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Abstract
The utilization of dynamic Bayesian networks (DBNs) in
simulation metamodeling enables the investigation of the
time evolution of state variables of a simulation model.
DBN metamodels have previously described the changes
in the probability distribution of the simulation state by
using a time slice structure in which the state variables are
described at common time instants. In this paper, the novel
approach to the determination of the time slice structure is
introduced. It enables the selection of time instants of the
DBN separately for each state variable. In this way, a more
accurate metamodel representing multiple time scales of
the variables is achieved. Furthermore, the construction is
streamlined by presenting a dynamic programming algo-
rithm for determining the key time instants for individual
variables. The construction and use of the DBN metamod-
els are illustrated by an example problem dealing with the
simulated operation of an air base.
Keywords: Bayesian networks, discrete event simulation,
dynamic Bayesian networks, simulation, simulation meta-
modeling

1 Introduction
Discrete event simulation (DES) (e.g. Law and Kelton
2000) is a widely used methodology for modeling and an-
alyzing stochastic dynamic systems. A DES model de-
scribes a system consisting of three types of variables
(Zeigler et al., 2000). The values of input variables are
given prior to the simulation and can be, e.g., parameters
that determine the configuration of the system. Time vari-
ant state variables describe the time evolution of the sys-
tem. Output variables obtain values after the simulation is
completed and correspond to the characteristics of the sys-
tem that are being investigated, such as the average wait-
ing time in a queueing system. The main interest in the
analysis of DES models is often on the relation between
the input and output variables. Simulation metamodels
(Friedman, 2012; Kleijnen, 2008) have been used in order
to efficiently describe this relationship. See (Poropudas,
2011) for an overview of different types of metamodels as
well as details of the construction and utilization of such
models.

To better understand how the simulation progresses, it
may be of interest to investigate the time development of

the state variables of a DES model – instead of the depen-
dence between inputs and outputs. With most simulation
metamodeling techniques, such as regression modeling
and stochastic Kriging (Kleijnen, 2008), it is not possible
to include the state variables into the metamodel. How-
ever, the time evolution of the state variables can be an-
alyzed by using dynamic Bayesian networks (DBNs, see,
e.g., Murphy 2002) as simulation metamodels (Poropudas
and Virtanen, 2007, 2011). Bayesian networks (BNs, see,
e.g., Pearl 1986) are probabilistic models that describe the
joint probability distribution of discrete random variables.
A BN consists of a directed acyclic graph with nodes cor-
responding to variables and arcs indicating the dependen-
cies between the variables. In addition, a conditional prob-
ability table (CPT) is associated with each node, describ-
ing its probability distributions conditional on the values
of its parent nodes. In a DBN, individual variables are rep-
resented by multiple nodes that correspond to their value
at specific time instants. In simulation metamodeling, the
nodes of a DBN correspond to input, output, and state
variables of a DES model. Thus, the DBN metamodel
provides a representation for the joint probability distribu-
tion of the input, output, and state variables of the sim-
ulation where the state variables are considered at some
fixed time instants. The DBNs are used to efficiently cal-
culate marginal and conditional probability distributions
of the state variables. The construction and utilization of
the DBN metamodels are aided by available BN software
(e.g., Decision Systems Laboratory). By using interpola-
tion between the time instants of the DBN, the probability
distributions are approximated for any time instants within
the duration of the simulation (Poropudas and Virtanen,
2010).

The nodes of DBNs are partitioned into sets corre-
sponding to particular time instants. The sets are called
time slices and, typically, all the time slices include nodes
corresponding to each of the variables. In the context of
DBN metamodels, this means that all state variables are
considered at the same time instants. The common time
instants are not necessarily ideal because they may ignore
changes that are specific to only some variables or, alterna-
tively, include redundant information about others. Such
situations arise, e.g., when the changes of one variable oc-
cur at a faster pace than others or the changes in the vari-
ables take place in distinct time intervals of the simulation.
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It is also possible that one variable is considered more im-
portant than another for the purposes of the analysis and
therefore needs to be treated in more detail.

