
Modeling and Simulation of Train Networks
using MaxPlus Algebra

Hazem Al-Bermanei1 Jari M. Böling2 Göran Högnäs 3

1Faculty of Business ICT and Life Sciences, Turku University of Applied Sciences, Turku, Finland, hazem.al-bermanei@turkuamk.fi.
2Department of Chemical Engineering, Åbo Akademi University, Turku, Finland, jboling@abo.fi.

 3Department of Mathematics and Statistics, Åbo Akademi University, Turku, Finland

Abstract
Max-plus algebra provides mathematical methods for
solving nonlinear problems that can be given the form
of linear problems. Problems of this type, sometimes of
an administrative nature, arise in areas such as
manufacturing, transportation, allocation of resources,
and information processing technology. Train networks
can be modelled as a directed graph, in which nodes
correspond to arrivals and departures at stations, and
arcs to travelling times. A particular difficulty is
represented by meeting conditions in a single-track
railway system. Compared to earlier work which
typically include numerical optimization, max-plus
formalism is used throughout this paper. The stability
and sensitivity of the timetable is analyzed, and
different types of delays and delay behavior are
discussed and simulated. Interpretation of the recovery
matrix is also done. A simple train network with real
world background is used for illustration.
Keywords: train schedules, meeting conditions, max-
plus algebra, discrete-event systems, delay sensitivity,
recovery matrix

1. Introduction
The increasingly saturated European railway
infrastructure has, among other concerns, drawn
attention to the stability of train schedules as they may
cause of domino effect delays across the entire
network. A train timetable must be insensitive with
regard to small disturbances so that recovery from such
disturbances can occur without external control. After a
break of self-regulation, this behavior schedule
requires the distribution of accurate recovery times and
buffer times to reduce delays and prevent the
propagation of delay, respectively. Schedule models
for railways are usually based on deterministic process
times (running times, and transfer times). Moreover,
running times are rounded and train tracks are modified
to fit the schedule or constraints. The validity of these
decisions and streamline schedules must be evaluated
to ensure the viability and stability and durability, with

respect to network mutual relations and differences in
process times. Train networks can be modeled using
max-plus algebra (D’Ariano et al., 2007). Stability can
be evaluated by calculating the eigenvalue of the
matrix in max-plus algebra (Baccelli et al., 1992; van
den Boom and De Schutter, 2004; van den Boom et al.,
2012; Corman et al., 2012). This eigenvalue is the
minimum cycle time required to satisfy all of the
schedule and progress constraints, where the timetable
operating with this eigenvalue time is given by the
associated eigenvector (Baccelli et al., 1992; De
Schutter and van den Boom, 2008). Thus, if the
eigenvalue λ is more than the intended length of the
schedule T, then the schedule is unstable. If λ<T the
schedule will be stable, and critical if λ=T (van den
Boom et al., 2012; Corman et al., 2012).
If individual trains are delayed, the effect on the whole
network is quite difficult to predict. Smaller delays can
typically be absorbed by speeding up the trains, and
this can be handled by using max-plus algebra. Larger
delays are often handled by rescheduling, typically
using optimization, see for example De Schutter et al.,
(2002); D’Ariano et al., (2007); Corman et al., (2012);
and van den Boom and De Schutter, (2004).

In this paper we study the impact of both permanent
and dynamic delays in a train network, but restrict
ourselves to using max-plus algebra, and thus we do
not consider rescheduling. So in practice our study is
limited to delays up to half of the cycle time. Meeting
conditions, including those introduced by having single
tracks, are also fully handled using max-plus state-
space formalism, by extending the state with delayed
states. When constructing a recovery matrix (van den
Boom et al., 2012). Of this extended system, it
naturally results in redundancy, as the same physical
state appears many times. This redundant recovery
information can however be incorrect, due to that no
constraints are specified for the delayed states, which
are only shifted copies of the most recent state. The
parts of the recovery matrix corresponding to the most
recent states are still valid.

EUROSIM 2016 & SIMS 2016

612DOI: 10.3384/ecp17142612 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

mailto:hazem.al-bermanei@turkuamk.fi
mailto:jboling@abo.fi
https://www.sciencedirect.com/science/article/pii/S0377221706010678?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0377221706010678?via%3Dihub#!

2. Max-plus algebra
In max-plus algebra we work with the max-plus semi-
ring which is the ℝ𝑚𝑚𝑚 = ℝ⋃{−∞} and the two binary
operations addition ⨁ and multiplication ⨂, which
are defined by:
𝑎⨁𝑏 = max(𝑎, 𝑏), 𝑎⨂𝑏 = 𝑎 + 𝑏, and (−∞) + 𝑎 =
−∞.
Define 𝜀 = −∞ and 𝑒 = 0. The additive and
multiplicative identities are thus 𝜀 and 𝑒 respectively
and the operations are associative, commutative and
distributive as in conventional algebra. Furthermore the
pair of operations),(⊗⊕ can be extended to matrices
and vectors similarly as in conventional linear algebra:

• For all 𝐴,𝐵 ∈ ℝ𝑚𝑎𝑥
𝑚×𝑛, (𝐴⨁𝐵)𝑖𝑖 = 𝑎𝑖𝑖⨁𝑏𝑖𝑖 =

max (𝑎𝑖𝑖 ,𝑏𝑖𝑖)
• For 𝐴 ∈ ℝ𝑚𝑚𝑚

𝑚×𝑛 and 𝐵 ∈ ℝ𝑚𝑚𝑚
𝑚×𝑛 define their

product by
(𝐴⨂𝐵)𝑖𝑖 = ⊕𝑗=1

𝑘 �𝑎𝑖𝑖⨂𝑏𝑖𝑖�
= max𝑗={1,2,…,𝑘}�𝑎𝑖𝑖 + 𝑏𝑖𝑖�

1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑙 ≤ 𝑝
The 𝑛 × 𝑛 identity matrix 𝐼𝑛 in max-plus is
defined as:

 𝐼𝑛 = �𝑒 if 𝑖 = 𝑗
𝜀 if 𝑖 ≠ 𝑗

For 𝐴 ∈ ℝ𝑚𝑚𝑚
𝑚×𝑛 , 𝐼𝑚⨂𝐴 = 𝐴⨂𝐼𝑛 = 𝐴

• For a square matrix A and positive integer n
the nth power of A is written as: 𝐴⨂𝑛 and it is
defined by

𝐴⨂𝑛 = 𝐴⨂𝐴⨂… … … … … .⨂𝐴���������������
𝑛 times

See also Heidegrott et al. (2006), De Schutter and van
den Boom (2004), and Baccelli et al. (1992).

3. Scheduled max-plus linear systems
Consider the train network in Figure 1 (vr.fi, 2014).
This is a simple network consisting of four stations,
Helsinki (H), Karjaa (K), Salo (S) and Turku (T). The
end stations are modeled with nodes for both arrival (A
in front of the city first letter) and departure (D). The
stops at the intermediate stations are short, and thus
only the departures are modeled. The weights 𝑑𝑖 on the
arcs corresponds to the traveling times, while 𝑑1 and
𝑑5 are service times at end stations. The stations
between Helsinki and Karjaa are connected by double
tracks, and the other connections are single tracks that
introduce meeting time conditions. There are five trains
available for this, which also introduce some
constraints:

Figure 1. The railroad network between Helsinki and
Turku in Finland.

Table 1 provides the schedule (vr.fi, 2014) of five
trains running regularly between Helsinki and Turku,
and gives the information in connection with the
nominal travelling times and the departures.

Table 1. Train time table for trains 1, …, 5 between
Turku and Helsinki in hours: minutes. Abbreviations:
D=departure, A=arrival, T=Turku, and H=Helsinki.

