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Abstract
Industrial process failures can be often seen as a

variance increase in a measured process variable. The

objective of this research was to investigate if stochastic

Autoregressive Moving Average, abbreviated as

ARMA, and Generalized Autoregressive Conditionally

Heteroscedastic, abbreviated as GARCH, time series

modelling are feasible methods for the reliable detection

of gradually increasing variance in the process variable.

A case study was conducted for the reliable detection of

increased pressure variance that indicates a harmful air

leakage in a vacuum chamber in a paper machine.

Variance in the chamber pressure was artificially

gradually increased, a combined ARMA+GARCH time

series model was fitted to it and the variance vector was

determined. An abnormally high variance was detected

from the variance vector using a specified detection

limit and detection sensitivity. According to the

simulation results, by controlling the variance vector

extracted from the combined ARMA+GARCH time

series model, a very slight variance increase in the

process variable can be detected more reliably than

detecting it from the moving variance vector computed

directly from the process variable.

Keywords:  condition monitoring, time series analysis,
SPC

1 Introduction

The variance increase of the critical process variable is

often an early sign of an abnormal process behavior

(Jandhyala et al., 2002; Du et al., 2010). It can be also a

sign of a phenomenon that may escalate to an unplanned

process shutdown or severe damage in a critical process

component (Rzadkowski et al., 2016). This can cause a

significant loss in production capacity due to an

unplanned maintenance or the long delivery time of a

spare part. Therefore, it is crucial to reliably detect an

abnormal variance increase in real time process

condition monitoring. This enables a transition from

reactive maintenance to condition-based maintenance.

In the paper manufacturing process, there are several

critical process variables whose variance increase is a

sign of incipient failure.

One typical example is increased gauge pressure

variance, later called pressure variance, in a certain

vacuum chamber in a paper machine. In a stable and 

faultless paper manufacturing process, the mean of the 

vacuum chamber pressure is constant while its variance 

inherently fluctuates within a certain range.  

According to process specialists, air leakage in the 

vacuum chamber gradually increases variance in the 

chamber pressure while the pressure mean remains 

constant. When air leakage increases, also the pressure 

variance increases until the pressure value exceeds its 

tolerance limit. This triggers an operation sequence of a 

certain mechanical function, the sound of which is 

subjectively interpreted as a sign of air leakage. Instead 

of the subjective interpretation of a sound in a noisy 

paper machine environment, an incipient air leakage in 

the vacuum chamber could be reliably identified if an 

abnormal variance increase is detected from the 

chamber pressure. This improves product quality, 

enables preventive actions and helps avoid costly 

process breakdowns. 

Numerous time series analysis methods are used in 

economics to model and predict econometric 

phenomena. Two commonly used analysis methods in 

economics are Autoregressive Moving Average, 

abbreviated as ARMA, and Generalized Autoregressive 

Conditionally Heteroscedastic, abbreviated as GARCH, 

time series modelling. Although several papers (Wang 

et al., 2002; Tao et al., 2010) have been published on the 

separate use of these methods in condition monitoring, 

fewer studies (Pham et al., 2010; Caesarendra et al., 

2011) have been published on the joint use of the 

ARMA and GARCH time series models in this field. 

These studies prove that the combined ARMA 

+GARCH time series model provides a versatile and 

powerful toolkit for condition monitoring.  

The objective of this research was to investigate if the 

combined ARMA+GARCH time series modelling is a 

feasible method for the reliable detection of increased 

variance in a critical process variable. Data analysis was 

done by R software. 

A case study was conducted for the detection of 

increased pressure variance in a vacuum chamber in the 

paper machine. At the beginning of the study, chamber 

pressure data were recorded at 8 s sampling intervals in 

a 140 h period. During that time, there was no air 

leakage in the vacuum chamber. 
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Then the ARMA model was fitted to the data. 

Autocorrelation of the squared residuals of the fitted 

ARMA model indicated that they still contain 

information so the residuals were further modelled using 

the GARCH model. The squared residuals of the fitted 

GARCH model were no longer autocorrelated. Thus all 

the information included in the chamber pressure data 

was decomposed to the coefficients of the fitted ARMA 

+GARCH model. The model defines a typical behavior 

for vacuum pressure when air leakage does not occur. 

