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Abstract
Max-plus algebra provides mathematical methods for
solving nonlinear problems that can be given the form
of linear problems. Problems of this type, sometimes of
an administrative nature, arise in areas such as
manufacturing, transportation, allocation of resources,
and information processing technology. Train networks
can be modelled as a directed graph, in which nodes
correspond to arrivals and departures at stations, and
arcs to travelling times. A particular difficulty is
represented by meeting conditions in a single-track
railway system. Compared to earlier work which
typically include numerical optimization, max-plus
formalism is used throughout this paper. The stability
and sensitivity of the timetable is analyzed, and
different types of delays and delay behavior are
discussed and simulated. Interpretation of the recovery
matrix is also done. A simple train network with real
world background is used for illustration.
Keywords:     train schedules, meeting conditions, max-
plus algebra, discrete-event systems, delay sensitivity, 
recovery matrix

1. Introduction
The increasingly saturated European railway
infrastructure has, among other concerns, drawn
attention to the stability of train schedules as they may
cause of domino effect delays across the entire
network. A train timetable must be insensitive with
regard to small disturbances so that recovery from such
disturbances can occur without external control. After a
break of self-regulation, this behavior schedule
requires the distribution of accurate recovery times and
buffer times to reduce delays and prevent the
propagation of delay, respectively. Schedule models
for railways are usually based on deterministic process
times (running times, and transfer times). Moreover,
running times are rounded and train tracks are modified
to fit the schedule or constraints. The validity of these
decisions and streamline schedules must be evaluated
to ensure the viability and stability and durability, with

respect to network mutual relations and differences in 
process times. Train networks can be modeled using 
max-plus algebra (D’Ariano et al., 2007). Stability can 
be evaluated by calculating the eigenvalue of the 
matrix in max-plus algebra (Baccelli et al., 1992; van 
den Boom and De Schutter, 2004; van den Boom et al., 
2012; Corman et al., 2012). This eigenvalue is the 
minimum cycle time required to satisfy all of the 
schedule and progress constraints, where the timetable 
operating with this eigenvalue time is given by the 
associated eigenvector (Baccelli et al., 1992; De 
Schutter and van den Boom, 2008). Thus, if the 
eigenvalue λ is more than the intended length of the 
schedule T, then the schedule is unstable. If λ<T the 
schedule will be stable, and critical if λ=T (van den 
Boom et al., 2012; Corman et al., 2012). 
If individual trains are delayed, the effect on the whole 
network is quite difficult to predict. Smaller delays can 
typically be absorbed by speeding up the trains, and 
this can be handled by using max-plus algebra. Larger 
delays are often handled by rescheduling, typically 
using optimization, see for example De Schutter et al., 
(2002); D’Ariano et al., (2007); Corman et al., (2012); 
and van den Boom and De Schutter, (2004). 

In this paper we study the impact of both permanent 
and dynamic delays in a train network, but restrict 
ourselves to using max-plus algebra, and thus we do 
not consider rescheduling. So in practice our study is 
limited to delays up to half of the cycle time. Meeting 
conditions, including those introduced by having single 
tracks, are also fully handled using max-plus state-
space formalism, by extending the state with delayed 
states. When constructing a recovery matrix (van den 
Boom et al., 2012).  Of this extended system, it 
naturally results in redundancy, as the same physical 
state appears many times. This redundant recovery 
information can however be incorrect, due to that no 
constraints are specified for the delayed states, which 
are only shifted copies of the most recent state. The 
parts of the recovery matrix corresponding to the most 
recent states are still valid. 

EUROSIM 2016 & SIMS 2016

612DOI: 10.3384/ecp17142612       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

mailto:hazem.al-bermanei@turkuamk.fi
mailto:jboling@abo.fi
https://www.sciencedirect.com/science/article/pii/S0377221706010678?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0377221706010678?via%3Dihub#!


2. Max-plus algebra 
In max-plus algebra we work with the max-plus semi-
ring which is the ℝ𝑚𝑚𝑚 = ℝ⋃{−∞} and the two binary 
operations addition ⨁ and multiplication ⨂, which 
are defined by: 
𝑎⨁𝑏 = max(𝑎, 𝑏),  𝑎⨂𝑏 = 𝑎 + 𝑏, and (−∞) + 𝑎 =
−∞. 
Define 𝜀 = −∞ and 𝑒 = 0. The additive and 
multiplicative identities are thus 𝜀 and  𝑒 respectively 
and the operations are associative, commutative and 
distributive as in conventional algebra. Furthermore the 
pair of operations ),( ⊗⊕  can be extended to matrices 
and vectors similarly as in conventional linear algebra:  