 1 2 3 4 5
DH 8:02 9:02 10:02 12:02 11:02
AT 10:00 11:00 12:00 14:00 13:00
DT 11:00 12:00 13:00 15:00 14:00
AH 12:58 13:58 14:58 16:58 15:58
DH 13:02 14:02 15:02 17:02 16:02
AT 15:00 16:00 17:00 19:00 18:00
DT 16:00 17:00 18:00 20:00 19:00
AH 17:58 18:58 19:58 21:58 20:58

Now, in order to define the train network as a discrete
event system (DES), a state vector is defined as
𝒙 = (𝒙𝑫𝑫,𝒙𝑲𝑲,𝒙𝑺𝑺,𝒙𝑨𝑨,𝒙𝑫𝑫,𝒙𝑺𝑺,𝒙𝑲𝑲,𝒙𝑨𝑨)𝑻

with descriptive subscripts:

DH= departure from
Helsinki

DT= departure
from Turku

KS= departure from
Karjaa to Salo

SK= Salo to
Karjaa

ST= Salo to Turku KH= Karjaa to
Helsinki

AT= arrival to Turku AH= arrival to
Helsinki

The argument k on the states denote the kth departure
or when indicated arrival to the end stations.
Furthermore k also indicates the train number, so that
𝑥𝐷𝐷 (𝑘) is the departure time from Helsinki for train
k, and 𝑥𝐴𝐴 (𝑘) is the arrival of the same train to
Turku.

The period of the time table is T=60 minutes. Due to
that we have only one track between Karjaa and Salo,
and between Salo and Turku, we get the following
meeting conditions:

EUROSIM 2016 & SIMS 2016

613DOI: 10.3384/ecp17142612 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

𝑥𝐾𝐾(𝑘) ≥ 𝑥𝐾𝐾(𝑘 − 3) (in Karjaa),

𝑥𝑆𝑆(𝑘) ≥ 𝑥𝑆𝑆(𝑘 − 2) (in Salo for the train going
towards Turku),

𝑥𝐷𝐷(𝑘) ≥ 𝑥𝐴𝐴(𝑘 + 1) (in Turku),

𝑥𝑆𝑆(𝑘) ≥ 𝑥𝑆𝑆(𝑘 + 2) (in Salo for the train going
towards Karjaa).

Combination of the meeting conditions and the
constraints introduced by travelling times gives the
following equations (the first one comes from having
only five trains):

𝑥𝐷𝐷 (𝑘) = 𝑥𝐴𝐴(𝑘 − 5) + 𝑑1,
𝑥𝐾𝐾(𝑘) = max�𝑥𝐷𝐷(𝑘) + 𝑑2,𝑥𝐾𝐾(𝑘 − 3)�
𝑥𝑆𝑆(𝑘) = max�𝑥𝐾𝐾(𝑘) + 𝑑3 ,𝑥𝑆𝑆(𝑘 − 2)�
𝑥𝐴𝐴(𝑘) = 𝑥𝑆𝑆(𝑘) + 𝑑4
𝑥𝐷𝐷(𝑘) = max�𝑥𝐴𝐴(𝑘) + 𝑑5,𝑥𝐴𝐴(𝑘 + 1)� (1)

𝑥𝑆𝑆(𝑘) = max �𝑥𝐷𝐷(𝑘) + 𝑑6 ,𝑥𝑆𝑆(𝑘 + 2)� (2)
𝑥𝐾𝐾(𝑘) = 𝑥𝑆𝑆(𝑘) + 𝑑7
𝑥𝐴𝐴(𝑘) = 𝑥𝐾𝐾(𝑘) + 𝑑8

In order to get an equation of type 𝑥(𝑘) = 𝐴⨂𝑥(𝑘 −
1), the right hand side expressions containing k or
higher indices are substituted with expressions
containing index k-1 at most:

𝑥𝐷𝐷 (𝑘) = 𝑥𝐴𝐴(𝑘 − 5) + 𝑑1,

𝑥𝐾𝐾(𝑘) = max�𝑥𝐴𝐴(𝑘 − 5) + 𝑑1 + 𝑑2,𝑥𝐾𝐾(𝑘 − 3)�,

𝑥𝑆𝑆(𝑘) = max(𝑥𝐴𝐴(𝑘 − 5) + 𝑑1 + 𝑑2 + 𝑑3, 𝑥𝑆𝑆(𝑘 −
2), 𝑥𝐾𝐾(𝑘 − 3) + 𝑑3),

𝑥𝐴𝐴(𝑘) = max(𝑥𝐴𝐴(𝑘 − 5) + 𝑑1 + 𝑑2 + 𝑑3 +
 𝑑4, 𝑥𝑆𝑆(𝑘 − 2) + 𝑑4, 𝑥𝐾𝐾(𝑘 − 3) + 𝑑3 +
𝑑4),

𝑥𝐷𝐷(𝑘) = max(𝑥𝐴𝐴(𝑘 − 5) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 +
𝑑5 ,𝑥𝑆𝑆(𝑘 − 2) + 𝑑4 + 𝑑5 , 𝑥𝐾𝐾(𝑘 − 3) +
𝑑3 + 𝑑4 + 𝑑5 , 𝑥𝐴𝐴(𝑘 − 4) + 𝑑1 + 𝑑2 +
𝑑3 + 𝑑4, 𝑥𝑆𝑆(𝑘 − 1) + 𝑑4, 𝑥𝐾𝐾(𝑘 − 2) +
𝑑3 + 𝑑4),

𝑥𝑆𝑆(𝑘) = max(𝑥𝐴𝐴(𝑘 − 5) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 +
𝑑5 + 𝑑6 , 𝑥𝑆𝑆(𝑘 − 2) + 𝑑4 + 𝑑5 +
𝑑6, 𝑥𝐾𝐾(𝑘 − 3) + 𝑑3 + 𝑑4 + 𝑑5 +
𝑑6,𝑥𝐴𝐴(𝑘 − 4) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 +
𝑑6, 𝑥𝑆𝑆(𝑘 − 1) + 𝑑4 + 𝑑6, 𝑥𝐾𝐾(𝑘 − 2) +
𝑑3 + 𝑑4 + 𝑑6,𝑥𝐴𝐴(𝑘 − 3) + 𝑑1 + 𝑑2 +
𝑑3, 𝑥𝐾𝐾(𝑘 − 1) + 𝑑3),

𝑥𝐾𝐾(𝑘) = max(𝑥𝐴𝐴(𝑘 − 5) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 +
𝑑5 + 𝑑6 + 𝑑7 , 𝑥𝑆𝑆(𝑘 − 2)+𝑑4 + 𝑑5 +
𝑑6 + 𝑑7 , 𝑥𝐾𝐾(𝑘 − 3) + 𝑑3 + 𝑑4 + 𝑑5 +
𝑑6 + 𝑑7,𝑥𝐴𝐴(𝑘 − 4) + 𝑑1 + 𝑑2 + 𝑑3 +
𝑑4 + 𝑑6 + 𝑑7, 𝑥𝑆𝑆(𝑘 − 1) + 𝑑4 + 𝑑6 +
𝑑7, 𝑥𝐾𝐾(𝑘 − 2) + 𝑑3 + 𝑑4 + 𝑑6 +

𝑑7,𝑥𝐴𝐴(𝑘 − 3) + 𝑑1 + 𝑑2 + 𝑑3 +
𝑑7, 𝑥𝐾𝐾(𝑘 − 1) + 𝑑3 + 𝑑7),

𝑥𝐴𝐴(𝑘) = max(𝑥𝐴𝐴(𝑘 − 5) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 +
𝑑5 + 𝑑6 + 𝑑7 + 𝑑8 , 𝑥𝑆𝑆(𝑘 − 2) + 𝑑4 +
𝑑5 + 𝑑6 + 𝑑7 + 𝑑8 , 𝑥𝐾𝐾(𝑘 − 3) + 𝑑3 +
𝑑4 + 𝑑5 + 𝑑6 + 𝑑7 + 𝑑8,𝑥𝐴𝐴(𝑘 − 4) +
𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 + 𝑑6 + 𝑑7 +
𝑑8, 𝑥𝑆𝑆(𝑘 − 1) + 𝑑4 + 𝑑6 + 𝑑7 +
𝑑8, 𝑥𝐾𝐾(𝑘 − 2) + 𝑑3 + 𝑑4 + 𝑑6 + 𝑑7 +
𝑑8 , 𝑥𝐴𝐴(𝑘 − 3) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑7 +
𝑑8, 𝑥𝐾𝐾(𝑘 − 1) + 𝑑3 + 𝑑7 + 𝑑8).

