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Abstract
In this study a new concept of functional modelling and

simulation is introduced. First, the necessity and the

expected outcomes of the new concept are explained.

Secondly, the methodology of functional modelling

based on a modular concept and the basic elements are

presented, with details of OFS (Organico Functional

Set). Then, the implementation of the new modelling

concept using Sherpa Engineering’s PhiSim

environment is described in order to perform

simulations. Finally, the proposed modelling method is

applied to two different applications: a generic parallel

hybrid electric vehicle (HEV) and a waste water

treatment unit of a building. Simulation results of

parallel HEV application are also presented.

Keywords:     electric vehicles, functional modelling,

functional model simulation, hybrid vehicles, waste

water treatment unit

1 Introduction

The economic and ecological context drives industries

and academic research to investigate how systems can

be optimally designed with respect to their local and

global energy efficiency (Arnal et al., 2011; Mouhib et

al., 2009; Sherpa Engineering, 2016; Wirasingha et al.,

2011). Due to the quick progress and the variety of

energy technologies and energy management strategies,

being able to numerically simulate a solution has

become a crucial aspect of the system design process

(Haveman et al., 2015). Usually, this step requires a

model of the system and a simulation environment. So

far, the Bond Graph theory introduced by Karnopp and

Rosenberg has been widely promoted in industrial and

academic communities to model multi-physic systems

(Karnopp et al.,1983).

Basically, this approach is based on effort and flow

interactions and uses phenomenological analogies to

represent any nature of systems (i.e. mechanics,

electrics, etc.). The obtained model can subsequently be

used for system analysis and design of optimal control
laws (Bideaux et al., 2006; Otter et al., 1996). This

philosophy forms the base of several commercial multi-

physics modelling tools as AmeSim, Dymola or PhiSim

(Marquis-Favre et al., 2006; Pénalva et al., 1994; 

Sciarretta et al., 2007). However, these tools allow only 

constructional design, i.e. the representation of the 

organic level of a system. 

In his studies, (Von Bertalanffy, 1968) remarked that 

some systems, referred as complex systems, contain 

many interactions with themselves and their 

environment that should be designed with a unique level 

of abstraction (Eriksson, 1997; Le Moigne, 1994). In 

addition to constructional design, the use of functional 

approach in system modelling has been largely 

supported by most of complex systems specialists (Le 

Moigne’s modelling theory (Eriksson, 1997; Le 

Moigne, 1994), Sagace methodology (Sciarretta et al., 

2007) and axiomatic design (Suh, 1998)). This approach 

defines a higher abstraction level than for constructional 

design (see Figure 1) and does not need the organic 

elements definition. The system is modelled through 

functionalities which are interacting in order to achieve 

a certain purpose referred as system mission. Therefore, 

it can be used in early stage development to simulate the 

system architecture. However, the framework to be used 

(i.e. equations, variables flows) is currently an open 

problem, especially for energetic systems. 

 

Figure 1. Functional and constructional (organic) 

modelling. 
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The difficulties encountered in these multiple level 

models are mainly the following: how to define the 

model and its parameters when the equipment does not 

yet exist, and how to avoid the adjustment of the entire 

energy supervision system (responsible for an optimal 

energy flow) at each modification of the architecture. 

These difficulties increase the time required to model 

and analyse the simulation results leading either to a 

reduced number of potential solutions or to a laborious 

design process. Confronted by these challenges, it has 

become essential to develop a new tool-based 

methodology, also based on modelling, that uses the 

necessary level of abstraction by integrating modular 

functional models and optimization algorithms. 

A first step towards the formulation of a functional 

design language for energetic systems has been made 

with PhiGraph introduced in (Brunet et al.,2005). 

However, interactions consist of effort and flow 

exchanges, as in Bond Graph theory, and belong to the 

organic level of a system. Therefore, PhiGraph cannot 

be related to a full functional language. This is why a 

new concept of functional modelling language and 

method is proposed. 

The expected outcomes of the proposed functional 

modelling method are: 

• Fast simulation and evaluation of the system 

concept before choosing the technology; 

• Simulation of the system as a whole: physics and 

control; 

• Obtaining a supervisor for the organic simulation 

model; 

• Make connections between modelling and 

simulation in multi-physic systems. 

