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Abstract environment (e.g. noise), and the amount of work car-
ried out by each operator. This amount of work de-
pends on several operating conditions in the factory,
such as the schedule of breaks and the penibility of the
tasks that workers perform. The assignment of the
workers to the different machines in the system has
an effect on the work duration of each operator. The
evolution of workers’ fatigue depends on how they
will be solicited, which can have different impacts,
in terms of system performance (e.g. delay and qual-
ity). Therefore, it is important to determine the
production scenarios that induce excessive fatigue, in
order to improve workers’ performances and well-being
at work. As consequence, there is a need for dynamic
models that allow the evolution of fatigue along time to
be evaluated, as well as the manufacturing system
erformance under different production scenarios. For
his purpose, simulation seems to be a relevant
approach. However, how to build a suitable model of
manufacturing system that takes fatigue into account
turns out to be a difficult research question.

To address this question, we propose a simulation
modeling framework to model manufacturing systems
that can take workers’ fatigue into account. The
suggested framework combines the paradigms of
Discrete Event Simulation (DES), System Dynamics
) (SD) and Intelligent Agents (IA) in the same simulation
1 Introduction model. The DES concepts are used to describe the

Workers play a key role in modern manufacturing dynamic behavior of the manufacturing —system.
systems. They are often subjected to arduous workingVorkers are modeled as intelligent agents with a
conditions, such as carrying heavy loads, noise andSPecific knowledge and behavior. Since fatigue
vibrations. This leads to fatigue in work, which causes a represents an important charaqterlstlc of thls_ behavior,
decline in workers’ performance, errors and may lead to W& US€ SD concepts to describe the evolution of the

health troubles. As consequence, when they have toPPerators’ fatigue during the work. The suggested

organize a manufacturing system, managers are alscombined s_lmqlatlon_framework is |m_plemented using

interested in management policies that can contribute toth® Anylogic simulation software, which allows these

improve workers' performance, as well as their differentworldviews to be combined.

wellbeing at work. In this respect, managers The remainder of this paper is organized as follows.
need to understand the evolution of operators’ fa- Section 2 explains the novelties of this study with

tigue during their work, depending on the organiza- respect to the existing literature. Section 3 focuses on
tional scenario considered for the manufacturing sys- the proposed framework. In Section 4, a first

tem. It has been widely demonstrated that fatigue implementation of the suggested approach using the
in manufacturing depends on several factors, suchAnylogic simulation software is presented. The final

as the penibility resulting from the production
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In manufacturing systems, workers are often subgect
to arduous working conditions, such as heavy |@euds
discomfort postures, which induce fatigue. Becanfse
the effect of fatigue on workers' well-being, adlvas

on their performances, managers would need to
understand the evolution of operators’ fatigue ryri
their work, in order to make relevant decisiongy.(e.
work schedule, facility layout decisions, and rest
periods). In this context, we present a simulation
modeling framework to evaluate manufacturing
systems, which takes the workers’ fatigue into aoto
The suggested framework combines several
worldviews: Discrete Event modeling, multi-agentdan
System Dynamics. Discrete Event concepts are wsed t
describe the manufacturing system dynamic behavior
and agents are used to model workers. One importan
characteristic of agents’ behavior on which emphissi
put is fatigue, which is modeled using System Dyicam
concepts. The proposed approach is implemented usin
the Anylogic simulation software.

Keywords. simulation discrete event, intelligent
agents, system dynamics, manufacturing systems,
fatigue
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section draws the conclusions and some suggestons
future research.

2 Related research

In the last decades, researchers from differetdsije

such as the work psychology and ergonomics, haide pa
much attention to the fatigue phenomenon in
manufacturing systems. In this context, few redearc
works have used simulation to address such problems

Digiesi et al. (2006 and 2009) have used simulaition
order to investigate the impact of fatigue on theam
flowtime and the work in process in a manufacturing
system. The authors have used DES to model a i@ |
system composed of one worker performing a repetiti
task. However, fatigue is a continuous and a coxple
phenomenon that depends on several factors. Fo
instance, Grandjean (1979) has highlighted thétdlt

tasks caused fatigue in manufacturing. Kahya (2007)

has demonstrated that physical efforts and thebpigyi
of the production environment contribute to incestie
workers’ fatigue.