• For all 𝐴,𝐵 ∈ ℝ𝑚𝑚𝑚
𝑚×𝑛, (𝐴⨁𝐵)𝑖𝑖 = 𝑎𝑖𝑖⨁𝑏𝑖𝑖 =

max (𝑎𝑖𝑖 ,𝑏𝑖𝑖) 
• For 𝐴 ∈ ℝ𝑚𝑚𝑚

𝑚×𝑛 and  𝐵 ∈ ℝ𝑚𝑚𝑚
𝑚×𝑛 define their 

product by  
(𝐴⨂𝐵)𝑖𝑖 = ⊕𝑖=1

𝑘 �𝑎𝑖𝑖⨂𝑏𝑖𝑖� 
= max𝑖={1,2,…,𝑘}�𝑎𝑖𝑖 + 𝑏𝑖𝑖�  

1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑙 ≤ 𝑝 
The 𝑛 × 𝑛 identity matrix 𝐼𝑛 in max-plus is 
defined as: 

 𝐼𝑛 = �𝑒          if  𝑖 = 𝑗
𝜀          if 𝑖 ≠ 𝑗   

For 𝐴 ∈ ℝ𝑚𝑚𝑚
𝑚×𝑛 , 𝐼𝑚⨂𝐴 = 𝐴⨂𝐼𝑛 = 𝐴 

• For a square matrix A and positive integer n 
the nth power of A is written as: 𝐴⨂𝑛 and it is 
defined by 

𝐴⨂𝑛 = 𝐴⨂𝐴⨂… … … … … .⨂𝐴���������������
𝑛 times

 

See also Heidegrott et al. (2006), De Schutter and van 
den Boom (2004), and Baccelli et al. (1992). 

3. Scheduled max-plus linear systems 
Consider the train network in Figure 1 (vr.fi, 2014). 
This is a simple network consisting of four stations, 
Helsinki (H), Karjaa (K), Salo (S) and Turku (T). The 
end stations are modeled with nodes for both arrival (A 
in front of the city first letter) and departure (D). The 
stops at the intermediate stations are short, and thus 
only the departures are modeled. The weights 𝑑𝑖 on the 
arcs corresponds to the traveling times, while 𝑑1 and  
𝑑5 are service times at end stations. The stations 
between Helsinki and Karjaa are connected by double 
tracks, and the other connections are single tracks that 
introduce meeting time conditions. There are five trains 
available for this, which also introduce some 
constraints: 

   
Figure 1. The railroad network between Helsinki and 
Turku in Finland. 

Table 1 provides the schedule (vr.fi, 2014) of five 
trains running regularly between Helsinki and Turku, 
and gives the information in connection with the 
nominal travelling times and the departures.  

Table 1. Train time table for trains 1, …, 5 between 
Turku and Helsinki in hours: minutes. Abbreviations: 
D=departure, A=arrival, T=Turku, and H=Helsinki. 

 1 2 3 4 5 
DH 8:02 9:02 10:02 12:02 11:02 
AT 10:00 11:00 12:00 14:00 13:00 
DT 11:00 12:00 13:00 15:00 14:00 
AH 12:58 13:58 14:58 16:58 15:58 
DH 13:02 14:02 15:02 17:02 16:02 
AT 15:00 16:00 17:00 19:00 18:00 
DT 16:00 17:00 18:00 20:00 19:00 
AH 17:58 18:58 19:58 21:58 20:58 

 
Now, in order to define the train network as a discrete 
event system (DES), a state vector is defined as       
𝒙 =  (𝒙𝑫𝑫,𝒙𝑲𝑲,𝒙𝑲𝑺,𝒙𝑨𝑺,𝒙𝑫𝑺,𝒙𝑲𝑲,𝒙𝑲𝑫,𝒙𝑨𝑫)𝑺   

with descriptive subscripts: 

DH= departure from 
Helsinki 

DT= departure 
from Turku 

KS= departure from 
Karjaa to Salo 

SK= Salo to 
Karjaa 

ST= Salo to Turku KH= Karjaa to 
Helsinki 

AT= arrival to Turku AH= arrival to 
Helsinki 

              
The argument k on the states denote the kth departure 
or when indicated arrival to the end stations. 
Furthermore k also indicates the train number, so that 
𝑥𝐷𝐷 (𝑘) is the departure time from Helsinki for train 
k, and 𝑥𝐴𝐴 (𝑘) is the arrival of the same train to 
Turku. 