 

In our previous work (Fauvel, 2015), two functional 

elements were introduced: a consumer and a source, 

which are exchanging needs and availability 

information. This has led to a fully functional 

framework which was initially applied to formulate an 

energy management problem (Fauvel et al., 2014). This 

paper extends the concept of consumers and sources 
ports to a complete simulation language for energetic 

systems by considering five functional elements 

described in Section 2. Its potential is highlighted by 

modelling and simulating two classic applications in 

Section 3. Conclusion and perspectives of this work are 

given in Section 4. 

2 Functional Modelling Methodology 

The base concept of the proposed functional modelling 

method is to provide a functional link between two 

systems, which can be described as an exchange in terms 

of energy (mechanical, electrical, hydraulic, thermal, 

etc.), matter (fluid, solid, etc.) and information (set 
point, measurement, etc.). In the early steps of system 

design, this exchange and its nature have to be defined 

for two sub-systems or for a system and its environment. 

In constructional or organic level of modelling like 

Bond Graph or PhiGraph, inputs and outputs of the 

components depend on flow/effort of physical domain. 

Unlike the organic level, the functional level uses three 

types of flow: energy, matter and information, each of 

them being decomposed in a triadic basis. In Table 1, 

the transformation natures of functional level are 

presented. 

Table 1. Transformation Natures of Functional 

Modelling. 

T 
Time 

Transformation 
Storage, Accumulation 

S 

Space 

Transformation 

Transport, Transmission, 

Distribution, Injection, 

Extraction 

F 

Form 

Transformation 

Transformation, Conversion, 

Production, Destruction, 

Consumption 

2.1 Modular Concept 

In a controlled complex system, the exchange between 

different functions is governed by a certain need. For 

example, in order to drive at a given speed, the vehicle 

motion functionality (Mobility) needs power flux. If the 

need is not expressed, there is no reason to supply power 

to Mobility. In the proposed methodology, the need has 

dominant causality with respect to the energy/matter 

supply. On this basis, the functional modelling method 

is developed from the following question: Who 

transmits a need, and to whom? 
This methodology introduces two types of ports: 

source port, which supplies an energy/matter flux as an 

answer to an expressed need, and consumer port, which 

receives energy/matter flux also as an answer to a 

specified need. In Figure 2 the source and consumer 

ports between two systems are introduced. In order to 

highlight the dominance of a causality requirement, 

Figure 2 illustrates the functional link with a single 

arrow, which expresses the necessity of causality. The 

arrow direction indicates where the need is transmitted, 

regardless its value (positive/negative) or the direction 

of supply. Furthermore, at this level of abstraction, it is 

not necessary to specify the physical domain associated 

with the need, but it can be done for information. 

 

Figure 2. Consumer and source ports. 
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Figure 3 presents the functional links for a system with 

three sources and their associated source and consumer 

ports. The energy distribution in the system is made by 

distribution elements, represented by grey bars, and that 

will be introduced in Section 2.2.4. 

 

Figure 3. A system example with multiple source and 

consumer ports. 

In the proposed concept, all elements use simple 

equations from these transformation natures. Some 

examples of equations can be introduced as: energy (1) 

and dynamics (2) of time transformation nature, 

efficiency (3) of form transformation nature and power 

balance (4) of space transformation nature: 

𝐸 = ∫𝑃 (1) 

𝑌(𝑠) = 𝐻(𝑠)𝑈(𝑠) (2) 

𝜌 = 𝜌(𝜇, … ) (3) 

∑𝑃𝑡 (4) 

Equations are used to define internal properties of 

different elements: the integral of power is used for 

storage elements, transfer functions for effector 

elements, efficiency for transformation elements and 

power balance equation for distribution elements. 

2.2 Adequate Language in Modelling Level 

In this section, basic elements of functional modelling 

are described. These elements are: source, storage, 

transformation, distribution and effector, classified as in 

Table 2. Generally, all functional elements are based on 

two blocks: control system block (upper block) and 

operating system block (lower block), usually 

represented respectively in green and blue colors as 

shown in Figure 4(a). 