Walters et al. (2000) have used DES to analyze the

impact of fatigue and rotation schedules on workers

performances. DES has also been used by Perez et a

(2014) to evaluate workers performances and
cumulative spinal load in an assembly line. In ¢hes
studies, the DES model of the manufacturing syssem
used to collect the data necessary (e.g. taskidosat
process time, and the availability of machines)tfe
work-rest models that they used to evaluate fatigue

In the ergonomic literature, few approaches based o

DES have been developed to help designers to
understand the ergonomic impacts of a proposed

alternative in system design. For example, Peretd. et
(2014) have combined DES with a work-rest model to
predict the effect of the mechanical exposure akers
and the accumulation of muscular fatigue. The astho
have evaluated the accumulation of fatigue befok a
after performing a job such that, the time patt#rthe
cycle is given by the DES model of an assembly. line
Thus, their model is not able to describe the diawf
fatigue during processing a task. Dode et al. (2045e

r

Gien, 2007). Therefore, authors as Boudreau et al.
(2003) have emphasized the importance of modeiiag t
human behavior of workers.

In this respect, Elkosantini and Gien (2009) have
suggested an Agent-based framework to model the
human behavior including different behavioral aspec
such as stress and satisfaction, in order to amahe
behaviors of workers in manufacturing. The auttdwrs
not model the manufacturing system in their apgnoac

Fatigue represents an important characteristichef t
workers’ behavior. As mentioned above, it depends o
several factors, which may be complex and intexébt
each other. Thus, it is difficult to describe holwst
phenomenon evolves along time. In order to dedl wit
this problem, SD concepts seem to be relevant.Sihe
approach (Forrester, 1958), has been widely used to
understand complex phenomenon in different fielas b

it seems not to be used for fatigue models.

In summarizing, DES has been used by few researcher
to address very specific problems. Certain congepts
such as IA and SD can be used in order to bettelemo
workers in simulation so as to take their behasiod
fatigue into account. Although different concefsds be
ombined in simulation (Elkosantini and Gien, 20@9)
he best of our knowledge, no publication seems to
combine the concept of DES, SD and IA togethehn t
same simulation model so as to evaluate the impfact
different production scenarios on both system
performance and workers’ fatigue.

3 Related research Description of the
proposed framework

3.1 Principle

To evaluate the impacts of the production scenamio
the system performance and the workers’ fatigue, we
need to a simulation model of the manufacturingesys

in which the workers are subjected to fatigue. Teetn
this objective, we propose to combine different
worldviews in the same simulation model. The pregos
simulation-modeling  framework  combines the
following paradigms: 1A, DES and SD. For further

suggested an approach integrating fatigue-recoveryinformation about the combined simulation, we reger

pattern and learning into a DES model of an eleatro
assembly line to evaluate productivity and qualitige
authors are interested in the muscular fatigueethbyg

the repetitive work. Therefore, they have evaluated
fatigue through Muscular Endurance Time (MET)
models, which are used when fatigue is assumee to b
caused by the repetitive work.

According to Elkosantini and Gien (2009) workers ar
often assimilated to a simple resource with a faihate,
mean-time-between-failure and a repair time in most
simulation models. However, workers, as human
beings, exhibit a more complex and unpredictable
behavior than the inanimate resources (Elkosaatidi
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the review of Dessouky and Roberts (1997).

The workers’ fatigue depends on their activitiesr F
instance, when the worker performs a tiring jols/ter
fatigue increases. However, fatigue decreases wWieen
worker is resting. This leads to a dynamic behawfor
the worker. According to Elkosantini and Gien (2009
the workers exhibit a dynamic and more complex
behavior than the inanimate resources. Therefore,
modeling workers as inanimate resources, as they ar
often modeled in the existing simulation modelgnse

to be not relevant to take their behaviors intoaot.