The period of the time table is T=60 minutes. Due to 
that we have only one track between Karjaa and Salo, 
and between Salo and Turku, we get the following 
meeting conditions: 

EUROSIM 2016 & SIMS 2016

613DOI: 10.3384/ecp17142612       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



               
𝑥𝐾𝐾(𝑘) ≥ 𝑥𝐾𝐷(𝑘 − 3)  (in Karjaa), 

𝑥𝐾𝐴(𝑘) ≥ 𝑥𝐾𝐾(𝑘 − 2)        (in Salo for the train going 
towards Turku),  

𝑥𝐷𝐴(𝑘) ≥ 𝑥𝐴𝐴(𝑘 + 1)  (in Turku), 

𝑥𝐾𝐾(𝑘) ≥ 𝑥𝐾𝐴(𝑘 + 2)        (in Salo for the train going 
towards Karjaa).              

Combination of the meeting conditions and the 
constraints introduced by travelling times gives the 
following equations (the first one comes from having 
only five trains):  

𝑥𝐷𝐷 (𝑘) = 𝑥𝐴𝐷(𝑘 − 5) + 𝑑1, 
𝑥𝐾𝐾(𝑘) = max�𝑥𝐷𝐷(𝑘) + 𝑑2,𝑥𝐾𝐷(𝑘 − 3)�  
𝑥𝐾𝐴(𝑘) = max�𝑥𝐾𝐾(𝑘) + 𝑑3 ,𝑥𝐾𝐾(𝑘 − 2)� 
𝑥𝐴𝐴(𝑘) = 𝑥𝐾𝐴(𝑘) + 𝑑4 
𝑥𝐷𝐴(𝑘) = max�𝑥𝐴𝐴(𝑘) + 𝑑5,𝑥𝐴𝐴(𝑘 + 1)�                (1) 

𝑥𝐾𝐾(𝑘) = max �𝑥𝐷𝐴(𝑘) + 𝑑6 ,𝑥𝐾𝐴(𝑘 + 2)�                             (2) 
𝑥𝐾𝐷(𝑘) = 𝑥𝐾𝐾(𝑘) + 𝑑7 
𝑥𝐴𝐷(𝑘) = 𝑥𝐾𝐷(𝑘) + 𝑑8 

In order to get an equation of type 𝑥(𝑘) = 𝐴⨂𝑥(𝑘 −
1), the right hand side expressions containing k or 
higher indices are substituted with expressions 
containing index k-1 at most: 

𝑥𝐷𝐷 (𝑘) = 𝑥𝐴𝐷(𝑘 − 5) + 𝑑1, 

𝑥𝐾𝐾(𝑘) = max�𝑥𝐴𝐷(𝑘 − 5) + 𝑑1 + 𝑑2,𝑥𝐾𝐷(𝑘 − 3)�,  

𝑥𝐾𝐴(𝑘) = max(𝑥𝐴𝐷(𝑘 − 5) + 𝑑1 + 𝑑2 + 𝑑3, 𝑥𝐾𝐾(𝑘 −
2),  𝑥𝐾𝐷(𝑘 − 3) + 𝑑3), 

𝑥𝐴𝐴(𝑘) = max(𝑥𝐴𝐷(𝑘 − 5) + 𝑑1 + 𝑑2 + 𝑑3 +
 𝑑4,  𝑥𝐾𝐾(𝑘 − 2) + 𝑑4,  𝑥𝐾𝐷(𝑘 − 3) + 𝑑3 +
𝑑4 ), 

𝑥𝐷𝐴(𝑘) = max(𝑥𝐴𝐷(𝑘 − 5) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 +
𝑑5 ,𝑥𝐾𝐾(𝑘 − 2) + 𝑑4 + 𝑑5 ,  𝑥𝐾𝐷(𝑘 − 3) +
𝑑3 + 𝑑4 + 𝑑5 , 𝑥𝐴𝐷(𝑘 − 4) + 𝑑1 + 𝑑2 +
𝑑3 + 𝑑4,  𝑥𝐾𝐾(𝑘 − 1) + 𝑑4,  𝑥𝐾𝐷(𝑘 − 2) +
𝑑3 + 𝑑4), 

𝑥𝐾𝐾(𝑘) = max(𝑥𝐴𝐷(𝑘 − 5) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 +
𝑑5 + 𝑑6 ,  𝑥𝐾𝐾(𝑘 − 2) + 𝑑4 + 𝑑5 +
𝑑6,  𝑥𝐾𝐷(𝑘 − 3) + 𝑑3 + 𝑑4 + 𝑑5 +
𝑑6,𝑥𝐴𝐷(𝑘 − 4) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 +
𝑑6,  𝑥𝐾𝐾(𝑘 − 1) + 𝑑4 + 𝑑6,  𝑥𝐾𝐷(𝑘 − 2) +
𝑑3 + 𝑑4 + 𝑑6,𝑥𝐴𝐷(𝑘 − 3) + 𝑑1 + 𝑑2 +
𝑑3,  𝑥𝐾𝐷(𝑘 − 1) + 𝑑3), 