In this paper, these issues are resolved by utilizing mul-
tiple time scales for state variables. In addition, a dynamic
programming (DP, e.g., Bertsekas 1995) algorithm simi-
lar to (Gluss, 1962) is used to determine the time scales.
When multiple time scales are considered in DBN meta-
models, the time instants in the DBN are selected inde-
pendently for each variable. This offers an improvement
for the structure of the DBN metamodel. The application
of multiple time scales results in a more accurate repre-
sentation of the time evolution of the simulation without
increasing the size of the metamodel.

The paper is organized as follows. The construction
of DBN metamodels from simulation data is introduced
in Section 2. The utilization of the DBN metamodels in
simulation analysis is briefly presented in Section 3. Ex-
amples of a DBN metamodel with multiple time scales as
well as its application are given in Section 4 where a DBN
metamodel is used for probabilistic inference regarding
the operation of a simulated air base.

2 Construction of DBN metamodels
The first step in the construction of a DBN metamodel is
the selection of variables. While a DES model includes all
the variables that significantly affect the behavior of the
system, the subset of variables included in the DBN meta-
model is selected based on how the DBN is going to be
utilized. Assume now that state variables x1(t), . . . ,xn(t),
where t refers to time, as well as input and output variables
u1, . . . ,um and z1, . . . ,z` of the DES model are included in
the metamodel.

The second step in the construction is the design of ex-
periment. Only discrete variables are allowed in DBN
metamodels. The values of input variables are there-
fore discretized, which is discussed in more detail below.
When constructing a DBN metamodel, a number of simu-
lation replications are performed for all the combinations
of the values of the inputs. A lower limit for the number
of replications is calculated based on the objectives of the
analyses (for details, see Poropudas and Virtanen 2011).
If the number of data is found insufficient later on in the
validation step of the construction, additional replications
can be performed. The third step of the construction, i.e.,
the simulation, is performed once the values of the input
variables and the number of replications are determined.

Due to the nature of DBNs, the values of state variables
xk are restricted to discrete sets Xk. Thus, the discretiza-
tion is the fourth step of the construction. The elements
of Xk and the manner in which the actual values of xk are
mapped onto them is decided on a case by basis by taking
advantage of prior knowledge of the system. If no natural
discretization of the variables is available, the values are
mapped into a set of discrete bins with the help of gen-
eral clustering algorithms such as k-means (Hartigan and

Wong, 1979). The same procedure is applied to the input
and output variables. The input variable uk obtains values
from the discrete set denoted by Uk and the output variable
zk from the discrete set denoted by Zk.

DBNs are discrete time models where each state vari-
able is considered at a finite number of time instants. In
this paper, the time instants are allowed to vary from vari-
able to variable and they are selected separately for each
one. This constitutes the fifth step in the construction. The
state variable xk is considered at the time instants

Tk =
{

t0, tk
1 , t

k
2 , . . . , t f

}
, (1)

where tk
i are chosen from the interval (t0, t f ). Here t0 and

t f refer to the starting and terminating times of the simu-
lation, respectively, which are assumed to be identical for
every replication. The DBN metamodel considers the joint
probability distribution of all the variables at all the time
instants. The estimate for the probability of the variable
xk obtaining the value j ∈ Xk at time instant t ∈ Tk, i.e.,
P(xk(t) = j), provided by the DBN metamodel is denoted
by p̂k

j(t). A linear interpolation technique is used to con-
struct estimates at the probabilities for time instants that
are not included in the DBN. This results in estimates of
the form

p̂k
j(t) := p̂k

j(t−)+
t− t−

t+− t−

(
p̂k

j(t+)− p̂k
j(t−)

)
, (2)

where t 6∈ Tk, t− = max{v ∈ Tk|v≤ t}, and t+ =
min{v ∈ Tk|v≥ t}.