Due to missing air leakages in the vacuum chamber 

during the study, the vacuum pressure vector including 

the air leakage effect was artificially created by first 

simulating the pressure vector using the combined 

ARMA+GARCH model with coefficients representing 

the process without air leakage. Then a vector with mean 

zero and slightly increasing variance was summed to the 

simulated pressure vector to mimic air leakage. The sum 

vector represents the chamber pressure in an incipient 

air leakage condition. The goal in the next steps of the 

study is to detect the systematic variance increase in the 

chamber pressure with minimum delay. 

An artificially created pressure vector was modelled 

by means of the combined ARMA+GARCH model 

using the same number of coefficients as in the stable 

process model. The variance vector extracted from the 

aforementioned model illustrates the variance behavior 

of the pressure vector. It is challenging to detect 

variance increase caused by air leakage due to an 

inherent variance fluctuation even when the air leakage 

is not present. An alarm for an abnormally high variance 

in the vacuum pressure is triggered when the variance 

vector values exceed a quantile that is defined using an 

adjustable detection limit, abbreviated as pk. The 

quantile divides an empirical distribution of past 

variance values so that pk proportion of variance values 

are smaller than the quantile. To avoid false alarms, 

adjustable detection sensitivity, abbreviated as s, is used 

to specify the minimum number of consecutive values 

of the variance vector above the quantile before the 

alarm is triggered. Once the alarm is triggered, a delay, 

i.e. number of pressure observations from the start of the 

leakage until its detection, is recorded.  

The sequence described above was simulated 27103 

rounds. According to the simulation results, it is possible 

to detect an almost invisible variance increase in the 

vacuum chamber pressure more reliably than detecting 

it from the moving variance vector computed from the 

process variable. 

2 Time Series Models and Detection 

Parameters 

In this chapter the Autoregressive model, the Moving 

Average model and their combination called 

Autoregressive Moving Average model are examined. 

Then the Generalized Autoregressive Conditionally 

Heteroscedastic model is introduced and description is 

given how the autocorrelated time series vector is 

decomposed by the combined use the Autoregressive 

Moving Average model and the Generalized 

Autoregressive Conditionally Heteroscedastic model. 

Finally, a detection limit and detection sensitivity of 

abnormally high variance detection in the time series 

vector is examined. 

2.1 Autoregressive Moving Average Model 

The ARMA model is the most popular class of linear 

time series models. ARMA models are commonly used 

to model linear dynamic structures and, to describe a 

linear relationship among lagged variables, i.e. when the 

variable is autocorrelated. The ARMA model consists of 

two submodels, the Autoregressive model, abbreviated 

as AR, and the Moving Average model, abbreviated as 

MA. 

The Autoregressive model of order p, abbreviated as 

AR(p), is of the form 

xtxtxt2pxtp wt,

where xt is a stationary time series with mean zero; 

1, 2, , p are constants (p 0) and wt is a Gaussian 

white noise with mean zero and variance w
2. The AR(p) 

model assumes that the current value of time series xt is 

defined as a sum of the linear combination of p past time 

series values and the white noise wt (Shumway et al., 

2011; Box et al., 1976). 

The Moving Average model of order q, abbreviated 

MA(q) is of the form 

xtwtwtwt2pwtq,

where xt is a stationary time series with mean zero; 

1, 2, , q (q 0) are the constant parameters and wt 

is the Gaussian white noise with mean zero and variance 

w
2. The MA(q) model assumes that the current value of 

time series xt is defined as the linear combination of the 

current and q previous values of the white noise wt 

(Shumway et al., 2011; Box et al., 1976). 

When the Autoregressive model AR(p) and the 

Moving Average model MA(q) are combined, the 

Autoregressive Moving Average model of order p and 

q, abbreviated as ARMA(p, q) is defined. ARMA(p, q) 

is of the form 

xtxtpxtp + wt + wtpwtq.

The ARMA model assumes that the variance of the 

time series xt is constant. This is not always the case. 

Thus varying variance cannot be modelled using the 

ARMA model and therefore its residuals are not 

Gaussian white noise, i.e. they still contain information 

(Shumway et al., 2011; Box et al., 1976). 
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2.2 Generalized Autoregressive 

Conditionally Heteroscedastic Model 

The Generalized Autoregressive Conditionally Hetero-

scedastic model, abbreviated as GARCH, is frequently 

used in economics and finance to model the varying 

variance of the time series xt, i.e. when the variance of 

the time series is autocorrelated. The GARCH 

modelling is used to model such information from time 

series xt that is not possible with the ARMA modelling. 