 

Figure 4. Representations of (a) generic and (b) source 

elements. 

A generic element is a black box that has its own control 

and operating systems. The control system manages the 

operation according to the demands, actions and 

constraints. On the other hand, the operating system 

represents the physical behaviour of the function. 

Table 2. Element Types of Functional Energetic 

Modelling. 

Source Storage Transformation Distribution Effector 
Energy 

& 

Matter 

Source 

Energy 

& 

Matter 

Storage 

Energy & Matter 

Transformation 

in Different 

Domains 

Energy & 

Matter 

Distribution 

Represents 

Energetics 

Services 

2.2.1 Source 

The source (e.g. fuel station, electrical grid) represents 

the supply of energy/matter to meet the consumer needs. 

Within the physical limits of the source, the control 

system is intended to compute the provided power Pcons 

in response to the received need Ncons, illustrated in 

Figure 4(b). If losses are considered, the source also 

contains Ploss port. 

As a consequence of many possible sources, the 

operating system behaviour is not generic. In the 

simplest case, the source is infinite like an electrical 

grid, where the only feature that defines the maximum 

power is the received or the supplied power. In a more 

specific case, such as a brake system, which can be 

represented by a negative power source, the maximum 

power that can be dissipated depends on its organic 

characteristics (maximum torque etc.). 

2.2.2 Storage 

A storage (e.g. battery, fuel tank) represents a given 

energy/matter storage which engages availability for an 

answer (Pcons) to a need of consumption (Ncons) and for 

its own need (Ncharge) to charge (Pcharge), to keep its state 

of charge (SOC) at an adequate level. If necessary, the 

settings of this block can be customized for a particular 

type of storage. For example, the maximum energy that 

can be stored in a fuel tank is linked to its volume, which 

does not exist for a battery. 

In Figure 5(a), the representation of the storage 

elements is given, which has a simple operating system 

behavior. The stored energy/matter level is achieved by 

integrating the balance of incoming-outgoing powers, 

while considering the capacity limitations of the storage 
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(the maximum power that can be received or supplied). 

Exceeding these limitations may result in losses (Ploss). 

The equation adopted to represent the behavior of the 

operating system is quasi-generic. 

 

Figure 5. Representations of (a) storage and (b) 

transformation elements. 

2.2.3 Transformation 

The transformation element (e.g. electric machine, 

internal combustion engine (ICE), converter) offers 

need and power transfer between two functional 

elements. It takes given efficiency into consideration 

and it also allows domain change (e.g. fuel to 

mechanical). Figure 5(b) illustrates the representation of 

the transformation element.  

The control system of transformation converts the 

received need (N2) into need delivered (N1) with a 

specified efficiency. Transmitted power (P2) is derived 

from the received power (P1) regarding any limitations. 

The difference between P1 and P2 ports defines the 

power losses. The transformation element is also 

characterized by a quasi-generic equation. 

2.2.4 Distribution 

The distribution element of functional modelling can be 

seen as a connector of multiple sources and consumers. 

This element has two main tasks: distribution of 

consumer needs (Nk, Nl, Nm) to sources (Ni, Nj) and 

distribution of supplied power/matter (Pi, Pj) to 

consumers (Pk, Pl, Pm). Distributions are allowed by 

taking into account the constraints specific to each 

source and consumer. The representation of distribution 

is given in Figure 6(a). Distributions respect the balance 

equation of energy/matter, based on the principle that 

there are no losses or storage in normal operation. 

Moreover, they connect the ports of same nature. 

The distribution control system is more complex 

because of management of multi-sources/multi-

consumers. The designer’s task is to choose the most 

appropriate algorithm that will assure optimal power 

distribution with respect to system requirements and 

physical limits. The distribution constraints are related 

to the source availability, the consumer priorities and the 

evolving distribution method. 

2.2.5 Effector 

The effector element is associated with the achievement 

of an objective. In order to achieve its objective, the 

effector transmits a power need (Ncons). Accordingly, it 

receives power (Pcons) to execute its function. Figure 

6(b) indicates the need generation and the power 

reception. 