The selection of the time instants Tk begins with the
discretization of the time interval [t0, t f ] into the equally
spaced instants

T ∗k =
{

t0, t0 +δk, . . . , t0 +(mk−1)δk, t f
}
, (3)

where mk is the number of segments for variable xk and
δk = (t f − t0)/mk. The time instants Tk are selected from
among the time instants T ∗k . The probability estimates
P(xk(t) = j) = pk

j(t) of the variable xk, which are based
on the simulation data, are calculated for each time instant
T ∗k and each value j ∈ Xk. The time evolution of these
probabilities is referred to as the probability curves of the
variable xk. Now, the objective is to select the time instants
Tk in such a manner, that the corresponding probabilities
provided by the DBN metamodel follow the probability
curves closely, while keeping the number of the time in-
stants Tk low.

To quantify the accuracy of the DBN metamodel, the
sum of squared error

Mk(Tk) = ∑
t∈T ∗k

∑
j∈Xk

(
pk

j(t)− p̂k
j(t)
)2

, (4)

is used. The DBN is constructed so that pk
j(t) = p̂k

j(t) for
all time instants t ∈ Tk. This means that the probabilities
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p̂k
j(t) are known prior to the construction of the DBN. The

problem of selecting the time instants Tk then consists of
selecting the number of time instants to include and find-
ing their optimal location which minimizes Mk(Tk).

Since the squared error is summed over all the time in-
stants T ∗k , and the probability estimate given by the DBN
for any single time instant depends only on the preceding
and the following time instant in Tk, the error is calculated
for one segment between consecutive time instants in Tk
at a time. The errors are then aggregated to provide the
total error Mk(Tk). Thus, it is not necessary to evaluate ev-
ery potential Tk as a whole because only each pair of time
instants needs to be considered separately.

Optimal time instants are found by using dynamic pro-
gramming in a manner similar to (Gluss, 1962). The algo-
rithm iterates through all the pairs of time instants in T ∗k
and calculates the total error for the segment from the one
instant t0 +aδk to another t0 +bδk by assuming that there
are no time instant t ∈ Tk between them. The total error
for such a segment is denoted as

D(a,b) =
b

∑
i=a

∑
j∈Xk

(
pk

j(t0 + iδk)−(
b− i
b−a

pk
j(t0 +aδk)+

i−a
b−a

pk
j(t0 +bδk)

))2

.

(5)

The optimization problem is solved by considering sub-
problems where subsets of the form {t0, t0 + δk, . . . , t0 +
bδk} with 0 ≤ b ≤ mk are considered. Optimal selections
of time instants within each such a set are determined.
Let fl(b) denote the resulting minimum error in such a
subproblem when l time instants are used to estimate the
probability curves between t0 and t0 + bδl . The time in-
stants t0 and t0 + bδk must always be included in the so-
lution, so l ≥ 2. For all l, fl(0) = 0 and, for all b ≤ mk,
f2(b) = D(0,b). For other values of l and b, the value of
fl(b) is determined by the equation

fl(b) = min
0≤i<b

{ fl−1(i)+D(i,b)}, (6)

where D(i,b) is given by Eq. (5). fl(b) is evaluated for
each value of l from 2 to the maximum value lk. Then,
the value of b is increased by one and fl(b) is again eval-
uated for each value of l. This is repeated until b has gone
from 1 to mk, at which point the algorithm terminates. The
optimal time instant sets covering the entire time interval
[t0, t f ] and consisting of any number of time instants up
to the maximum lk have then been calculated. The opti-
mal sets containing different numbers of time instants are
compared and the most suitable one is identified.

The structure of the DBN metamodel, consisting of
nodes and arcs between them, is determined once Tk is
chosen for each variable xk. The construction is aided by
BN software such as GeNIe (Decision Systems Labora-
tory). In the DBN, nodes are included for each variable
xk at all of the time instants Tk. A node is also associated

with each input and output variable. If prior information
about the system under consideration is available, the sixth
step consists of using this information to define the known
dependencies between nodes. Arcs implying dependence
between specific nodes can be included regardless of the
simulation data. In order to maintain causality, arcs going
from a state variable to an input variable, from an output
variable to an input variable, from an output variable to a
state variable and from a state variable to a state variable
at an earlier time instant are not allowed.