𝑥𝐾𝐷(𝑘) = max(𝑥𝐴𝐷(𝑘 − 5) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 +
𝑑5 + 𝑑6 + 𝑑7 ,  𝑥𝐾𝐾(𝑘 − 2)+𝑑4 + 𝑑5 +
𝑑6 + 𝑑7 ,  𝑥𝐾𝐷(𝑘 − 3) + 𝑑3 + 𝑑4 + 𝑑5 +
𝑑6 + 𝑑7,𝑥𝐴𝐷(𝑘 − 4) + 𝑑1 + 𝑑2 + 𝑑3 +
𝑑4 + 𝑑6 + 𝑑7,  𝑥𝐾𝐾(𝑘 − 1) + 𝑑4 + 𝑑6 +
𝑑7,  𝑥𝐾𝐷(𝑘 − 2) + 𝑑3 + 𝑑4 + 𝑑6 +

𝑑7,𝑥𝐴𝐷(𝑘 − 3) + 𝑑1 + 𝑑2 + 𝑑3 +
𝑑7,  𝑥𝐾𝐷(𝑘 − 1) + 𝑑3 + 𝑑7), 

𝑥𝐴𝐷(𝑘) = max(𝑥𝐴𝐷(𝑘 − 5) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 +
𝑑5 + 𝑑6 + 𝑑7 + 𝑑8 ,  𝑥𝐾𝐾(𝑘 − 2) + 𝑑4 +
𝑑5 + 𝑑6 + 𝑑7 + 𝑑8 ,  𝑥𝐾𝐷(𝑘 − 3) + 𝑑3 +
𝑑4 + 𝑑5 + 𝑑6 + 𝑑7 + 𝑑8,𝑥𝐴𝐷(𝑘 − 4) +
𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 + 𝑑6 + 𝑑7 +
𝑑8,  𝑥𝐾𝐾(𝑘 − 1) + 𝑑4 + 𝑑6 + 𝑑7 +
𝑑8,  𝑥𝐾𝐷(𝑘 − 2) + 𝑑3 + 𝑑4 + 𝑑6 + 𝑑7 +
𝑑8 ,  𝑥𝐴𝐷(𝑘 − 3) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑7 +
𝑑8,  𝑥𝐾𝐷(𝑘 − 1) + 𝑑3 + 𝑑7 + 𝑑8 ). 

Define the augmented system 𝑥𝑖(𝑘) where 
  𝑗 = 1,2,3, … ,40: 

𝑥𝑖(𝑘) = 𝑥𝐷𝐷(𝑘 − 𝑗 + 1), 𝑗 = 1, … ,5

𝑥𝑖(𝑘) = 𝑋𝐾𝐾(𝑘 − 𝑗 + 6), 𝑗 = 6, … ,10

𝑥𝑖(𝑘) = 𝑥𝐾𝐴(𝑘 − 𝑗 + 11), 𝑗 = 11, … ,15

𝑥𝑖(𝑘) = 𝑥𝐴𝐴(𝑘 − 𝑗 + 16), 𝑗 = 16, … ,20

𝑥𝑖(𝑘) = 𝑥𝐷𝐴(𝑘 − 𝑗 + 21), 𝑗 = 21, … ,25

𝑥𝑖(𝑘) = 𝑥𝐾𝐾(𝑘 − 𝑗 + 26),  𝑗 = 26, … ,30

𝑥𝑖(𝑘) = 𝑥𝐾𝐷(𝑘 − 𝑗 + 31), 𝑗 = 31, … ,35

𝑥𝑖(𝑘) = 𝑥𝐴𝐷(𝑘 − 𝑗 + 36), 𝑗 = 36, … ,40⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 (3) 

 

This means that  𝑥𝑖(𝑘) = 𝑥𝑖−1(𝑘 − 1)   for    
𝑖 = 2,3, … … … … . , 40 except 𝑖 = 1, 6, 11, 16,21,26,31 
and 36. The main equations using numbers as 
subscripts then become as follows: 
𝑥1 (𝑘) = 𝑥40(𝑘 − 1) + 𝑑1 , 
𝑥6(𝑘) = max�𝑥40(𝑘 − 1) + 𝑑1 + 𝑑2,𝑥33(𝑘 − 1)�, 
𝑥11(𝑘) = max(𝑥40(𝑘 − 1) + 𝑑1 + 𝑑2 + 𝑑3,𝑥27(𝑘 −