For example, autocorrelated squared residuals of the 

ARMA model indicate that they still contain 

information that cannot be modelled by means of the 

ARMA model. Then the GARCH is used to model the 

information included in the residuals of the ARMA 

model. 

The Generalized Autoregressive Conditionally 

Heteroscedastic model of order m and r, abbreviated as  

GARCH(m, r), is of the form 

wtσtt

 

where wt is noise, i.e. the residual of the ARMA 

model with mean zero, t
2 is the variance of the noise, 

t is standard Gaussian white noise t ~ iidN(0, 1); α0, 

α1, α2, , αm, β1, β2, , βr are constants (α0 > 0, αj ≥0, βj 

≥0). The GARCH(m, r) model assumes that the 

variance t
2 is defined as the sum of the constant α0, the 

linear combination of m past values of a squared noise 

wt
2 and the linear combination of r past values of 

variance w
2 (Shumway et al., 2011; Cowpertwait et al., 

2009; Bollerslev, 1986). 

The flowchart in Fig. 1 illustrates the decomposition 

of the autocorrelated time series vector xt in the 

combined ARMA+GARCH time series model. As can 

be seen in the Fig. 1, data decomposition is performed 

consecutively, first in the fitted ARMA model and then 

in the fitted GARCH model. In the model fitting, model 

coefficients are determined so that the sum of the 

squared model estimate errors is minimized. This fitting 

approach is called the least squares method, abbreviated 

as LS method. The LS method is commonly used in 

model fitting and will also be used in this research. 

The estimate error, i.e. residual, is the deviation 

between the data point and the corresponding value 

estimated using the model. In Fig. 1, estimate errors, i.e. 

residuals of the fitted ARMA model and the fitted 

GARCH model are represented by the residual vector wt 

and the standard Gaussian white noise vector t. 

The plots in Fig. 2, sections (a-d), are based on the 

simulated time series vector xt with 2103 observations. 

They illustrate the behavior of the time series vector xt, 

residual vector wt, the variance vector t
2 and the 

standard Gaussian white noise vector t.  

When comparing the plots in sections (a-b, d), it can 

be clearly seen that the information content of these 

vectors decreases along the decomposition steps. 

In the first decomposition, the ARMA model is fitted 

to the time series vector xt. As illustrated in Fig. 1, the 

fitted model explains the AR effect by decomposing the 

data to coefficients 1, 2, , p (1).  

The MA effect is explained by decomposing the data 

to coefficients 1, 2, , q (2). Unlike the time series 

vector xt, the residual vector wt is not autocorrelated 

because the autocorrelation effect has already been 

decomposed to the AR and MA coefficients. However, 

if a squared residual vector i.e. wt
2 is autocorrelated, the 

residual vector wt contains information on varying 

variance of the time series vector xt, which could not be 

explained using the fitted ARMA model. 

The second decomposition is performed for the 

residual vector wt in order to explain its varying variance 

information. Thus the GARCH model is fitted to the 

residual vector wt. The fitted GARCH model 

decomposes information on varying variance to the 

coefficients α0, α1, α2, , αm, β1, β2, , βr. Consequently, 

the standard Gaussian white noise vector t contains no 

information as can be seen in Fig. 2, section (d), because 

t ~ iidN(0, 1). Therefore the values of the vector t are 

independent and identically and normally distributed 

with mean zero and variance one. In addition, the 

standard Gaussian white noise vector t and its square 

are not autocorrelated because all the remaining 

information in the residual vector wt is decomposed to 

the coefficients of the fitted GARCH model. The 

variance vector t
2 in Fig. 2, section (c), is determined 

based on these coefficients (5). 

As mentioned before, the ARMA model cannot 

explain the varying variance included in the time series 

vector xt (Shumway et al., 2011; Box et al., 1976). 

Consequently, the residual vector wt contains 

unexplained varying variance information so it makes 

variance behavior of the time series vector xt clearly 

visible. Therefore, the variance vector t
2 in Fig. 2, 

section (c), illustrates the variance behavior of the time 

series vector xt although it is determined on the basis of 

the residual vector wt. 

 

Figure 1. Decomposition of time series vector xt to residual 

vector wt, variance vector t
2, standard Gaussian white 

noise vector t and coefficients 1, 2, …, p, 1, 2, …, q, 

α0, α1, α2, …, αm, β1, β2, …, βr. 
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Figure 2. (a) Time series vector xt, (b) residual vector wt,  

(c) variance vector t
2 and (d) standard Gaussian white 

noise vector t. 

