1D model 

results also agree very well with the results from the 3D 

model.  

 
Figure 2. Evolution of fluid pressure at superficial gas 

velocity 0.18 m/s. 

 

Figure 3 shows the time-averaged velocities of the 

fluid and particles for two different superficial gas 

velocities, 0.18 m/s and 0.32 m/s. From these results, it 

can be seen that the fluid velocity at the exit of the 

column is slightly higher than the velocities at the inlet. 

This variation in the fluid velocity along the bed axis is 

probably due to changes in the fluid density along the 

bed height. The figure also shows that fluid velocities 

within the bed are higher than the inlet velocities, which 

could be due to lower flow area available for the gas as 

particles occupy space within this region. The variation 

of particle velocity within the bed at different gas 

velocities conforms to the solid movement pattern 

described by Kunii and Levenspiel (1991). Figure 4 

gives the instantaneous solid volume fractions for the 

respective velocities after 5, 10 and 20 s. These results 

show that the movement of particles in the fluidized bed 

are more vigorous with higher superficial gas velocity.  

 
Figure 3. Time-averaged velocity profiles for fluid (upper 

plot) and particles (lower plot). 

 
Figure 4. Instantaneous profile of solid fraction with 

superficial velocities    0.18 m/s (upper plot) and 0.32 m/s 

(lower plot). 

 

The variation of average void fraction with 

superficial gas velocity within the dense region is shown 

in Figure 5. The average void fraction is obtained up to 

the height of 0.32 m above the distributor. The figure 

shows that the void fraction increases with increasing 

superficial gas velocity. It can also be seen that the bed 

transits into different regimes within different ranges of 
the superficial gas velocity.   
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Figure 5. Variation of average bed void fraction with 

superficial velocity. 

Four different flow regimes can be distinguished 

from Figure 5. Below 0.14 m/s, the bed’s void fraction 

is about 0.49. Within this region, the bed behaves like a 

fixed bed with all the particles retained within the dense 

bed. The abrupt increase in the void fraction after 0.14 

m/s indicates that the bed is fluidized. As expected for a 

Geldart B solid, the bed will begin to bubble when the 

velocity is above 0.14 m/s. Between 0.14 m/s and 0.22 

m/s, the void fraction increases linearly. Beyond 0.22 

m/s, it increases exponentially with an increase in the 

gas velocity up to 0.27 m/s. Within this velocity, the bed 

is more agitated with fast-rising bubbles. From (23), the 

minimum gas velocity for the onset of slugging is about 

0.26 m/s. Since 
ℎ0

𝐷ℎ
= 3.81 (> 2), there is possibility of 

slug flow in the bed when the superficial gas velocity is 

above 0.26 m/s. From Figure 5, it can be seen that the 

void fraction flattens out with a superficial gas velocity 

beyond 0.27 m/s. More so, the variation of void fraction 

above 0.27 m/s fluctuates as the gas velocity increases, 

which shows that the bed is slugging. Thus, the velocity 

0.27 m/s is the gas velocity at onset of slugging based 

on this simulation. The fluctuation of the bed void 

fraction as the velocity increases could be because in a 

slug flow the bed does not have a clear defined height 

over which the averaging is taken. In comparison, 

similar phase changes have been experimentally 

observed in Sundaresan (2003) with beds of fine 

particles that can readily agglomerate. With the 

simulated minimum fluidization velocity being 0.14 

m/s, compared with the experimental value of 0.15 m/s, 

and with the simulated gas velocity being 0.27 m/s 

compared with the theoretical value of 0.26 m/s at onset 

of slugging, it can be concluded that the 1D model 

predicts the bed flow behaviour reasonably well. 

Figure 6 shows the profiles of solid volume fraction 

at velocities 0.08, 0.20, 0.25 and 0.32 m/s, hence 

comparing the different flow regimes shown in Figure 

5. The result shows that within the bubbling regime, the 

bed height expands by about 0.04 m (representing 

12.5%) above the height at the minimum fluidization. 

The decrease in the solids fraction as the gas velocity 

increases is accompanied with a small fraction of 

particles in the freeboard. This keeps the mass of 

particles in the column balanced. In the solid region 

(fixed bed), the bed height is reduced below the settling 

bed height (about 0.32 m, accompanied with an increase 

in solid fraction), owing to the fact that the bed is closely 

packed towards the maximum packing solid fraction of 

about 0.63 used in the simulation. The figure shows that 

in the slugging regime, the bed expands unevenly with 

some particles flowing into the freeboard up to a height 

of 0.6 m. This shows that the bed height is not clearly 

defined within the slugging region, as can also be seen 

from Figure 7. 

 
Figure 6. Simulated profile of solid fraction at different 

bed flow regimes. 

    Figure 7 shows the profile of solid fraction for some 

velocities within the slugging regime. Within the height 

interval 0.2 – 0.4 m, the solid fractions at velocity 0.32 

m/s are lower than the corresponding solid fractions at 

velocity 0.36 m/s. This explains why the void fraction 

fluctuates with increasing superficial gas velocity within 

the slugging regime as given in Figure 5. Figure 7 also 

shows that the average solids volume fraction for the 

same range of velocities within the slugging regime is 

almost the same. 

   
Figure 7. Simulated profile of solid fraction at different 

velocities within slugging regime. 
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6 Conclusions

This paper presents a detailed one-dimensional model

based on the Euler-Euler approach for predicting

hydrodynamics of a bubbling fluidized bed. The

solution algorithm includes a void propagation equation

that accounts for the effect of fluid density variations.

The method developed here is computational efficient,

taking only 10 minutes computer time for simulation of

a 20 s flow in the bed, against several hours required in

a 3D model computation.

    Qualitatively, the results show that the 1D model

predicts the different regimes of a fluidized bed. The

simulated minimum fluidization velocity agrees well

with the experimental data, and the value of gas velocity

at the onset of slugging compares well with the value

obtained from the empirical expression proposed by

Geldart (1986).

    Further work will include full validation of the 1D

model against a 3D model results and analysis of

sensitivity of the model to different parameters.
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