1),  𝑥33(𝑘 − 1) + 𝑑3), 
𝑥16(𝑘) = max(𝑥40(𝑘 − 1) + 𝑑1 + 𝑑2 + 𝑑3 +

𝑑4,  𝑥27(𝑘 − 1) + 𝑑4,  𝑥33(𝑘 − 1) + 𝑑3 +
𝑑4), 

𝑥21(𝑘) = max(𝑥40(𝑘 − 1) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 +
𝑑5 ,  𝑥27(𝑘 − 1) + 𝑑4 + 𝑑5 ,  𝑥33(𝑘 − 1) +
𝑑3 + 𝑑4 + 𝑑5,𝑥39(𝑘 − 1) + 𝑑1 + 𝑑2 +
𝑑3 + 𝑑4,  𝑥26(𝑘 − 1) + 𝑑4,  𝑥32(𝑘 − 1) +
𝑑3 + 𝑑4),  

𝑥26(𝑘) = max(𝑥40(𝑘 − 1) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 +
𝑑5 + 𝑑6 , 𝑥27(𝑘 − 1) + 𝑑4 +
𝑑5+𝑑6,  𝑥33(𝑘 − 1) + 𝑑3 + 𝑑4 + 𝑑5 +
𝑑6,𝑥39(𝑘 − 1) + 𝑑1 + 𝑑2 + 𝑑3 +
𝑑4 + 𝑑6,  𝑥26(𝑘 − 1) + 𝑑4 + 𝑑6,  𝑥32(𝑘 −
1) + 𝑑3 + 𝑑4 + 𝑑6,𝑥38(𝑘 − 1) + 𝑑1 +
𝑑2 + 𝑑3,𝑥31(𝑘 − 1) + 𝑑3 ),  

𝑥31(𝑘) = max(𝑥40(𝑘 − 1) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 +
𝑑5 + 𝑑6 + 𝑑7 ,  𝑥27(𝑘 − 1)+𝑑4 + 𝑑5 +
𝑑6 + 𝑑7 ,  𝑥33(𝑘 − 1) + 𝑑3 + 𝑑4 + 𝑑5 +
𝑑6 + 𝑑7,𝑥39(𝑘 − 1) + 𝑑1 + 𝑑2 + 𝑑3 +
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𝑑4 + 𝑑6 + 𝑑7,  𝑥26(𝑘 − 1) + 𝑑4 + 𝑑6 +
𝑑7 ,  𝑥32(𝑘 − 1) + 𝑑3 + 𝑑4 + 𝑑6 +
𝑑7,𝑥38(𝑘 − 1) + 𝑑1 + 𝑑2 + 𝑑3 +
𝑑7,𝑥31(𝑘 − 1) + 𝑑3 + 𝑑7), and 

 𝑥36(𝑘) = max(𝑥40(𝑘 − 1) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 +
𝑑5 + 𝑑6 + 𝑑7 + 𝑑8 ,  𝑥27(𝑘 − 1) + 𝑑4 +
𝑑5 + 𝑑6 + 𝑑7 + 𝑑8 ,  𝑥33(𝑘 − 1) + 𝑑3 +
𝑑4 + 𝑑5 + 𝑑6 + 𝑑7 + 𝑑8,𝑥39(𝑘 − 1) +
𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 + 𝑑6 + 𝑑7 +
𝑑8,  𝑥26(𝑘 − 1) + 𝑑4 + 𝑑6 + 𝑑7 +
𝑑8,  𝑥32(𝑘 − 1) + 𝑑3 + 𝑑4 + 𝑑6 + 𝑑7 + 𝑑8,
𝑥38(𝑘 − 1) + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑7 +
𝑑8 ,  𝑥31(𝑘 − 1) + 𝑑3 + 𝑑7 + 𝑑8).  

If we rewrite the above evolution equations as a max-
plus-linear discrete event systems state space model of 
the form 

𝑥(𝑘) = 𝐴⨂𝑥(𝑘 − 1) (4) 

we obtain a square matrix 𝐴 of size 40×40. For 
example the 36th row in the matrix 𝐴 is: 
[𝜀 . . . . . . . . . . . . . . . . . . . . . . .  𝜀  148   208  ε   ε   ε  
115   175   235   ε  ε  ε  ε   180   240   300],  
where the entry 148 has column index 26. 
The power method (Baccelli et al., 1992; van den 
Boom and De Schutter, 2004; De Schutter and van den 
Boom, 2008) is used for finding the eigenvalue λ of the 
matrix A. The method means repetitive multiplications 
𝑥(𝑘) = 𝐴⨂𝑥(𝑘 − 1) = 𝐴⨂𝑘⨂𝑥(0), and it stops when 
there are integers 𝑖 > 𝑗 ≥ 0 and a real number c for 
which  
𝑥(𝑖) = 𝑥(𝑗)⨂𝑐. The eigenvalue is then given by 
𝜆(𝐴) = 𝑐