2.3 Detection Limit and Detection Sensitivity 

An incipient process failure causing abnormally high 

values in the variance vector t
2 is challenging to 

identify, because the variance also fluctuates inherently 

in the stable process condition. Based on simulations, 

the empirical distributions of the variance vector values 

were not normal. Therefore, the Statistical Process 

Control charts, abbreviated SPC charts, for identifying 

abnormally high variance values could not be used due 

to their underlying assumptions of normality 

(Montgomery, 2009). 

In case the empirical distribution of variance vector 

values is not normal, abnormally high variance values 

can be detected when they exceed a quantile of the 

empirical distribution (Montgomery, 2009). The 

empirical distribution of the variance vector t
2 is 

defined based on the process period that is known to be 

stable. The quantile is set by an adjustable detection 

limit, abbreviated as pk. The quantile, later called pk 

quantile, divides an empirical distribution so that pk 

proportion of the variance values is smaller than the pk 

quantile. pk  [0, 1]. When the objective is to detect 

abnormally high variance values, the detection limit pk 

is set close to one. 

Although the variance vector t
2 values are at a 

reasonably low level, they may still have individual high 

peak values, i.e. outliers triggering a false alarm of an 

abnormally high variance. The variance vector may also 

have an ascending trend while an individual high peak 

triggers a premature alarm even though the general 

variance level is below the pk quantile. 

The number of false alarms can be reduced using 

adjustable detection sensitivity, abbreviated as s, which 

specifies the minimum number of the consecutive 

values of the variance vector t
2 above the pk quantile 

before the alarm is triggered. 

3 Case Study and Simulation 

This chapter introduces a case study conducted in the 

papermaking industry. Objective was to detect a 

problematic air leakage as early as possible in a paper 

machine. Steps of the combined ARMA+GARCH time 

series model use for an incipient air leakage detection 

are examined. Ability of the examined method to detect 

air leakage with minimum delay was tested by 

simulation.  

3.1 Background and the Process Data 

An industrial case study was conducted for a paper 

machine, where it is critical to reliably detect an 

incipient air leakage in a certain vacuum chamber. 

Based on experience, air leakage in the vacuum chamber 

gradually increases variance in the chamber pressure 

while its mean still remains constant. When air leakage 

increases, the pressure variance also increases until the 

pressure value exceeds its tolerance limit. Crossing the 

tolerance limit of the vacuum pressure triggers a 

sequence of certain mechanical functions in the process, 

causing an audible sound that is currently subjectively 

interpreted as a sign of air leakage. 

Fig. 3 illustrates the behavior of the pressure in the 

vacuum chamber. The pressure data used in the case 

study were recorded at 8 s sampling intervals during a 

140 h period. The pressure is stationary, i.e. it varies 

around the constant mean. Therefore, there is no need 

for differencing to make it compatible with the ARMA 

model (Shumway et al., 2011). Pressure variance 

slightly increases at 70 h of the time. Although the 

variance increase is detectable, it may be caused by an 

inherent fluctuation of the pressure variance in a stable 

and faultless process condition. 

3.2 Fitting of a Combined ARMA+GARCH 

Model 

In order to define a typical behavior of the chamber 

pressure in terms of the coefficients of the combined 

ARMA+GARCH model, the model is fitted to such a 

period of the pressure data that represents the stable and 

faultless process. According to an interview of the paper 

machine specialists, there were no air leakages observed 

during the data collection. Thus the pressure behavior 

including the variance increase at 70 h of the time, as 

shown in Fig. 3, is considered to be typical for the 

process. Therefore, the combined ARMA+GARCH 

model was fitted to the data of the whole 140 h period. 
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Figure 3. Gauge pressure of the vacuum chamber in the 

paper machine. Data were recorded at 8 s sampling 

intervals during a 140 h period. 

The best fitting to the data was found when the 

combined ARMA(4, 4)+GARCH(1, 5) model was used. 

This means that the ARMA model orders are p = 4, q = 

4 and the GARCH model orders are m = 1, r = 5. 

Based on the definitions of the ARMA model (3) and 

GARCH model (4, 5), the combined ARMA(4, 4) 

+GARCH(1, 5) model is of the form 

 

The terms of the equation (7), which are related to  

2
t2 and 2

t3, were omitted because their coefficients 

were not statistically significant, i.e. zero was included 

in their 95% confidence interval. 