Define the augmented system 𝑥𝑗(𝑘) where
 𝑗 = 1,2,3, … ,40:

𝑥𝑗(𝑘) = 𝑥𝐷𝐷(𝑘 − 𝑗 + 1), 𝑗 = 1, … ,5

𝑥𝑗(𝑘) = 𝑋𝐾𝑆(𝑘 − 𝑗 + 6), 𝑗 = 6, … ,10

𝑥𝑗(𝑘) = 𝑥𝑆𝑆(𝑘 − 𝑗 + 11), 𝑗 = 11, … ,15

𝑥𝑗(𝑘) = 𝑥𝐴𝐴(𝑘 − 𝑗 + 16), 𝑗 = 16, … ,20

𝑥𝑗(𝑘) = 𝑥𝐷𝐷(𝑘 − 𝑗 + 21), 𝑗 = 21, … ,25

𝑥𝑗(𝑘) = 𝑥𝑆𝑆(𝑘 − 𝑗 + 26), 𝑗 = 26, … ,30

𝑥𝑗(𝑘) = 𝑥𝐾𝐾(𝑘 − 𝑗 + 31), 𝑗 = 31, … ,35

𝑥𝑗(𝑘) = 𝑥𝐴𝐴(𝑘 − 𝑗 + 36), 𝑗 = 36, … ,40⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 (3)

This means that 𝑥𝑖(𝑘) = 𝑥𝑖−1(𝑘 − 1) for
𝑖 = 2,3, … … … … . , 40 except 𝑖 = 1, 6, 11, 16,21,26,31
and 36. The main equations using numbers as
subscripts then become as follows:
𝑥1 (𝑘) = 𝑥40(𝑘 − 1) + 𝑑1 ,
𝑥6(𝑘) = max�𝑥40(𝑘 − 1) + 𝑑1 + 𝑑2,𝑥33(𝑘 − 1)�,
𝑥11(𝑘) = max(𝑥40(𝑘 − 1) + 𝑑1 + 𝑑2 + 𝑑3,𝑥27(𝑘 −

1), 𝑥33(𝑘 − 1) + 𝑑3),
𝑥16(𝑘) = max(𝑥40(𝑘 − 1) + 𝑑1 + 𝑑2 + 𝑑3 +

𝑑4, 𝑥27(𝑘 − 1) + 𝑑4, 𝑥33(𝑘 − 1) + 𝑑3 +
𝑑4),

𝑥21(𝑘) = max(𝑥40(𝑘 − 1) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 +
𝑑5 , 𝑥27(𝑘 − 1) + 𝑑4 + 𝑑5 , 𝑥33(𝑘 − 1) +
𝑑3 + 𝑑4 + 𝑑5,𝑥39(𝑘 − 1) + 𝑑1 + 𝑑2 +
𝑑3 + 𝑑4, 𝑥26(𝑘 − 1) + 𝑑4, 𝑥32(𝑘 − 1) +
𝑑3 + 𝑑4),

𝑥26(𝑘) = max(𝑥40(𝑘 − 1) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 +
𝑑5 + 𝑑6 , 𝑥27(𝑘 − 1) + 𝑑4 +
𝑑5+𝑑6, 𝑥33(𝑘 − 1) + 𝑑3 + 𝑑4 + 𝑑5 +
𝑑6,𝑥39(𝑘 − 1) + 𝑑1 + 𝑑2 + 𝑑3 +
𝑑4 + 𝑑6, 𝑥26(𝑘 − 1) + 𝑑4 + 𝑑6, 𝑥32(𝑘 −
1) + 𝑑3 + 𝑑4 + 𝑑6,𝑥38(𝑘 − 1) + 𝑑1 +
𝑑2 + 𝑑3,𝑥31(𝑘 − 1) + 𝑑3),

𝑥31(𝑘) = max(𝑥40(𝑘 − 1) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 +
𝑑5 + 𝑑6 + 𝑑7 , 𝑥27(𝑘 − 1)+𝑑4 + 𝑑5 +
𝑑6 + 𝑑7 , 𝑥33(𝑘 − 1) + 𝑑3 + 𝑑4 + 𝑑5 +
𝑑6 + 𝑑7,𝑥39(𝑘 − 1) + 𝑑1 + 𝑑2 + 𝑑3 +

EUROSIM 2016 & SIMS 2016

614DOI: 10.3384/ecp17142612 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

𝑑4 + 𝑑6 + 𝑑7, 𝑥26(𝑘 − 1) + 𝑑4 + 𝑑6 +
𝑑7 , 𝑥32(𝑘 − 1) + 𝑑3 + 𝑑4 + 𝑑6 +
𝑑7,𝑥38(𝑘 − 1) + 𝑑1 + 𝑑2 + 𝑑3 +
𝑑7,𝑥31(𝑘 − 1) + 𝑑3 + 𝑑7), and

 𝑥36(𝑘) = max(𝑥40(𝑘 − 1) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 +
𝑑5 + 𝑑6 + 𝑑7 + 𝑑8 , 𝑥27(𝑘 − 1) + 𝑑4 +
𝑑5 + 𝑑6 + 𝑑7 + 𝑑8 , 𝑥33(𝑘 − 1) + 𝑑3 +
𝑑4 + 𝑑5 + 𝑑6 + 𝑑7 + 𝑑8,𝑥39(𝑘 − 1) +
𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 + 𝑑6 + 𝑑7 +
𝑑8, 𝑥26(𝑘 − 1) + 𝑑4 + 𝑑6 + 𝑑7 +
𝑑8, 𝑥32(𝑘 − 1) + 𝑑3 + 𝑑4 + 𝑑6 + 𝑑7 + 𝑑8,
𝑥38(𝑘 − 1) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑7 +
𝑑8 , 𝑥31(𝑘 − 1) + 𝑑3 + 𝑑7 + 𝑑8).