𝑖−𝑖
. In this case, using 𝑥(0) = 𝟎, iteration 

according Equation 2 gives  

𝑥(12) = 𝐴 ⊗  𝑥(11) = [664  604  544  484  424  725  
665  605 545  485   52  692  632  572  512  782 
722  662  602  542  842  782  722  662  602  872   
812  752  692 632  900  840  780  720  660  960  900   
840  780 720]𝐴, 

𝑥(13) = 𝐴 ⊗  𝑥(12)
= [724  664  604   544  484  785   725   665   605   545   
    812  752   692   632   572   842   782   722  662   602 
    902  842  782  722  662  932  872  812  752  692    
    960  900  840  780  720  1020   960  900  840 780 ]𝐴 
 and 
𝑥(13) = 𝑥(12)⨂60       
Thus the eigenvalue is  𝜆(𝐴) = 60/(13− 12) = 60. The 
eigenvalue represents the cycle of the schedule which 
means that the trains start from each station every 60 
minutes.  

This also means that 𝑥(13)  is an eigenvector, and 
(𝑥(13) − 𝑐), where c is any constant, is also an 
eigenvector. One eigenvector of  𝐴 is 𝑣 where 
𝑣 = [0 −60 −120 −180 −240 61 1 −59 −119 

   −179 88  28 −32  −92 −152 118 58 −2 (5) 

          −62 −122 178 118 58 −2 −6 208 148 
           88   28    −32  236 176 116 56 −2 296 
           236 176 116 56]𝐴 
 

 This eigenvector v includes the schedule of the trains, 
relative to the last departure from Helsinki (the first 
element of v). So the element -240 means that five 
departures back a train from Helsinki left 240 minutes 
ago, and the element 296 means that it takes 296 
minutes for a train to come back to Helsinki. 

4. Timetable stability 
4.1 Delay sensitivity analysis 
All the travel times 𝑑𝑖 introduced in the Section 3, 
consist of a minimal travel time and a slack time. Here 
it is assumed that the minimal travel time is 90% of the 
nominal time, and the slack is thus 10%. For the small 
waiting time 𝑑1 in Helsinki it is assumed that there is 
no slack. 

Handling delays is a relevant and common problem in 
train networks, and the sensitivity of delays can be 
analyzed using max-plus models. A permanent delay 
means that the nominal travel times is increased, which 
is compensated for by decreasing the other travel times 
to their minimal values. This gives a slightly different 
system, for which a new eigenvalue can be calculated. 
The relative and absolute limits for increasing the 
different travelling times individually without violation 
of the roundtrip time (i.e. 𝜆 > 𝑇) are presented in 
Table 2. 

Table 2: Delay sensitivity of the different traveling 
times.  

Traveling time 
with delay 

𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 𝑑7 𝑑8 

Relative limit 440
% 

18
% 

28
% 

10
% 

10
% 

10
% 

27.5
% 

19.3
% 

Absolute limit 
(min) 

17.
6 

11.
5 

7.8 3 6 3 7.7 11.6 

  
Table 2 show the maximal value that a single travelling 
time 𝑑𝑖 can be increased, and still get the nominal 
roundtrip time (given by the eigenvalue of the 
modified matrix) by decreasing all the other travelling 
times to their minimal values. For example if we 
increase 𝑑7 by 27.5% which is equal to 7.7 minutes, 
and reduce all the other travelling times to their 
minimal values, we will still get the eigenvalue  λ=60. 

A limitation with the analysis is that it assumes a 
permanent change in the delays, and results concerns 
only steady state. It does not give information about 
dynamic delay propagation, which is the theme of the 
following section. 
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4.2 Dynamic Delay Propagation 
The delay sensitivity analysis in Section 4.1 assumed 
that we had permanent changes in the travelling times. 
A more normal situation is that the delay only concerns 
one single travel time, which means that the 
corresponding max-plus system matrix becomes time 
varying, due to that the travel times 𝑑𝑖 become time 
varying (indicated by an index k). This is so due to the 
meeting conditions, that is Equations (1) and (2), where 
future states 𝑥𝐴𝐴(𝑘 + 1) and 𝑥𝐾𝐴(𝑘 + 2) appear. These are 
expanded to max(𝑥𝐴𝐷(𝑘 − 4) + 𝑑1(𝑘 + 1) + 𝑑2(𝑘 + 1) +
𝑑3(𝑘 + 1) + 𝑑4(𝑘 + 1),  𝑥𝐾𝐾(𝑘 − 1) + 𝑑4(𝑘 + 1),  𝑥𝐾𝐷(𝑘 −
2) + 𝑑3(𝑘 + 1) + 𝑑4(𝑘 + 1)) and max(𝑥𝐴𝐷(𝑘 − 3) + 𝑑1(𝑘 +
2) + 𝑑2(𝑘 + 2) + 𝑑3(𝑘 + 2),  𝑥𝐾𝐷(𝑘 − 1) + 𝑑3(𝑘 + 2)) 
respectively. As indicated with iteration indices newer 
versions of travel times are needed in these equations. 
Speeding up can also only be done after the delay has 
appeared, which in our case means that after a delay in 
𝑑𝑖(𝑘) only the traveling times 𝑑𝑖(𝑘) with 𝑗 > 𝑖, can be 
decreased in the same iteration k. In the next iteration 
all the traveling times can be decreased.  
In Table 3 it has been tested how long it takes for a 
delay of 10, 20 and 30 minutes respectively in a certain 
travel time, to disappear from the system. 