As defined by Franklin and Graesser (1996), an tagen
“continuously performs three functions: perceptan
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dynamic conditions in the environment; action tieeif The state variables describe the state of eacheateim
conditions in the environment; and reasoning to the DES component. The dynamic behavior of the DES
interpret perceptions, solve problems, draw infeesn component has a significant impact on the amount of
and determine actions”. According to Padgham and work that should be carried out by each worker. As
Lambrix (2000), the agent also shows a behavioseBa  consequence, the behavior of the system also siffeet

on the above definitions, we suggest using theemnc workers’ fatigue. Therefore, we find that the state
of “Intelligent Agent” to model workers in our variables describing the state of each elemeheES
framework. component as well as, the events related to thtemta

As mentioned in the related research, the behafior the end of a production operation or transportvgfi
workers in manufacturing is related to several elspe  are used to evaluate the operators’ fatigue.

such as the evolution of his/her fatigue or satisia As mentioned in the related research, the penikilit
and how to choose the tasks to be performed. Thesdhe production environment, such as the noise,
behavioral aspects are often complex. In order totemperature and vibrations, has a significant ihpac
describe the evolution of such behavioral aspeets, the workers’ fatigue. Thus, a subjective evaluatibtine
propose to use SD concepts, which are extensigglgt u  penibility of the production environment may be
in the literature to describe the evolution of céemmand described, in our DES component, through the
continuous systems. Hence, a SD component desgribin coefficient Penibility of Environment.

how the worker behaves is integrated into the agent

component of the model. 3.3 Agent model

In order to describe how the worker behaves, wd ee AsS presented in Figure 1’ we consider that the '['a'gen
know several information about his/her work and the oyr framework is characterized by:

production environment. For instance, how many
machines in the manufacturing and what is the ghysi
effort required to work on each one. In additiongo
needs to know the amount of work carried out by the
agent to describe the impact of the accumulatiamnook

on its fatigue. This requires information about thsk
completed, the work schedule and rest periods. This
information is available thanks to the DES companen

. preferences).
of the manufacturing system model. K ledae baseth t has k ed hich
Figure 1 illustrates the global architecture of the nowledge base:he agent has knowledge, whic

suggested combined model. As it will be depicted he/she uses in the manufacturing system. Amorgy thi

. . knowledge, we can find the decision logic to sethet
below, the three components interact with eachrothe set of machines on which the agent prefers to Wik,

. . . agent has also knowledge about which assignment
3.2 Discrete Event Simulation component strategy should be selected so to achieve its goal.

The DES component represents the set of the element, Capabilities: as mentioned in Franklin and

of the manurfaciuring system (e_.g. machl_nes, praguct Graesser (1996), the agent capabilities enabberdect
transporters and stocks), which interact with tloekers rationally towards achieving a particular goal. ATgo

_?_?]d’ at th%éz;me time, he;ve ar(; |mp%ct t?\n theﬁ' these capabilities, we find the agent skills, wheaable
us,fou: = componen cadn escr Ie hepr(t) ist's’ him/her, for example, to determine to which machine
manutacturing resources and several characterslics o spa can pe assigned. The skill matrix can @lstam

thef manufactur_|tng_ system. Th(?[ dmpre thclasgg;l the durations that may be needed by the agentdn ea
per ormanct:e critena a][lemqompuf(_e b mN € tmachine. Based on whether the worker is novice or
component (e. g. mean flowtime of jobs (Neumann e expert, these durations differ from one agent tttzer.

al. _2006)' _ _ In order to achieve its goals, the agent has palsic
Typically, the machines in the system are modeked a capapilities such as the ability to recover after
resources, buffers are modeled as queues, etc. Theerforming a job. For that, we consider the sped o
penibility associated with the use of the machimes a recovery of the agent after performing a task, Whic

great impact on the workers’ fatigue. Thus, a dokeffit varies according to the physical characteristicshef
Penibility of Machine is associated to each machiine  5gent such as its age and gender.

the simulation model to describe the physical éffor
required by the worker to use that machine. We also
need the position of each production facility sirice
distance walked by the operator also affects his/he
fatigue. For that, each element in the DES comptisen
characterized by its geographical coordinates.