If we rewrite the above evolution equations as a max-
plus-linear discrete event systems state space model of
the form

𝑥(𝑘) = 𝐴⨂𝑥(𝑘 − 1) (4)

we obtain a square matrix 𝐴 of size 40×40. For
example the 36th row in the matrix 𝐴 is:
[𝜀 . 𝜀 148 208 ε ε ε
115 175 235 ε ε ε ε 180 240 300],
where the entry 148 has column index 26.
The power method (Baccelli et al., 1992; van den
Boom and De Schutter, 2004; De Schutter and van den
Boom, 2008) is used for finding the eigenvalue λ of the
matrix A. The method means repetitive multiplications
𝑥(𝑘) = 𝐴⨂𝑥(𝑘 − 1) = 𝐴⨂𝑘⨂𝑥(0), and it stops when
there are integers 𝑖 > 𝑗 ≥ 0 and a real number c for
which
𝑥(𝑖) = 𝑥(𝑗)⨂𝑐. The eigenvalue is then given by
𝜆(𝐴) = 𝑐

𝑖−𝑗
. In this case, using 𝑥(0) = 𝟎, iteration

according Equation 2 gives

𝑥(12) = 𝐴 ⊗ 𝑥(11) = [664 604 544 484 424 725
665 605 545 485 52 692 632 572 512 782
722 662 602 542 842 782 722 662 602 872
812 752 692 632 900 840 780 720 660 960 900
840 780 720]𝑇,

𝑥(13) = 𝐴 ⊗ 𝑥(12)
= [724 664 604 544 484 785 725 665 605 545
 812 752 692 632 572 842 782 722 662 602
 902 842 782 722 662 932 872 812 752 692
 960 900 840 780 720 1020 960 900 840 780]𝑇
 and
𝑥(13) = 𝑥(12)⨂60
Thus the eigenvalue is 𝜆(𝐴) = 60/(13− 12) = 60. The
eigenvalue represents the cycle of the schedule which
means that the trains start from each station every 60
minutes.

This also means that 𝑥(13) is an eigenvector, and
(𝑥(13) − 𝑐), where c is any constant, is also an
eigenvector. One eigenvector of 𝐴 is 𝑣 where
𝑣 = [0 −60 −120 −180 −240 61 1 −59 −119

 −179 88 28 −32 −92 −152 118 58 −2 (5)

 −62 −122 178 118 58 −2 −6 208 148
 88 28 −32 236 176 116 56 −2 296
 236 176 116 56]𝑇

 This eigenvector v includes the schedule of the trains,
relative to the last departure from Helsinki (the first
element of v). So the element -240 means that five
departures back a train from Helsinki left 240 minutes
ago, and the element 296 means that it takes 296
minutes for a train to come back to Helsinki.

4. Timetable stability
4.1 Delay sensitivity analysis
All the travel times 𝑑𝑖 introduced in the Section 3,
consist of a minimal travel time and a slack time. Here
it is assumed that the minimal travel time is 90% of the
nominal time, and the slack is thus 10%. For the small
waiting time 𝑑1 in Helsinki it is assumed that there is
no slack.

Handling delays is a relevant and common problem in
train networks, and the sensitivity of delays can be
analyzed using max-plus models. A permanent delay
means that the nominal travel times is increased, which
is compensated for by decreasing the other travel times
to their minimal values. This gives a slightly different
system, for which a new eigenvalue can be calculated.
The relative and absolute limits for increasing the
different travelling times individually without violation
of the roundtrip time (i.e. 𝜆 > 𝑇) are presented in
Table 2.

Table 2: Delay sensitivity of the different traveling
times.

Traveling time
with delay

𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 𝑑7 𝑑8

Relative limit 440
%

18
%

28
%

10
%

10
%

10
%

27.5
%

19.3
%

Absolute limit
(min)

17.
6

11.
5

7.8 3 6 3 7.7 11.6

Table 2 show the maximal value that a single travelling
time 𝑑𝑖 can be increased, and still get the nominal
roundtrip time (given by the eigenvalue of the
modified matrix) by decreasing all the other travelling
times to their minimal values. For example if we
increase 𝑑7 by 27.5% which is equal to 7.7 minutes,
and reduce all the other travelling times to their
minimal values, we will still get the eigenvalue λ=60.

A limitation with the analysis is that it assumes a
permanent change in the delays, and results concerns
only steady state. It does not give information about
dynamic delay propagation, which is the theme of the
following section.

EUROSIM 2016 & SIMS 2016

615DOI: 10.3384/ecp17142612 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

4.2 Dynamic Delay Propagation
The delay sensitivity analysis in Section 4.1 assumed
that we had permanent changes in the travelling times.
A more normal situation is that the delay only concerns
one single travel time, which means that the
corresponding max-plus system matrix becomes time
varying, due to that the travel times 𝑑𝑖 become time
varying (indicated by an index k). This is so due to the
meeting conditions, that is Equations (1) and (2), where
future states 𝑥𝐴𝐴(𝑘 + 1) and 𝑥𝑆𝑆(𝑘 + 2) appear. These are
expanded to max(𝑥𝐴𝐴(𝑘 − 4) + 𝑑1(𝑘 + 1) + 𝑑2(𝑘 + 1) +
𝑑3(𝑘 + 1) + 𝑑4(𝑘 + 1), 𝑥𝑆𝑆(𝑘 − 1) + 𝑑4(𝑘 + 1), 𝑥𝐾𝐾(𝑘 −
2) + 𝑑3(𝑘 + 1) + 𝑑4(𝑘 + 1)) and max(𝑥𝐴𝐴(𝑘 − 3) + 𝑑1(𝑘 +
2) + 𝑑2(𝑘 + 2) + 𝑑3(𝑘 + 2), 𝑥𝐾𝐾(𝑘 − 1) + 𝑑3(𝑘 + 2))
respectively. As indicated with iteration indices newer
versions of travel times are needed in these equations.
Speeding up can also only be done after the delay has
appeared, which in our case means that after a delay in
𝑑𝑖(𝑘) only the traveling times 𝑑𝑗(𝑘) with 𝑗 > 𝑖, can be
decreased in the same iteration k. In the next iteration
all the traveling times can be decreased.
In Table 3 it has been tested how long it takes for a
delay of 10, 20 and 30 minutes respectively in a certain
travel time, to disappear from the system.

Table 3: Times expressed in minutes that it takes for a
delay in a certain traveling time to disappear from the
system.

Travel

Time

Delay 10

min

Delay 20

min

Delay 30

min

𝑑1 89.2 182.4 301.3

𝑑2 88.3 182.4 300.4

𝑑3 93,2 182.4 300.4

𝑑4 91 185.1 303.1

𝑑5 91 185.1 303.1

𝑑6 93.2 182.4 300.4

𝑑7 68 184.2 305.3

𝑑8 89.2 182.4 301.3

The calculation of the disappearance of a delay can be
done as follows. Let 𝑀𝑛denote a matrix with the nominal
timetables, that is 𝑀𝑛 = [𝑣, 𝑣⨂𝑇, 𝑣⨂𝑇⨂2, …], and Md is a
matrix with the delayed arrival and departure times at
corresponding times. The part of the time tables that can
be used for selecting the part of the time table that is
affected by a delay using the logical expression (𝑀𝑑 −
𝑀𝑛) > 0 . This means that the time instant of the last
delay 𝑡𝑑 can be found using
𝑡𝑑 = max �𝑀𝑑�(𝑀𝑑 −𝑀𝑛) > 0� − 𝑀𝑛(𝑖, 𝑗)�,
where i, j are the timetable indices when actual first delay
take place. For example 88.3 in on second row second

column in Table 3 means that if the single travelling time
𝑑2 is increased by 10 minutes, and the travelling times 𝑑3,
𝑑4, 𝑑5, 𝑑6, 𝑑7 and 𝑑8 are speeded up to their minimal
values, then the time instant of the last deviation from the
time table is 88.3 minutes after the delay.

4.3 Recovery Matrix
In Goverde (2007) max-plus linear systems are written
in polynomial form,

𝑥(𝑘) = 𝐴0⨂𝑥(𝑘)⨁𝐴⨂𝑥(𝑘 − 1)⨁𝑤(𝑘) (6)

where 𝐴 is defined as in Equation (4), 𝐴0 is the matrix
describing the direct connections from 𝑥(𝑘) to 𝑥(𝑘),
and 𝑤(𝑘) is the nominal departure times in period 𝑘.
𝐴0 is in this case given by all the direct travelling times
𝑑𝑖, including all delayed states, such that

𝐴0(𝑚 + 5,𝑚) = 𝑑𝑖, for 𝑚 = (𝑖 − 1)5 + 𝑛, for all
𝑛 = 1,2, … 5, and for all 𝑖 = 2, 3, … 8.