Table 3: Times expressed in minutes that it takes for a 
delay in a certain traveling time to disappear from the 
system.  

Travel 

Time 

Delay 10 

min 

Delay 20 

min 

Delay 30 

min 

𝑑1 89.2   182.4  301.3  

𝑑2 88.3  182.4  300.4  

𝑑3 93,2  182.4  300.4  

𝑑4 91  185.1  303.1  

𝑑5 91  185.1  303.1  

𝑑6 93.2  182.4  300.4  

𝑑7 68  184.2  305.3  

𝑑8 89.2  182.4  301.3  

The calculation of the disappearance of a delay can be 
done as follows. Let 𝑀𝑛denote a matrix with the nominal 
timetables, that is 𝑀𝑛 = [𝑣, 𝑣⨂𝑇, 𝑣⨂𝑇⨂2, … ], and Md is a 
matrix with the delayed arrival and departure times at 
corresponding times. The part of the time tables that can 
be used for selecting the part of the time table that is 
affected by a delay using the logical expression (𝑀𝑑 −
𝑀𝑛) > 0 . This means that the time instant of the last 
delay 𝑡𝑑 can be found using 
𝑡𝑑 = max �𝑀𝑑�(𝑀𝑑 −𝑀𝑛) > 0� − 𝑀𝑛(𝑖, 𝑗)�, 
where i, j are the timetable indices when actual first delay 
take place. For example 88.3 in on second row second 

column in Table 3 means that if the single travelling time 
𝑑2 is increased by 10 minutes, and the travelling times 𝑑3,  
𝑑4, 𝑑5, 𝑑6, 𝑑7 and 𝑑8 are speeded up to their minimal 
values, then the time instant of the last deviation from the 
time table is 88.3 minutes after the delay. 

4.3 Recovery Matrix 
In Goverde (2007) max-plus linear systems are written 
in polynomial form, 

𝑥(𝑘) = 𝐴0⨂𝑥(𝑘)⨁𝐴⨂𝑥(𝑘 − 1)⨁𝑤(𝑘)             (6) 

where 𝐴 is defined as in Equation (4), 𝐴0 is the matrix 
describing the direct connections from 𝑥(𝑘) to 𝑥(𝑘), 
and 𝑤(𝑘) is the nominal departure times in period 𝑘. 
𝐴0 is in this case given by all the direct travelling times 
𝑑𝑖, including all delayed states, such that 

𝐴0(𝑚 + 5,𝑚) = 𝑑𝑖, for  𝑚 = (𝑖 − 1)5 + 𝑛, for all 
𝑛 = 1,2, … 5, and for all  𝑖 = 2, 3, … 8. 

All the other elements of 𝐴0 are 𝜀, as there are no 
direct connections. The departure times are given by 
the eigenvector 𝑣 in Equation 5, and the period 𝑇 
according to 𝑤(𝑘) = 𝑇⨂𝑘⨂𝑣. The polynomial 
equation can be written using a single matrix 𝐴𝑝, 
according  
𝑥(𝑘) = 𝐴𝑝⨂𝑥(𝑘 − 1)⨁𝑤(𝑘)  (7) 

where  𝐴𝑝 = 𝐴0⨁𝐴⨂𝑇⨂−1. 