The seventh step in the construction consists of finaliz-
ing the structure of the network and determining its CPTs.
The realized values of each state variable xk at all of the
time instants Tk are recorded for every replication of the
simulation model, as are the values of all input and output
variables. The structure is completed by applying learn-
ing algorithms (Heckerman et al., 1995) on the simulation
data. The CPTs are constructed in accordance to the rel-
ative frequencies of the values in the data (Poropudas and
Virtanen, 2011).

For the input variables, the relative frequencies in the
simulation data do not necessarily reflect the actual prob-
ability distributions in question because they can be mod-
ified as part of the design of experiment step in order to
collect a broader set of data. The probability distributions
of the input variables are adjusted after the construction of
the DBN metamodel in order to represent input certainty
(Pousi et al., 2013). The distributions can be modified only
after validating the metamodel, because the adjusted dis-
tributions for the inputs are not consistent with the valida-
tion data.

3 Utilization of DBN metamodels
The constructed DBN metamodel provides the joint prob-
ability distribution of the input, output, and state vari-
ables. The DBN is applied for various what-if analyses
where conditional probabilities and probability distribu-
tions are studied. In these analyses, the values of some
variables at given time instants are fixed and the condi-
tional probability distributions of the other variables are
updated using readily available algorithms implemented
in BN software such as GeNIe (Decision Systems Labo-
ratory). When considering conditional probabilities, the
chronological order of the time instants is irrelevant, i.e.,
the conditional probability distributions can be calculated
also for conditions related to later time instants.

The most basic application of the DBN metamodel is
to determine the marginal probability distribution of a
state variable as a function of time. Such a distribu-
tion consists of the probabilities of the state variable ob-
taining a given value at a given time, i.e., P(xk(t) = j).
The marginal probabilities for outputs P(zk = j) can also
be obtained. Conditional probabilities for the state vari-
ables are also obtained by setting conditions for inputs
P(xk(t) = j|uk′ = j′), state variables P(xk(t) = j|xk′(t ′) =
j′), outputs P(xk(t) = j|zk′ = j′), or any combination of
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these. Conditions can even be set for the same state vari-
able that is being investigated, as long as the time instants
are different. Conditional probabilities for output vari-
ables are calculated similarly. To create input-output map-
pings, conditions are set for input variables and the condi-
tional probability distributions of the outputs, e.g., P(zk =
j|uk′ = j′), are studied. Conditional distributions of the
outputs can also be studied by fixing the values of state
variables, e.g., P(zk = j|xk′(t) = j′). If the metamodel in-
cludes multiple output variables, conditions can be set for
some of them as well resulting in conditional probabili-
ties such as P(zk = j|zk′ = j′). The conditional probability
distributions for input variables are investigated by setting
conditions for the state variables P(uk = j|xk′(t)= j′), out-
put variables P(uk = j|zk′ = j′), or both. This inverse rea-
soning can be used to investigate, e.g., which combination
of input values is most likely to lead to a certain outcome.

If the analysis involves probability distributions related
to time instants not included in the DBN, the interpolation
discussed in Section 2 is applied. The interpolation can
also be applied to conditions taking place at time instants
not included in the DBN. The details of the interpolation
scheme are presented in (Poropudas and Virtanen, 2010).

4 Example analysis - simulated opera-
tion of air base

In this example, a DBN metamodel is constructed accord-
ing to the guidelines discussed in Section 2 and used in the
simulation analysis of the operation of an air base. In the
model, aircraft go a through a cycle consisting of mission
assignment, mission execution, repair of possible damage
obtained during the mission, and standard service such as
fueling. There are three queues for the aircraft: one for
mission assignment, one for repair, and one for service.
The repair and service personnel can only work on one
aircraft at a time. The aircraft that have not been damaged
move directly from the mission to the service queue. An
aircraft is released from the mission assignment queue ev-
ery time a new mission is to be executed. If there are no
aircraft in this queue, a backlog of missions is formed and
the aircraft are assigned to the missions as soon as they ar-
rive from the service. A flowchart of the simulation model
is presented in Fig. 1.