All the other elements of 𝐴0 are 𝜀, as there are no
direct connections. The departure times are given by
the eigenvector 𝑣 in Equation 5, and the period 𝑇
according to 𝑤(𝑘) = 𝑇⨂𝑘⨂𝑣. The polynomial
equation can be written using a single matrix 𝐴𝑝,
according
𝑥(𝑘) = 𝐴𝑝⨂𝑥(𝑘 − 1)⨁𝑤(𝑘) (7)

where 𝐴𝑝 = 𝐴0⨁𝐴⨂𝑇⨂−1.

Definition: Consider the max-plus linear system in
Equation (7). The entry 𝑟𝑖𝑖 of the recovery matrix 𝑅 is
defined as the maximum delay of 𝑥𝑗(𝑚) such that
𝑥𝑖(𝑘) is not delayed for any 𝑘 > 𝑚 (Goverde 2007).
The following equation (Baccelli et al., 1992;
Goverde 2007) defines the elements of the recovery
matrix,
𝑟𝑖𝑖 = 𝑤𝑖 − 𝑤𝑗 − �𝐴𝑝+�𝑖𝑖,
where the 𝑤𝑖 and 𝑤𝑗 are element of vector 𝑤,

∞
+ ⊗

=
= ⊕

1

k
p pk

A A , and the notation �𝐴𝑝+�𝑖𝑖 refers to the ijth

element of the matrix 𝐴𝑝+. If in the graph of 𝐴𝑝+ no path
exists from node j to node i then 𝑟𝑖𝑖 = ∞. The
recovery matrix thus takes values from the extended
set ℝ�𝑚𝑚𝑚 = ℝ𝑚𝑚𝑚 ∪ {∞}.
In the studied train network between Helsinki and
Turku, constructed from Table 1 presented in Figure 1,
the recovery matrix R is of size 40 × 40, with 𝑇 =
60. A 20 × 20 submatrix of that matrix is given in
Table 4.
According to Goverde, (2007), the 𝑗𝑡ℎ column of the
recovery matrix R gives the recovery time from event j
to all other events in the timetable and thus represents
the impact a delay of event j has on future train events,
and the 𝑖𝑡ℎ row of the recovery matrix R gives the
recovery time from event i from all other events in the

EUROSIM 2016 & SIMS 2016

616DOI: 10.3384/ecp17142612 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

timetable and thus represents the sensitivity of event i
on delays of preceding events. The diagonal elements
of R again represent recovery times to the event itself.
In our example, most of our states are delayed versions
of previous states. As can be noted in Table 4, not all
diagonal elements representing the same departure at
different times are same. For example, 𝑟16,16 = 12,
 𝑟18,18 = 22.5 and 𝑟19,19 = 29.6, although these
elements all correspond to the event “arrival in Turku”
at times 𝑘, 𝑘 − 2 and 𝑘 − 3 respectively. As k is
arbitrary, all these recovery elements should logically
be the same. This is not so because the delayed
versions are just memory variables, for which no other
constraints than the back shifting according Equation 3
is present, and thus the recovery matrix is not correct
for these. Thus in our example only every fifth row in
the recovery matrix show true recovery times, and
these are shown in Table 5.

The recovery matrix take in the consideration only one
train not the whole system and it gives all the
information for the delay of one train only. A 0 in the
recovery matrix means a tight schedule, with no slack.

For example the first row in the reduced recovery
matrix is easy to interpret; the first value is 29.6, which
is the total slack for a single train. After that the slack
is reduced by the slack in corresponding travel time, up
to the final value 0, which corresponds to that no slack
is present in the 4 minute waiting time in Helsinki
(𝑑1). All the other travelling times are assumed to have
10% slack. The other zero (row 11, columns 26) is due
to a meeting condition (in Salo).

The results shown in Table 2 can also be calculated
using recovery matrix calculations. In Table 2 it was
assumed that we have a permanent delay in one travel
time. The maximum tolerance for a permanent delay in
one travel time can be obtained by increasing the
corresponding travel time in the recovery matrix, until
we start getting negative entries on the relevant
diagonal elements in the recovery matrix (the ones

indicated by green in Table 5).

The results in Table 3 can only partially be calculated
using recovery matrix calculations. In Table 3 certain
temporary delays (10, 20 and 30 minutes) were
considered. In Table 3 it can be seen that the time it

Table 4: The upper left quadrant of the recovery matrix, with diagonal element shaded.

Table 5: The relevant parts of the recovery matrix. Diagonal elements highlighted by green, and recovery times

related to a full cycle is highlighted with orange

EUROSIM 2016 & SIMS 2016

617DOI: 10.3384/ecp17142612 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

takes for the system to catch up after delays of 30
minutes, are all slightly more than 300 minutes. This is
not a coincidence, in most cases it is the delayed train
itself that uses most time to catch up, and the recovery
time 29.6 in positions highlighted with orange, it
means that if we have a delay which is larger than 29.6,
it will take more than 300 minutes (i.e. a full cycle) for
the system to catch up.

5. Conclusions
This paper described how a max-plus model for a train
system can be constructed. Meeting conditions caused
by having a single track, and other physical constrains,
have been handled by extending the state space with
delayed states, which has enabled rewriting the state
update equation in the form 𝑥(𝑘) = 𝐴⊗ 𝑥(𝑘 − 1).
Static and dynamic delay sensitivity of the network has
been analyzed by modifying the 𝐴-matrix, and using
eigenvalue calculations. The such obtained results were
compared to standard recovery matrix based
calculations. A recovery matrix for the chosen
extended state space becomes large, and contains even
irrelevant information. Guidelines for finding and
interpreting the relevant information from the recovery
matrix have been discussed. Max-plus formalism was
used throughout this paper.

References
Andrea D’Ariano, Dario Pacciarelli, Marco Pranzo. A branch

and bound algorithm for scheduling trains in a railway
network. European Journal of Operational Research
183(2):643-657, 2007.

Francois Baccelli, Guy Cohen , Geert Jan Olsder, Jean-Pierre
Quadrat. Synchronization and Linearity - An Algebra for
Discrete Event Systems, Wiley, New York, 1992.

Ton J.J. van den Boom, Bart De Schutter. Modeling and
control of railway networks. In proceedings of the 2004
American Control Conference. Vol. 6, 5728-5733 IEEE,
2004.

Ton J.J. van den Boom, Bart Kersbergen, Bart De Schutter.
Structured modeling, analysis, and control of complex
railway operations. In Proceedings of the 51st IEEE Confer-
ence on Decision and Control, Maui, Hawaii,
7366-7371, 2012.

Francesco Corman, Andrea D’Ariano, Dario Pacciarelli,
Marco Pranzo. Bi-objective conflict detection and
resolution in railway traffic management. Transportation
Research Part C: Emerging Technologies 20(1):79-94,
2012.

Bart De Schutter, Ton J.J. van den Boom. Max-plus algebra
and max-plus linear discrete event systems: An
introduction. In proceedings of 9th International
Workshop on Discrete Event Systems, IEEE,2008

Bart De Schutter, Ton J.J. van den Boom, Andreas Hegyi. A
model predictive control approach for recovery from

delays in railway systems. Transportation Research
Record 1793:15-20, 2002.

Rob M.P. Goverde. Railway timetable stability analysis
using max-plus system theory, Transportation Research
Part B: Methodological, 41(2): 179-201, 2007.

Rob M.P. Goverde. A delay propagation algorithm for large-
scale railway traffic networks, Transportation Research
Part C: Emerging Technologies, 18(3): 269-287, 2010.