¢ Goals: they can be classified in two types: the first
type is common for all the agent, which is maidiated

to the improvement of the performance of the
manufacturing system, such as the minimizatiorhef t
makespan or the balance of works between coworkers.
The second type is specific to the agent such as th
maximization of its satisfaction (regarding its

Communication: it represents his/her social
network at work, (his/lher acquaintance). The
acquaintances can be the workers, which can coliédo
with the agent. They can also include the supersiso
Thus, many types of communication may need to be
established between agents. For instance, agents ma
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negotiate to switch tasks if someone is exhaudted. 3.4 System Dynamics component
order to establish communication, agents need a
communication protocols such as the Contract Net
Protocol (Sabar et al., 2009).

The SD component describes the evolution of the
agent's fatigue according to his/her behavior duthe

DES model

M Actions

[ Agent model \

/ Knowledge base \

Communication

Goals

Capabilities
Perceptions I

State

1

Behavior

\ SD model \

= = = — £ E -

< ey
= — - < =" —
== ot = = =

Figure 1. Overview of the proposed framework.

«  State:in our model, the agent has different states: it Work. One of the objectives of the SD model is to
can be idle, working, walking, resting and absStete describe the variation, over time, of the statéaldes
variables also describe the physical and psycheabgi associated with the behavioral aspects of the agrent
state of the agent such as Fatigue level and Setiish ~ this study, we focus, in particular, on the evaintof
level, which indicate, respectively, the currenteleof the agent's fatigue.

fatigue and satisfaction of the worker. Variations in the level of fatigue depend on saler

- Perception: since we are in a simulation context, factors, such as the penibility associated withutse of
his/her perception of the environment (here the Machines. At the same time, these variations have a

manufacturing systems and the other agents) is9dreat impact on other state variables. For instaifiee
characterized: by the system state as it evolvahen  Increase of Fatigue level leads to a decrease in
DES component, and by what can be known about theSatisfaction level. As consequence, it is important
other agents. For instance, the agent percepts th&letermine the causal_ relat_lonshlps that_may exist
available machines in the DES model through thiesta Petween the agent's fatigue, its factors and inspaair

variable Machine State, which is associated to eachthat, we use a causal diagram. For illustratiomppses,
machine. let us take the example of the causal diagram ptede

in Figure 2. This causal diagram is composed et @

*  Behavior: it describes the way how the state of an nodes, which represent the relationship between the

agent can change and how it can change the

. . relevant state variables used in the model.
manufacturing system state. The behavior of theitage ) i : )
entails making some actions. For example, eachtagenThe factors that induce fatigue are linked to theable

can have assignment strategies to select to whichFatigué Level by positive relations, since an inseeof
machine he/she has to be assigned in order tdysatis °©N€ factor causes an increase in the level ofuatigor
hislher goal (e.g. to minimize the makespan). We ca example, the worker's fatigue can increase with the

use several assignment rules, which are widely ised distance he/she has walked until time t. For that,
the literature, such as select the machine withtssb positive relation connects the variable Walked &ise
Processing Time (SPT). and Fatigue level. Repetitive activities also have

As mentioned in the related research, the behafior impact on fatigue. Therefore, there is a positive

workers in manufacturing is characterized by some relationship connecting Fatigue level with the atle
. 915 d oY Number of Repetition, which indicates how many sme
behavioral aspects such as fatigue and satisfadtios

has an impact on how the behavioral aspects evolvethe agent has repeated the job since the begiohihg

along time. Let us take for example the fatiguahef simulation untl time t.
agent: it increases during the period in whichagent
is walking; however, not as much as when the aigent
performing a tiring job.