The effector is the heart of the functional modelling 

architecture since it generates the need. Without effector 

there is no need, therefore no functional architecture 

design can be made. The control system is intended to 

compute the power need to achieve the objective. 

Furthermore, the operating system is not generic 

because of the great variety of its objective and 

execution (i.e. for thermal comfort, temperature value 

can be obtained from heat equation). 

 

Figure 6. Representations of (a) distribution and (b) 

effector elements. 

2.3 Details of Functional Energetic 

Modelling Method 

OFS is a generic element (Figure 7(a)) that can be used 

to represent all five elements introduced in the previous 

section. For example, a vehicle can be represented as 

two interconnected OFS, one to represent fuel source 

and a second model for mobility effector (Figure 7(b)). 

Generally, the input arrow is connected to a source 

port of OFS and the output arrow is connected to a 

consumer port of OFS. If wanted, arrow colours could 

be used as domain instructors as red for electric, green 

for mechanic and blue for hydraulic. At the top of the 

element, the green box offers an information link 

between the OFS and the supervisor, which is a global 

controller of the system. Finally, the ground symbol 

placed at the bottom of the representation corresponds 

to losses that will not be recycled. To recover losses, an 

additional source port could be used. 

 

Figure 7. (a) Representation of OFS and (b) example 

PhiSim link. 

3 Implementation to Simulation 

Environment 

This section describes the implementation of energetic 

and functional modelling elements in PhiSim, an 

environment developed by Sherpa Engineering to define 
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and simulate the proposed functional model. Sherpa 

Engineering proposes PhiSim as a modelling and 

simulation environment for physical systems using 

Matlab/Simulink software that allows generating 

models and their control in a multiport environment 

(Sherpa Engineering, 2016). 

3.1 Simulation Tool Integration 

Two different types of standardized ports are 

considered: source port and consumer port. Source port 

receives consumer power need, availability, acceptances 

of power and energy/matter from connected consumer. 

The source port also transmits provided power, 

availability, acceptances of power and energy/matter to 

the connected consumer. 

The elements are connected based on the following 

principles: 

• Communication between elements and supervisor is 

possible using a bidirectional link of 

control/information (CTRL/INFO); 

• Two elements are interconnected by a bidirectional 

link of need/supply (N*, P*); 

• Losses port of an element is defined as an output 

port that does not require an input (it refers to losses 

without an associated need); 

• The direction of arrows indicates where the need is 

transmitted regardless its sign. 

 

Availability and acceptancy information are useful for 

the (local or global) control. For example, to distribute a 

need of a consumer to multiple sources, distribution 

must check the sources availability. For instance, a 

consumer is available to receive negative power which 

is provided by a source that has acceptance. 

It is important to highlight the role of the distribution 

element for the intelligence system and the energy 

management strategy. For the moment, power need for 

each consumer is treated using priorities. Total power 

need is spread across different sources and prioritized 

according to their availability and acceptance. If total 

power need cannot be fully allocated, the remaining 

power need is allocated to the source that has first 

priority. 

3.2 Examples from Different Domains 

The functional modelling methodology presented in the 

previous sections is applied to two complex systems 

from different fields of applications, showing the 

general character of the proposed modelling formalism 

and the capacity to easily adapt to various systems. The 

considered applications are: a parallel hybrid electric 

vehicle (HEV) and a waste water treatment unit of a 

building. 

For the first example, the objective is to evaluate the 

consumption of a parallel HEV with respect to a specific 

power load profile. In order to analyze the power flow 

in the system, the vehicle dynamics has to be 

considered, as well as the electrical auxiliaries and the 

braking system. All these elements lead to a complex 

organic model which will increase the simulation time 

and the design procedure: architecture choice, 

supervisor construction, component choice and sizing. 

Using the functional modelling approach, the 

elements of the parallel HEV architecture are 

represented by elements described in Section 2.2. The 

implementation of the functional model in PhiSim is 

given in Figure 8. 

A standard driving cycle, NEDC (New European 

Driving Cycle), is chosen to analyse the architecture of 

the parallel HEV using a functional model that can be 

simulated. 