Bernd Heidergott, Geert Jan Olsder, Jacob van der Woude.
Max Plus at Work. Princeton, New Jersey: Princeton
University Press, 2006.

Pavle Kecman, Francesco Corman, Andrea D’Ariano, Rob
M.P. Goverde. Rescheduling models for railway traffic
management in large-scale networks. Public Transport,
5(1-2): 95-123, 2013.

Timetables for long-distance trains between Turku and
Helsinki, available on https://www.vr.fi/cs/vr/en/long-
distance_timetables (accessed 6th of March 2014).

EUROSIM 2016 & SIMS 2016

618DOI: 10.3384/ecp17142612 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

https://www.sciencedirect.com/science/article/pii/S0377221706010678?via%3Dihub#!
https://www.vr.fi/cs/vr/en/long-distance_timetables
https://www.vr.fi/cs/vr/en/long-distance_timetables

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	Introduction
	Calculation formulas
	Calculation of Intra-Ocular Lens for Non-Normal Eyes

	Back ground of studies
	Artificial Neural Network
	Real data
	Collected Data
	Specification of Patients Data Selected for Collection
	Specification of Preprocessing Parameters

	Results
	Objective
	ANN training
	ANN settings
	Results

	Conclusion
	Future work
	Introduction
	Homeostasis, Disturbance Rejection and Set Point Tracking
	Controller Motifs

	Results
	Dynamic Properties of Controller Motifs
	Tuning of Individual Controllers

	Conclusions
	Introduction
	Modelling the pharmacokinetics of propofol
	The 3-compartmental model
	Effect-site concentration model
	Model parameters

	Model verification
	Simulation results
	Propofol inflow
	Plasmatic concentration
	Effect-site concentration
	Evaluation of the predictive quality of the model

	Conclusion
	Introduction
	Modular Model Predictive Control Concept
	Building Setup
	Modular Predictive Control Concept

	Energy Supply Level - ESS - Models
	Linear Models
	Hybrid Models

	Model Predictive Controllers
	Objective Function
	LMPC
	MI-MPC

	Simulation Results
	Simulation Setup
	Demonstration of MPCC Performance
	Comparison between MPCC and RBC

	Conclusion
	Introduction
	Data Properties
	Macro Money Systems in QEs
	Behavior in QE1=(2008m11,2010m06)
	Behavior in QE2+=(2010m11,2012m08)
	Behavior in QE3=(2012m09,2014m10)

	Transmission Path of Housing Price from Reserve to Economic Activity
	Decomposition of M2 into Transaction and Precautionary Money Demands in (1975m10, 2016m03)
	Estimation of Precautionary Money Demand
	The Role of Business Condition u(t)=napm-50 in Transmission Mechanism of QEMP during QE1, QE2+ and QE3

	Conclusion
	Introduction
	Mathematical Model
	Model Parameters and Geometry
	Results and Discussions
	Conclusions
	Introduction
	Field Excitation Control
	Capability Curve
	Classical Control

	Concept and Formulation of MPC
	MPC as Excitation Control
	Modeling and Control Workflow

	Tuning the MPC Controller
	Time Response
	Open Circuit Conditions

	First-swing Angle Stability Enhancement
	Long-term Voltage Stability Enhancement
	Steady-state Voltage Stability
	Power System Simulator
	LTVS Simulations

	Discussion
	Conclusion
	Introduction
	Grid impedance model
	Impedance-based instability studies
	Practical implementation
	Conclusion
	Aknowledgements
	Introduction
	Literature Review
	Circulating Fluidized Bed Boilers
	Characteristics of RDF
	Agglomeration

	Methodology
	Description of Model
	Mass and Energy Balances
	Hydrodynamics

	Results and Discussion
	Validation
	Agglomerate Prediction

	Conclusion
	Introduction
	Theory
	Stability of Grid-Connected System
	Maximum-Length Binary Sequence

	Implementation in dSPACE
	System Setup
	Experiment

	Conclusions
	Introduction
	Governing Equation for Flow Modeling
	KP Numerical Scheme
	Simulation of the River Flow
	Results and Discussion
	Simulation Results
	Simulation Results for Numerical Stability Analysis

	Conclusion
	Introduction
	Air preparation process
	Fuzzy identification
	Takagi-Sugeno fuzzy model
	Fuzzy clustering

	Data collection
	Structure selection
	Input and output variables
	Representation of the systems' dynamics
	Fuzzy models granularity

	Fuzzy clustering and model validation
	Comments on resulting model performance

	Control experiments
	PID control
	Supervisory logic

	Conclusions
	Introduction
	First step - DES model
	Second Step - Portfolio optimization

	Stochastic DES model through markovian properties
	Product-Form Networks - Convolution algorithm
	Marginal probability
	Mean response time

	Load-haulage cycle
	DES model: Load-haulage system
	Project portfolio formulation
	Conclusion
	Introduction
	Overview of the Method
	Computing the Encounter Probabilities
	Example

	State Transition Matrix
	Projectile with a Single Sensor Fuzed Submunition
	Example
	Projectile with Two Sensor Fuzed Submunitions

	Failure Probability of the System
	Conclusion
	Hydro-pneumatic Accumulator
	Recent Research
	Purpose of This Study

	Logical Structure of Simulation Model
	Physics of Piston Type Hydro-Pneumatic Accumulator
	Nitrogen gas
	Mechanical Structure
	Hydraulic Fluid

	Conceptual Model

	Mathematical Model
	Equations for Nitrogen Gas
	Equations for Piston
	Equations for Friction
	Equations for Hydraulic Fluid
	Equations for Orifice

	Modelling in MATLAB/Simulink
	Calibration and Validation of the Simulation Model
	Testing Setup
	Laboratory Tests
	Validation

	Conclusion
	Introduction
	Contributions
	Setup for the analysis
	Experimental data
	Compressor Map
	Compressor Isentropic Efficiency
	Corrected Mass Flow
	Data Treatment

	 Pressure Losses in Gas Stand
	Pressure Loss in Straight Pipe
	Friction Factor - Laminar Flow
	Friction Factor - Turbulent Flow
	Pressure Loss In Bend
	Pressure Loss in Inlet Nozzle and Outlet Diffuser
	Adjust Measured Data
	Calculate New Compressor Efficiency

	Effect of pressure losses on measured compressor efficiency
	Compressor and Pipes Dimensions
	Case 1: Straight Pipes
	Case 2: Pipes with Diffuser and Nozzle
	Case 3: Pipes with Diffuser, Nozzle and Bend

	Summary and Discussion
	Future Work
	Conclusion
	Introduction
	Traffic Regulation: Stage selection
	Signal Control Schemes
	Pre-timed network control
	Max-Pressure Practical (MPract)

	Modelling and Simulation Overview
	An event-driven approach
	PointQ design

	Case Study-Data description
	From theory to applications
	System Stability
	Trajectory Delay Measurement
	Queue Delay Measurement
	Varying Traffic Conditions

	 PointQ versus AIMSUN Network Performance
	Evolution of phase (137,154)
	Evolution of phase (254,237)

	Conclusion
	Introduction
	Background
	MVB and Master Transfer
	Multifunction Vehicle Bus
	Mastership Transfer

	Model Checking with temporal logic

	System Modelling
	Bus Administrator Modelling
	basic data structure
	finite state machine of Bus Administrator

	Communication and Timing Modelling
	communication mechanism of BusAdmin
	timing mechanism

	Property Modelling
	Property Classification
	safety property
	liveness property

	Live sequence charts
	Observer Automata modelling

	Experiments
	Conclusion
	Introduction
	Experimental data
	Modeling
	Compressor
	Turbine
	EGR Blowers
	Auxiliary Blower
	Exhaust Back Pressure
	Combustion Species and Thermodynamic Parameters