Queue →

Mission Assignment

Mission Execution

Queue →

Aircraft Repair

Queue →

Aircraft Service

Figure 1. Flowchart of the simulation model.

The missions are categorized into patrol missions and

Table 1. Variables of the metamodel.

Type Range Interpretation

u Input {1, . . . ,4} Scenario
x1 State {0, . . . ,4} Aircraft in assignment
x2 State {0, . . . ,4} Aircraft in repair
z Output {0,1} Insufficient aircraft available

combat missions. The patrol missions are assigned regu-
larly with the time between consecutive missions sampled
from a uniform probability distribution. The aircraft are
unlikely to be damaged during a patrol mission. Combat
missions are assigned as a Poisson process with a time de-
pendent arrival intensity. They are on average shorter than
the patrol missions but the aircraft have a much higher
probability of being damaged. The repair time of a dam-
aged aircraft is exponentially distributed. The service time
is deterministic and depends on the length and type of the
preceding mission.

The input variable of the simulation model, denoted by
u, determines the time dependent intensity of the occur-
rence of the combat missions. In this example, four al-
ternative scenarios are studied. The number of aircraft in
each of the four locations are considered as state variables.
Two of the state variables, i.e., the number of aircraft in
mission assignment, denoted by x1(t), and in aircraft re-
pair, denoted by x2(t), are included in the DBN meta-
model. The output variable of the simulation model is an
indicator, denoted by z, that determines whether or not at
any time during the simulation no aircraft are available to
execute an incoming mission. The variables included in
the DBN and their ranges are summarized in Table 1.

In order to acquire data for construction of the DBN,
four scenarios are simulated. In the first one, the arrival
intensity of the combat missions starts at 0, peaks early
in the simulation, and returns to 0 later on. In the sec-
ond scenario, the intensity slowly increases throughout the
simulation. In the third one, the intensity is constant. In
the fourth scenario, there are no combat missions. The
non-zero arrival intensities of the first three scenarios are
illustrated in Fig. 2. The four scenarios occur with equal
probability. In every simulation replication, four aircraft
are included. The data is collected by running 2000 simu-
lation replications for each scenario. The duration of each
replication is 100 units of time. A quarter of the data is
reserved for validation. Since all the variables under con-
sideration are discrete, there is no need for their discretiza-
tion.

The probability curves of the state variables calculated
from the simulation data are shown in Fig. 3. The ad-
vantage of utilizing multiple time scales is evident. The
probability distribution of x1 changes repeatedly due to the
regularly scheduled patrol missions while the distribution
of x2 changes more slowly. Determining the optimal time
instants for the state variables using the DP algorithm dis-
cussed in Section 2, a suitable number of time instants for
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(a) Scenario u = 1.
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(b) Scenario u = 2.
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(c) Scenario u = 3.

Figure 2. Intensity of the generation of combat mission in three
scenarios.

x1 is found to be 25. For x2, seven time instants are used.
Prior knowledge is used to add arcs to each node in the

DBN from the most recent node corresponding to each
variable. Arcs originating from nodes corresponding to
the time instant 0, except those leading to the follow-
ing node corresponding to the same variable, are ignored,
since the initial state of the simulation is always same.
Arcs are also added from the input variable to all other
nodes and from every other node to the output variable.
The arcs determined in this manner are sufficient to de-
scribe the entire system because no additional dependen-
cies are evident in the simulation data.

Fig. 4 depicts the unconditional time evolution of the
simulation, i.e., the time evolution of the marginal proba-
bility distributions of the two state variables provided by
the DBN metamodel. The distributions resemble the prob-
ability curves in Fig. 3. The periodical nature of x1, caused
by the regular patrol missions, is evident in Fig. 4a. This
is also the main reason why the concept of multiple time
scales is useful in this example. The patrol missions di-
rectly affect the number of aircraft available for missions,
but have little impact on the number of aircraft needing
repair.

Next, alternative what-if analyses allowed by the DBN
metamodel are illustrated. The first of the four scenarios
is examined in Fig. 5 by setting the condition u = 1. When
comparing to Fig. 4, there are fewer aircraft ready for mis-
sions and more in need of repair during the middle of the
time interval but the situation is reversed by the end of it.
This is consistent with the intensity of the generation of
combat missions presented in Fig. 2.