3.3 Air Leakage Simulation 

Since no air leakage occurred in the vacuum chamber 

during the data collection, it had to be created artificially 

through simulation. Fig. 4, sections (a-c), illustrate the 

simulation steps from left to right in the same y-axis 

scale. At the beginning, in Fig. 4, section (a), the time 

series vector xt with 5103 observations is simulated 

according to the combined ARMA(4, 4)+GARCH(1, 5) 

model that was determined in the previous chapter. The 

simulated time series vector xt represents the typical 

behavior of vacuum chamber pressure in the stable and 

faultless process condition. 

A disturbance vector with 5103 observations is 

simulated to mimic an incipient and gradually 

increasing air leakage in the vacuum chamber. The first 

2103 observations are constant zero, due to the initial 

phase of the process that is not disturbed. Fig. 4, section 

(b), illustrates with a vertical dashed line how since the 

start of the leakage the variance of the normally 

distributed random vector linearly increases from zero 

to its maximum, which is set to low in order to make the 

disturbance challenging to detect. 

The simulated vector in Fig. 4, section (a), and the 

disturbance vector in section (b) are summed. The sum 

vector, illustrated in section (c) mimics a pressure of the 

vacuum chamber in an incipient and gradually 

increasing air leakage condition that starts after 2103 

observations. 

The sum vector in Fig. 4, section (c), represents the 

time series vector xt as in Fig. 2, section (a), and is 

decomposed in the fitted combined ARMA(4, 4) 

+GARCH(1, 5) model. In the decomposition, the 

variance vector t
2 is determined (5) based on the 

coefficients of the fitted GARCH(1, 5) model. The steps 

described in this chapter are repeated in each simulation 

round. 

 

Figure 4. (a) Simulated pressure vector representing the 

stable and faultless process that follows the combined 

ARMA(4, 4)+GARCH(1, 5) model. (b) Disturbance vector 

representing an increasing air leakage. (c) Sum vector that 

includes the simulated pressure vector and the disturbance 

vector. 

3.4 Air Leakage Detection 

Air leakage, i.e. an abnormally high variance in vacuum 

chamber pressure, should be detected from the variance 

vector t
2 with as short a delay as possible after the start 

of the air leakage. Fig. 5 illustrates the behavior of the 

variance vector t
2 in one simulation round. A vertical 

dashed line illustrates a time point when an incipient and 

gradually increasing air leakage starts, as in Fig. 4, 

section (b). Before the start of the air leakage, the 

variance vector t
2 represents the stable process. That 

part of the vector is used for defining the detection 

threshold of an abnormally high variance. In the 

threshold setting, the pk quantile was defined by setting 

the detection limit pk = 0.999.  
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Thus only 1‰ of the variance vector observations 

during the stable process are above the pk quantile. In 

case it occurs, it is considered a rare event and therefore 

an abnormally high variance observation. 

In Fig. 5, after some delay since the start of the air 

leakage, variance vector t
2 adopts an ascending trend 

until its first values cross the pk quantile. As can be seen, 

the first crossings of the pk quantile do not trigger an 

alarm of an abnormally high variance due to detection 

sensitivity s. As soon as s pcs of the consecutive 

observations above the pk quantile are counted, an alarm 

for an abnormally high variance is triggered and a 

detection delay, abbreviated as di, of the simulation 

round i is recorded. di describes the delay counted from 

the start of the air leakage until its detection as the 

number of variance vector t
2 observations. 

 

Figure 5. Vector of pressure variance in an air leakage 

simulation round i, i = 1, 2, …, Nsim. Air leakage starts at 

time point zero at vertical dashed line. Pressure variance 

t
2 increases towards the right until the air leakage is 

detected in delay di, when s pcs of the consecutive variance 

vector observations above the pk quantile are counted. 

The detection delay di is recorded in each simulation 

round i, i = 1, 2, …, Nsim, In this study, the Nsim = 27103. 

The detection delays of all the simulation rounds were 

summarized in an empirical cumulative probability 

curve illustrated in Fig 6, section (a). The cumulative 

probability curve refers the probability to detect an air 

leakage using the given delay. 

Detection sensitivity s has an effect onto the shape 

and location of the cumulative probability curve. The 

lower the s is, the higher is the probability to detect an 

air leakage using the given delay, i.e. the detection 

becomes more sensitive. On the other hand, the lower 

the s is, the greater is the type I error (Montgomery, 

2009), i.e. the greater is the likelihood of a false air 

leakage alarm in the stable process phase when there is 

actually no air leakage. Based on the simulation data, the 

detection sensitivity was set to s = 60 in order to limit 

the maximum of the type I error rate to 10%. If the type 

I error rate needs to be lowered, it reduces the sensitivity 

of the air leakage detection. Thus the compromise 

between these two depends on the cost of making type I 

error and the cost of not being able to detect air leakage 

on time. 