	Parameterization Procedure
	Complete stationary parameterization
	Dynamic estimation

	Model Validation
	Conclusions
	Nomenclature
	Introduction
	Fundamentals
	Safe Active Learning
	The high pressure fuel supply system

	Design and Implementation
	Training of the hyperparameters
	The discriminative model
	The risk function
	The path to the next sample
	The algorithm

	Evaluation
	Evaluation in simulation
	Evaluation at a test vehicle

	Conclusion
	Introduction
	Modelling
	Centre of Gravity
	Aerodynamic Forces
	Definition of Angles
	Lever Arms
	Catenary
	Equations of Motion
	Velocities
	Self Stabilisation
	Complete Model

	Model Parameters
	Simulation Results
	Gliding Flight
	Towing Process

	Conclusions
	Introduction
	Context
	Compton scattering tomography (CST)

	Modelling of the new CST modality
	Proposed setup by back-scattering
	Direct problem : Image formation
	The half-space Radon transform (HRT)
	Image formation

	Inverse problem : Object Reconstruction
	Inversion of the HRT
	Filtered back-projection

	Simulation of the new CST modality
	Energy resolution of the detector
	Spatial discretization
	Window functions

	Conclusion and perspectives
	Introduction
	Powertrain model
	Problem formulation
	Tip-in problem constraints
	Boundary conditions for the tip-in problem
	Path constraints during tip-in

	Optimal control problem formulation
	Numerical solution of optimal control problems

	Optimal control results
	Extreme transients
	Compromise between time, Jerk and energy
	Jerk-Energy trade-off
	Efficient state and control transients

	Conclusions
	An Improved Kriging Model Based on Differential Evolution
	1 Introduction
	2 Theory of kriging model
	3 Kriging model based on DE algorithm
	3.1 Theory of DE algorithm
	3.2 Kriging interpolation based on DE algorithm
	3.3 Process of kriging Model based on DE algorithm

	4 An engineering example
	4.1 Setting DE algorithm parameters
	4.2 Data preprocessing
	4.3 Model computation and optimization

	5 Conclusion
	Introduction
	Model for slug flow
	Simulation for slug flow
	State estimation
	Control strategies
	Model predictive control
	PI control

	Simulation results and discussion
	Control structure I
	Control structure II
	Control structure III

	Computational time for MPC
	Maximum valve opening
	Conclusion
	Introduction
	Description of the loading bridge
	Modelling with Modelica
	Package of mechanical components Mechanics
	Package of causal components Blocks
	Structure and components of the overall model
	Model of the loading bridge
	World
	Cart
	Pendulum
	Drive

	Controller in Matlab Simulink environment
	Experiments
	Open loop experiments
	Closed loop experiments

	Conclusion
	Introduction
	MMT - Mathematics, Modelling and Tools
	Structure of MMT
	Usage of MMT

	Maple T.A. - Maple Testing and Assessment
	Structure MTA
	Usage MTA
	Mathapps
	MTA - Moodle Connector

	Case Study
	Conclusion
	Outlook
	Introduction
	Signal processing
	DFT and derivatives
	lp-norms and MIT-indices
	Nadaraya-Watson nonparametric regression

	Measurements and gearbox properties
	Load haul dumper front axle
	Water power station gearboxes

	Calculations from the LHD measurements
	Calculations from the WPS measurements
	Conclusion
	Introduction
	Preliminaries
	Problem Statement
	Vector Smoothing Splines

	Trajectory Planning
	Trajectory between Two Lines
	Centerline and Intermediate Time Instants
	Smoothing Spline Trajectory

	Numerical Examples
	Path with Piecewise Linear Boundaries
	Path in Obstacle Avoidance Problem

	Concluding Remarks
	Introduction
	Literature Review
	Dynamic multi-workstation model based on electrical components

	Simulation Model with a PI Controller
	Test and Results
	Final Remarks
	Introduction
	Related Work
	Methodology
	DataSet

	Semantic Identification Through Multiple Classifiers
	Global Feature Extraction through Wavelet Decomposition
	Deep Learning of Neural Network

	Image Retrieval
	Performance Analysis
	Conclusion
	Motivation
	Related work
	Data set and pre-processing
	Defining the curvature of a steel plate
	Experiment
	Discussion
	Conclusion
	Introduction
	New Evolutionary Computation
	Island model parallel distributed in NN-DEGA
	Self-adaptive using Neural Network
	Reconstruction of differential vector
	Elite strategy

	Numerical Experiments
	Benchmark Functions
	Experiment Results
	Comparison for Robustness

	Conclusion
	Introduction
	Classical RF Prediction
	Fuzzy Clustering Prediction
	Analysis
	Conclusion
	Introduction
	Dynamic Artificial Neural Network
	Back Propagation Through Time (BPTT)
	Real Time Recurrent Learning (RTRL)
	Extended Kalman Filter Learning (EKF)

	Experimental Set-up
	Results
	Simulation Study
	Experimental Study

	Conclusion
	Introduction
	Overview of Toolbox
	DANN Main
	Uploading data set
	Division of data set
	Validation check
	Bias
	Learning algorithm
	Learning parameters
	Past inputs and outputs
	Additional parameters

	Parameter Tuning
	Plot Menu
	Performance plot
	Regression plot
	Prediction plot
	Parameter plot
	Error plot

	Additional information
	Installing the MATLAB DANN toolbox

	Case Studies
	Case I: BPTT learning algorithm for flow measurement
	Case II: EKF learning algorithm for temperature measurement
	Case III: RTRL learning algorithm for mortality prediction

	Conclusion
	Modeling and Simulation of Train Networks Using Max-Plus Algebra
	1. Introduction
	2. Max-plus algebra
	3. Scheduled max-plus linear systems
	4. Timetable stability
	4.1 Delay sensitivity analysis
	4.2 Dynamic Delay Propagation
	4.3 Recovery Matrix

	5. Conclusion
	Introduction
	Construction of DBN metamodels
	Utilization of DBN metamodels
	Example analysis - simulated operation of air base
	Conclusion
	Introduction
	Metastable liquids

	Model for two phase flow and phase transition
	The van der Waals equation of state

	Solver
	Stiff pressure relaxation
	Stiff thermodynamic relaxation

	Experiments
	Simulation set-up
	Results and discussion
	Conclusion
	Introduction
	ParModelica
	Previous Research on PDEs in Modelica
	Partial Differential Equations (PDE)
	Explicit Form

	Numerics
	Discretisation
	Runge-Kutta with Variable Step Length

	General-Purpose Computing on Graphics Processing Units (GPGPU)
	PDEs in Modelica
	Algorithmic Modelica and ParModelica
	Solver Framework
	User Defined State Derivative and Settings
	Types Used by the Solver
	Solvers

	Use Case — Heat in Plane
	Poor Insulation and Constant Temperature
	Constant Temperature Depending on Location

	Performance Measurement
	Pros & Cons of Solver Written in Modelica
	Conclusions
	Blood Flow in the Abdominal Aorta Post 'Chimney' Endovascular Aneurysm Repair
	1 Introduction
	2 Methodology
	2.1 Governing Equations
	2.2 Anatomical Model
	2.3 Numerical Model
	2.4 Numerical Discretization

	3 Results
	3.1 Validation
	3.2 Flow Patterns
	3.3 Flow Regime

	4 Discussion and Conclusions
	Introduction
	Spin-Image Algorithm
	The Proposed Parallel Spin-Images Algorithm
	Results and Analysis
	Platform Specification
	Experimental Data
	Results