In order to further investigate conditional properties of
the simulation model, the condition regarding u is re-
moved and the condition x1(100) = 0 is instead added,
i.e., every aircraft is either on a mission, being repaired,
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(a) Number of aircraft in mission assignment, x1.
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(b) Number of aircraft in aircraft repair, x2.

Figure 3. Time evolution of the marginal probability distribu-
tion of the state variables as estimated from the simulation data.

being serviced or in a queue waiting for one of the latter
two activities at the end of the simulation. The probability
of this event is P(x1(100) = 0) = 0.24. Fig. 6 presents the
time evolution of the conditional probability distributions
of the state variables. The likely number of aircraft ready
for mission decreases steadily in Fig. 6a. The expected
number of aircraft in need of repair increases conversely
in Fig. 6b, but the most likely values of x2(100) are 2 and
3 which means that one or two aircraft are probably still
either carrying out a mission, being serviced, or waiting
for service.

The condition x1(100) = 0 also affects the output vari-
able z. The probability distribution of z without and
with the condition is presented in Table 2. The condition
greatly increases the probability of z obtaining the value 1.
This is as expected since a mission with no aircraft avail-
able to carry it out can only occur if x1 obtains the value 0
at some point.

This example demonstrates just some of the capabilities
of DBN metamodels with multiple time scales. With more
variables and replications of the simulation model, more
elaborate what-if analyses can be performed. By fully uti-
lizing existing BN software, this can be done programmat-
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Figure 4. Time evolution of the marginal probability distribu-
tions of the state variables provided by the DBN metamodel.

ically, which greatly enhances the number of probability
estimates that can be calculated in a reasonable amount of
time.

5 Conclusions
The time evolution of DES can be analyzed in a trans-
parent manner by using DBNs as simulation metamodels.
The DBN metamodels offer an effective way for conduct-
ing various what-if analyses. In the previous literature,
the structure of DBN metamodels has consisted of time
slices, i.e., the networks have had a rigid structure where
all state variables of the model are considered at each of
the time instants represented by the DBN. In this paper,
the concept of multiple time scales is introduced to the

Table 2. Marginal and conditional probability distributions of
the output variable when x1(100) = 0.

j P(z = j) P(z = j|x1(100) = 0)

0 0.63 0.17
1 0.37 0.83
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Figure 5. Time evolution of the conditional probability distri-
butions of the state variables provided by the DBN metamodel
conditional on u = 1.

DBN metamodeling, i.e., the changes in the probability
distributions of the state variables are allowed to occur in-
dependently in the DBN and the time evolution of individ-
ual state variables is studied at its own pace. By employ-
ing multiple time scales, the different temporal changes
in the behavior of the state variables are described more
accurately without unnecessary increase in the size of the
DBN. The paper also presents an algorithm based on dy-
namic programming for the optimal selection of time in-
stants represented by the DBN. The construction and uti-
lization of the DBN metamodel with multiple time scales
are demonstrated with an example analysis involving the
operation of an air base.

Simulation studies using DBN metamodels can be per-
formed with software designed for the analysis of BNs.
Unfortunately, the dynamic programming algorithm and
the interpolation technique used for approximative rea-
soning are beyond the scope of such software and, thus,
the calculations presented in this paper have been carried
out using MATLAB. In order to alleviate future studies,
it is worthwhile to develop an automated tool designed
for the construction and utilization of DBN metamodels.
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Figure 6. Time evolution of the conditional probability distri-
butions of the state variables provided by the DBN metamodel
when x1(100) = 0.

The DBN metamodels have also been used in simulation-
based optimization as a part of influence diagram meta-
models (Poropudas and Virtanen, 2009). In such meta-
models, the DBN reveals the consequences of decision al-
ternatives, i.e., the time evolution of a simulated system
with given values of simulation parameters. Clearly, the
concept of multiple time scales could also be applied in
the construction of influence diagram metamodels from
simulation data.
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