The agent’s fatigue has adverse effects on botaghat
and DES model. These effects are represented by
negative relations from the state variable Fatiguwel.
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On the one hand,
capabilities. For instance, the increase of fatigaels,
according to Ferjani et al. (2015 and 2017), to an

fatigue declines some agentenvironment (Penibility of Environment). In suctsea

and based on the fatigue indicator proposed by Konz
(1998), which is widely used in the ergonomic hteire,

increase of the task durations. Based on the humanthe variation in the level of fatigue, when the rige

behavioral model proposed by Elkosantini and Gien

(2007), fatigue causes also a decrease in the worke

satisfaction. Thus, an increase of the Fatigud leagls
to a decrease in the Satisfaction level. On therdthnd,
fatigue causes errors so that deteriorates thetyjodl
produced parts. This means that the number of tiedec
parts in the DES model increases.

Satisfaction
level

+

Penibility of -
Machine E
-\

S,

+
Penibility of
Environment + Accumulation
Rate

Recovery
Rate
|
2 +
+
Number of . Recovery
Repetition Walked Allowance
Distance

Figure 2. Causal diagram of the worker’s fatigue.

As presented in Figure 2 and, according to Kahya
(2007), the factors, which induce fatigue, contic
speed of its accumulation. On the contrary, thevery
factors control the speed of the recovery. In oadeh,

the parameter Recovery Allowance, which describes t
physical capabilities of the agent, is used to rbnhe

speed of recovery. The variables Accumulation _Rate combined

and Recovery_Rate control, respectively, the spded
accumulation and recovery of fatigue.

The variables in the nodes of the causal diagragufé&
2) can be classified in two types: the first ondhis
discrete variables such as number of repetitica task
the worker has performed (Number of Repetitions).
These variables change their value when eventsr.occu

working, would be as follows:

dF(t)/dt = A(e,p,rep(t))(1 = F(¢)) 1)
WhereF(t) is the current level of fatigue until time t. e
and p represent, respectively, the coefficient IBktyi

of Environment and Penbility of Machine in the caus
diagram of Figure 2rep(t) represents the number of
repetition of the same task.

In the case where the agent is not working, itigHat

level decreases. We assume that the recovery depend

only on the parameter Recovery Allowance. Thus, the

variation in the level of fatigue, during the restriod,

can be as follows:
dF(t)/dt = —R(rec)F(t) (2)

Thus, the causal diagram, in Figure 2, can be latats

into a flow-stock diagram. SD models are based Ipain

on stock (state) and flow (rate) variables. In madel,

the stock variables represent the continuous state

variables. For instance, the variable Fatigue lasel

considered as a stock variable since it describes t

accumulation of fatigue during the work.

4 Implementation with ANYLOGIC

A first prototype simulation model with Anylogic fa
been developed to illustrate the proposed framework
The Anylogic simulation software, which is initigll
designed to support multiple modeling methods and
their combinations (Borshchev, 2013), allows to ase
simulation approach with  several
worldviews.

The different elements, which compose the DES
component in our framework, can be representedjusin
the Process Modeling Library of Anylogic, sincesthi
library supports the discrete-event modeling panadi

The workers in the DES component are modeled as
agents. For that, we represent them by a classsilzna

the Anylogic software is based on Java as a

The second type is the continuous variables such asprogramming language.

Fatigue level and Satisfaction level. Their valcieange
continuously, even when the agent is in the saate.st
Therefore, we use differential equations in order t
describe the variations of the continuous variables
time. Since the way how fatigue evolves varies fama
state to another, the differential equations, whacé
used to describe this evolution, vary also. Letake,
for example, the case where the agent is workihthia
time, its fatigue grows in accordance with the péaity
associated with the use of the machine (Penibdity
Machine), the number of repetition of the task (Nbem
of Repetition) and the penibility of the production
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Regarding the SD component, it is represented ubing
System Dynamics Palette of Anylogic. The state
variable Fatigue level is represented by a stodkchv

is subjected to the variations in the flows (i.e.
Accumulation Rate and Recovery Rate).

Our prototype is used to evaluate certain impatts o
given production scenarios on system performance fo
example, the flowtime of jobs in the system.

The evolution of the workers’ fatigue along timen dze
described through curves, such as those presemted i
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Figure 3. In Figure 3, we have four workers, sa gah Acknowledgements
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