	Conclusions and future work
	Introduction
	Overview of Python API
	Goal
	Installing the OMPython Extension
	Status
	Description of the API
	Python Class and Constructor
	Utility Routines, Converting Modelica FMU
	Getting and Setting Information
	Operating on Python Object: Simulation, Optimization
	Operating on Python Object: Linearization

	Use of API for Model Analysis
	Case Study: Simple Tank Filled with Liquid
	Model Summary
	Modelica Encoding of Model
	Use of Python API
	Basic Simulation of Model
	Parameter Sensitivity/Monte Carlo Simulation

	Discussion and Conclusions
	Introduction
	Related Work
	Virtual Testing of Open embedded Systems
	Simulator Coupling for Network Simulation
	Network Fault Injection Testing
	Case Study
	Conclusions and future work
	Validation Method for Hardware-in-the-Loop Simulation Models
	1 Introduction
	2 Validation Methods
	2.1 Open-Loop Operation
	2.2 Independent Closed-Loop Operation
	2.3 Compensated Closed-Loop Operation

	3 Related Work
	3.1 Example Circuit
	3.2 Simulation Models

	4 Simulation Results
	4.1 Models with Different Switching Delays
	4.2 Discrete-Time Models
	4.3 Fixed-Point Models

	5 Conclusion
	Introduction
	Control Engineering: The Teacher's Challenge
	New Curriculum For Teaching Automatic Control
	Luma Activity
	Conclusion
	Introduction
	The Activated Sludge Process
	Mass balances and expression for the sludge age
	The settler

	ASP with ideal settler model
	Steady-state solutions
	Substrate input-output relationship for constant sludge age

	ASP with DZC settler model
	Steady-state solutions
	Substrate input-output relation for constant sludge age

	An approximation for S* given 0
	Numerical example
	Theorem 1
	Theorem 2

	Conclusions
	Introduction
	Materials and Methods
	Gaussian Mixture Models
	GMM based fault detection criteria

	Case Study: Monitoring a Secondary Settler
	Results
	Discussions
	Conclusions
	Introduction
	Industrial Process Description
	SIAAP Waste water and sewage Sludge Treatment Process
	Incineration Process
	The Furnace
	The Heat Exchanger

	Identification Process Overview
	Sludge Incineration sub-models: Input-output interaction.
	Identification Strategy

	Validation Methods
	Absolute Criteria
	Relative reference-model criteria

	Results and Discussions
	Relative Reference-Model Criteria Results

	Conclusion
	1 Introduction
	2 Modelling
	2.1 Basic Process Components
	2.2 Boiler Evaporator Loop
	2.3 Test Model

	3 Simulation Tests
	3.1 Comparison of Numerical Solvers
	3.2 Effects of Initial State and Parameters

	4 Conclusions
	Introduction
	TCP-100 solar field description
	Mathematical modeling of TCP-100 solar field
	 Optical and geometric efficiencies
	Characteristics of the heat transfer fluid
	Thermal losses

	Simulations
	Conclusion
	Introduction
	Description of a Basic Gas Turbine Model
	Compressor
	Combustion Chamber
	Turbine Module

	Computational Causality And Conditions for Numerical Convergence
	First Principles Compression and Expansion Maps
	Compression Case
	Expansion Case

	Simulation Results
	Conclusion
	Appendix
	Introduction
	Modelling methodology, libraries and tools
	Plant Description
	Innovative aspects
	OTSG topology

	Device modelling
	Re-used components
	Custom component models
	Separator
	Feedwater heater
	Deaerator
	MS fluid model

	Plant modelling
	OTSG model
	Turbine model
	Feedwater preheaters train
	Plant control system
	Complete plant model

	Simulation objectives - methodology
	Simulation performance
	Conclusion
	Introduction
	Formal Problem Statement and SVM
	SVM by Set-Valued Training Data
	A Modification of the AdaBoost
	Imprecise Updating Weights of Robots
	Conclusion
	Introduction
	Methodology
	Power grid connection
	Electrolyser
	Interim gas storages
	Methanation
	MEA CO2 capture
	CH4 compression

	Control sequences
	CH4 compression
	Start-up
	Power grid connection
	Methanation reactor
	Electrolysers
	Interim gas storages
	CH4 compression

	Shutdown
	Methanation reactor
	CH4 compression
	Interim gas storages
	Electrolysers

	Results
	Conclusion and future work
	Acknowledgment
	Introduction
	Mathematical Model
	Assumptions
	Development of Model
	Material Balance
	Energy Balance
	Heat Exchanger

	Simulation Results and Discussion
	Simulation Results
	Comparison with Previous Work

	Conclusions
	1 Introduction
	2 Herding behavior of rhinos
	2.1 A synoptic model of space use
	2.2 Population size updating model

	3 Rhino herd (RH) algorithm
	3.1 Synoptic model
	3.2 Population size updating model
	3.3 RH algorithm

	4 Simulation results
	5 Discussions and conclusions
	Acknowledgements
	References

	Introduction
	Structure and Kinematics of the Double-Spiral Mobile Robot
	Structure
	Forward kinematics
	Gripper positions
	COG

	NESM
	Numerical Case Study
	Conditions and methods
	Results

	Discussion
	Conclusion
	Introduction
	Data analysis
	Nonlinear scaling
	Interactions
	Uncertainty
	Natural language

	Recursive analysis
	Scaling
	Interactions
	Fuzzy logic
	Smart adaptive systems

	Temporal analysis
	Trend indices
	Fluctuations
	Changes of operating conditions

	Conclusion
	Introduction
	MOEA/D
	Algorithm
	Focused Issue

	Proposed Method: Chain-Reaction Initial Solution Arrangement
	Aim and Concept
	Method

	Experimental Settings
	Results and Discussion
	Search Performance at Final Generation
	Search Performance over Generations

	Conclusions
	Introduction
	Modeling demand-side management
	Markets
	Actors
	Other elements

	Controlling consumption
	Optimizing scheduling
	Controlling (via) frequency

	Discussion and conclusions
	Introduction
	Components and Parameters of Musical Expression
	Learning Support System of Musical Representation
	Generation of Example of Musical Expression
	Construction of Kansei Space
	Image Estimation
	Parameter Values Estimation using Fuzzy Inference
	Interactive Modification of Musical Expression

	Comparison of Parameter of Musical Expression
	Advice for Parameter of Musical Expression

	Range of Learner's Musical Expression on Kansei Space
	Estimation of Range of Musical Expression
	Advice about Impression

	Experiment
	Results and Discussions

	Conclusion
	Introduction
	Formulating the GA Optimization
	The Problem Encoding
	The Objective Function (Fitness)
	Selecting The GA Operators
	Tuning the GA Parameters

	FPGA Implementation
	GA's HDL Entities
	Fitness
	Selection
	Crossover
	Mutation
	Generating Pseudo Random Sequences
	Replacement

	Performance Evaluation
	Functional Verification
	Fitness
	Selection
	Replacement
	Crossover
	Mutation
	LFSRs
	Comparator

	Integrating GA into the SoC
	Interfacing GA with the HPS
	Controlling GA from the Linux host

	Conclusion and Future Work
	Introduction
	Related Work
	Earthmoving Simulator
	Workspace Subdivision with Scoop Area
	High Point and Zero Contour Methods
	Simulation Results and Discussion
	Conclusion and Future Work
	Introduction
	SDNized Wireless LAN Testbed
	 Central Manager
	 Aggregator and Transport Network
	 Network Edge
	 Android Measurement Application
	Experiment Automation

	Mobility Management - A Use-Case Scenario Implementation
	Mobility Handling in Developed Testbed
	Logging
	Running the Experiment
	Parsing and aggregating results

	Conclusion