Fig. 6, section (a), illustrates that when controlling the 

variance vector t
2 of the combined ARMA(4, 4) 

+GARCH(1, 5) model, half of the air leakages were 

detected with a delay of 2214 observations, whereas 

four out of five air leakages were detected with a delay 

of 2875 observations. 

In order to benchmark the studied detection method 

with regard to the alternative one, the detection of the 

same simulated air leakages was tested using a moving 

variance vector that was defined directly from the 

pressure vector in each simulation round i. The window 

size of the moving variance was 25, and it moved 

stepwise along the pressure vector with step size of 25. 

Thus, unlike the variance vector t
2 of the ARMA 

+GARCH model, the resulting variance vector had 200 

observations where the stable process phase is 

represented by the 80 observations that were used for the 

pk quantile definition. To make the detection delays di 

comparable, they were multiplied by 25 to transform 

them back to the same x-axis scale with the Fig. 6, 

section (a). The cumulative probability curve as 

illustrated in Fig. 6, section (b), curve (ii), was drawn 

based on the transformed detection delays. 

Fig. 6, section (b), illustrates the cumulative proba-

bilities of the studied detection method with curve (i) 

and the benchmarked detection method with curve (ii). 

Their comparison shows that a maximum 56% of the 

simulated air leakages were detected faster, i.e. with a 

shorter delay, when the benchmarked method was used. 

Methods are equally effective for detecting an air 

leakage with a delay of 2324 observations. When 

detection delay exceeds 2324 observations, the studied 

method becomes more effective. 

For the delay of 3000 observations, the studied 

method failed to detect 16% of the simulated air 

leakages whereas the benchmarked method could not 

detect 37% of the simulated air leakages. This can be 

seen from the endpoint of curves (i) and (ii) in the Fig. 

5, section (b). 

Fig. 6, section (b), shows that the studied method is 

slower but more reliable than the benchmarked one, 

though reducing the type I error rate of the studied 

method impairs its detection speed and reliability. 

 

Figure 6. (a) Cumulative probability curve of the detection 

delay di when detection is based on the variance vector t
2 

of the combined ARMA(4, 4)+GARCH(1, 5) model.  

(b) Comparison of the cumulative probability curves: 

Curve (i) same as in section (a), curve (ii) when detection 

is based on the moving variance vector that is defined as a 

moving variance of the simulated pressure vector. 
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4 Conclusions 

An abnormally high variance increase in the critical 

process variable is often a sign of an incipient failure or 

other serious disturbance in the process. In this research, 

the use of the variance vector created using the 

combined ARMA+GARCH time series model was 

investigated to detect an abnormal variance increase 

reliably and with a minimum detection delay. The 

combined ARMA+GARCH model decomposes a 

critical variable signal to the standard Gaussian white 

noise signal and coefficients that determine the AR, MA 

and the GARCH effects. The variance vector is created 

based on the coefficients of the GARCH effect. It 

provides clear visibility to the variance behavior of the 

critical process variable due to the removed AR and MA 

effects that disturb the visibility of the variance 

behavior. The detection of abnormally high values in the 

variance vector was carried out by setting a detection 

limit based on the process phase that is known to be 

stable and faultless. 

A case study was conducted about the critical process 

variable, i.e. the pressure of the vacuum chamber in the 

paper machine. Process disturbance, i.e. air leakage in 

the vacuum chamber, was simulated due to its absence 

during the pressure measurement. The measured 

pressure data were used as a basis of the simulation. The 

simulation results proved that the studied method is 

somewhat slower but more reliable than the 

benchmarked one where the controlled variance vector 

is based on the stepwise moving variance of the critical 

process variable. The studied method failed to detect 

16% of the simulated air leakages whereas the 

benchmarked method failed to detect 37% of the 

simulated air leakages. 

The combined use of the ARMA and GARCH time 

series models for the Statistical Process Control in 

industry applications is a fruitful area for further 

research. When applying these methods in practice, it is 

beneficial to decompose the data close to their sources 

using combined ARMA+GARCH time series modelling 

and to broadcast the decomposition results onward. 
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