 
 

Figure 8. PhiSim functional model of a parallel HEV. 
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The simulation model of the hybrid vehicle consists 

of: 

• Three energy distribution elements (Distribution), 

• Three transformation elements (F2M, M2E and 

E2M), 

• Two storage elements (Fuel and Electric), 

• Two effector elements (Electrical auxiliary and 

Vehicle motion). 

 

A special functional element is employed for the braking 

system, which can act as a source or an effector for 

different driving modes. The simulation results of this 

application are given in Section 3.3. 

The second complex system is a waste water 

treatment unit of a building. The objective of this 

application is to calculate the cold and hot water 

consumption for a real scenario and also to provide the 

equivalent power consumption and cost estimation. The 

difference with the parallel HEV is in the flow type 

used: matter and energy instead of energy.  

 

Figure 9. Waste water treatment unit functional model. 

In this case, the functional model is obtained based on a 

reduced organic model with a real scenario of grey water 

treatment unit (GWTU) from a hotel. The functional 

model of the waste treatment unit is given in Figure 9 

and Figure 10. 

The model consists of the following elements:  

• Two transformation elements (Treatment unit and 

Consumption), 

• A storage element (Recovery as water tank), 

• Two distribution elements, 

• Two source elements (Rain and Water grid), 

• A system of water distribution unit (see Figure 10) 

of a building. 

 

Figure 10. Waste water distribution unit functional 

model. 

The water distribution unit is modelled by: 

• Three transformation elements (Hot and Cold water 

conditioning and Exchanger), 

• Two storage elements (Hot and Cold water tanks), 

• Two distribution elements (Mixer and Water 

distribution unit). 

 

As it can be seen from both examples, functional 

modelling representation and simulation can be applied 

to different domains and natures. For example, for HEV 

application the flow nature is either energy or 

information, whereas in GWTU application, in addition 

to energy, matter flow is used. However, information is 

always used as a flow nature in order to have a 

supervisor that manages the energy flow of the designed 

system. Therefore, the functional model of the system is 

thought to be used as a supervisor of the organic model. 

3.3 Parallel HEV Example Simulation 

Results 

The simulation results of the parallel HEV are 

represented in Figure 11. As equations used in the 

proposed functional modelling method are quite simple, 

the design time is significantly reduced for a preliminary 

analysis and a full driving cycle can be simulated in a 

few seconds. 

• The first figure (Figure 11(a)) shows that the speed 

of the parallel HEV is consistent with the NEDC 

profile. 

• The result can be validated as vehicle power needs 

(Figure 11(b)) and source power supplies (Figure 

11(c)) are appropriate to real time calculations. 

• In Figure 11(d), the scaled values of the SOC (state 

of charge) are presented. Electrical storage and fuel 

storage SOC can be analysed using the functional 

model, as well as the sources powers. 
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These results can give a head start for choosing the 

system architecture and lead to an organic modelling 

and its simulation. As mentioned in Section 3.2, the 

proposed modelling method leads to a 

supervisor/controller of the organic model with 

adjustments to its flow natures. For example, for the 

electrical-to-mechanical transformation element, the 

functional modelling flow is power. In the organic 

modelling level, this flow becomes electrical flow or 

mechanical rotation flow. Thus, a transformation 

element that adjusts the command flows will be added 

to the system for the supervisor. 

4 Conclusions and Perspectives 

A concept of functional modelling is proposed and 

applied to different complex systems where the flow 

nature is either energy or matter or both. The functional 

modelling approach develops a macro model of a 

complex system that can be easily and quickly simulated 

using the simulation framework PhiSim. 

A short-term perspective of this work is to apply this 

modelling concept to systems with both energy and 

matter flows for simulations. The long-term perspective 

is to improve the intelligence of distributions. So far, 

distributions use priorities for need and power 

distribution. The improvement consists in developing a 

performant algorithm for need/supply distributions 

capable to optimize all natures of flows, and fast enough 

in order to minimize the simulation time. For these 

reasons, the proposed modelling formalism represents 

an interesting solution for industrial applications as it 

allows obtaining relevant results in a first stage of 

preliminary analysis of the system. 
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