Definition: Consider the max-plus linear system in 
Equation (7). The entry 𝑟𝑖𝑖 of the recovery matrix 𝑅 is 
defined as the maximum delay of 𝑥𝑖(𝑚) such that 
𝑥𝑖(𝑘) is not delayed for any  𝑘 > 𝑚 (Goverde 2007). 
The following equation (Baccelli et al., 1992; 
Goverde 2007) defines the elements of the recovery 
matrix, 
𝑟𝑖𝑖 = 𝑤𝑖 − 𝑤𝑖 − �𝐴𝑝+�𝑖𝑖, 
where the 𝑤𝑖 and 𝑤𝑖 are element of vector 𝑤, 

∞
+ ⊗

=
= ⊕

1

k
p pk

A A , and the notation �𝐴𝑝+�𝑖𝑖 refers to the ijth 

element of the matrix 𝐴𝑝+. If in the graph of  𝐴𝑝+ no path 
exists from node j to node i then  𝑟𝑖𝑖 = ∞. The 
recovery matrix thus takes values from the extended 
set  ℝ�𝑚𝑚𝑚 = ℝ𝑚𝑚𝑚 ∪ {∞}. 
In the studied train network between Helsinki and 
Turku, constructed from Table 1 presented in Figure 1, 
the recovery matrix R is of size  40 × 40, with   𝑇 =
60. A  20 × 20 submatrix of that matrix is given in 
Table 4. 
According to Goverde, (2007), the 𝑗𝑡ℎ column of the 
recovery matrix R gives the recovery time from event j 
to all other events in the timetable and thus represents 
the impact a delay of event j has on future train events, 
and the 𝑖𝑡ℎ row of the recovery matrix R gives the 
recovery time from event i from all other events in the 
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timetable and thus represents the sensitivity of event i 
on delays of preceding events. The diagonal elements 
of R again represent recovery times to the event itself. 
In our example, most of our states are delayed versions 
of previous states. As can be noted in Table 4, not all 
diagonal elements representing the same departure at 
different times are same. For example, 𝑟16,16 = 12,  
 𝑟18,18 = 22.5  and  𝑟19,19 = 29.6, although these 
elements all correspond to the event “arrival in Turku” 
at times 𝑘, 𝑘 − 2 and 𝑘 − 3 respectively. As k is 
arbitrary, all these recovery elements should logically 
be the same. This is not so because the delayed 
versions are just memory variables, for which no other 
constraints than the back shifting according Equation 3 
is present, and thus the recovery matrix is not correct 
for these. Thus in our example only every fifth row in 
the recovery matrix show true recovery times, and 
these are shown in Table 5. 

The recovery matrix take in the consideration only one 
train not the whole system and it gives all the 
information for the delay of one train only. A 0 in the 
recovery matrix means a tight schedule, with no slack.  

For example the first row in the reduced recovery 
matrix is easy to interpret; the first value is 29.6, which 
is the total slack for a single train. After that the slack 
is reduced by the slack in corresponding travel time, up 
to the final value 0, which corresponds to that no slack 
is present in the 4 minute waiting time in Helsinki 
(𝑑1). All the other travelling times are assumed to have 
10% slack. The other zero (row 11, columns 26) is due 
to a meeting condition (in Salo).                                  

The results shown in Table 2 can also be calculated 
using recovery matrix calculations. In Table 2 it was 
assumed that we have a permanent delay in one travel 
time. The maximum tolerance for a permanent delay in 
one travel time can be obtained by increasing the 
corresponding travel time in the recovery matrix, until 
we start getting negative entries on the relevant 
diagonal elements in the recovery matrix (the ones 

indicated by green in Table 5). 

The results in Table 3 can only partially be calculated 
using recovery matrix calculations. In Table 3 certain 
temporary delays (10, 20 and 30 minutes) were 
considered. In Table 3 it can be seen that the time it 

Table 4: The upper left quadrant of the recovery matrix, with diagonal element shaded. 

 
Table 5: The relevant parts of the recovery matrix. Diagonal elements highlighted by green, and recovery times 

related to a full cycle is highlighted with orange 
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takes for the system to catch up after delays of 30
minutes, are all slightly more than 300 minutes. This is
not a coincidence, in most cases it is the delayed train
itself that uses most time to catch up, and the recovery
time 29.6 in positions highlighted with orange, it
means that if we have a delay which is larger than 29.6,
it will take more than 300 minutes (i.e. a full cycle) for
the system to catch up.

5. Conclusions
This paper described how a max-plus model for a train
system can be constructed. Meeting conditions caused
by having a single track, and other physical constrains,
have been handled by extending the state space with
delayed states, which has enabled rewriting the state
update equation in the form 𝑥(𝑘) = 𝐴⊗ 𝑥(𝑘 − 1).
Static and dynamic delay sensitivity of the network has
been analyzed by modifying the 𝐴-matrix, and using
eigenvalue calculations. The such obtained results were
compared to standard recovery matrix based
calculations.  A recovery matrix for the chosen
extended state space becomes large, and contains even
irrelevant information. Guidelines for finding and
interpreting the relevant information from the recovery
matrix have been discussed. Max-plus formalism was
used throughout this paper.
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