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Abstract 
Petri nets allow describing formal models of discrete 
event systems, which might show counterintuitive 
behaviors. The design of a discrete event system, 
composed by known subsystems, requires the definition 
of the interrelations between them. This feature can be 
modeled in the structure of the Petri net by arcs and link 
transitions. The choice of the best configuration might 
be a hard problem to solve due to the foreseeable 
combinatorial explosion. In order to alleviate the 
computer resources required for exploring the different 
feasible combinations of the subnets, a single model 
with exclusive entities can be developed by an alternat-
ives aggregation Petri net. In this paper the construction 
of such a model with four subnets and certain 
precedence constrain is discussed. Also, a reduction in 
the size of the amount of required information for 
describing the alternative structural configurations is 
calculated for different sizes of the subnets.  
Keywords: Petri nets, modelling and simulation,
modular design, alternative structural configuration,
decision support system

1 Introduction 
Petri nets constitute a paradigm in the modeling of 
discrete event systems (Silva, 1993). The simplicity of 
its rules, the double representation of a model, both 
graphical and matrix-based, as well as its ability to 
describe features, such as parallelism, precedence, 
concurrence, synchronization, or competence for shared 
resources, makes Petri nets an invaluable tool for 
applications such as performance evaluation or 
structural analysis (David and Alla, 2005). 

One fruitful application of Petri nets is the field of 
decision making support (Latorre et al, 2014c). 
However, other methodologies can be considered for 
this task (Bruzzone and Longo, 2010). Among them, 
modeling and simulation have been applied successfully 
(Jiménez-Macías and Pérez-Parte, 2004; Piera et al, 
2004; Longo et al, 2013; Mújica et al, 2010). In 
particular, Petri nets can be used for quasi-optimal 
operation or design of complex systems (Latorre et al, 

2014b). In particular, a design process usually requires 
choosing between different alternative structural 
configurations, which makes this kind of decision 
problem singular in nature (Latorre and Jiménez, 2013). 

Some particular problems of design are tackled by the 
selection of certain subsystems, such as particular 
machines, manufacturing lines, or even manufacturing 
facilities, and the ulterior choice of the way, these 
systems are related. These decisions involve the 
definition of the interchange of information, parts, 
products, vehicles, persons, or whatever the flow 
between subsystems is. Moreover, these decisions 
configure the behavior of the subsystems by features 
such as precedence, synchronization, or parallelism 
(Latorre et al, 2014a). 

A classic methodology to address this decision 
problem starts considering a different model, or 
alternative Petri net, for every alternative structural 
configuration of the system (Latorre et al, 2014c). This 
approach, however, presents some drawbacks, such as 
the need to develop a large number of models and to 
analyze specifically every one of them, or to discard 
good decisions by reasons, such as intuition, rough 
analysis, personal preferences, lack of awareness, etc. 
Another important drawback is the large amount of data 
required for representing all the alternative Petri nets, 
since they may be created by different combinations of 
the shared subnets (Latorre-Biel et al, 2015). 

This combinatorial process for constructing feasible 
solutions of the design problem, implies the fact that 
many data required to represent a set of alternative Petri 
nets is redundant: every shared Petri net belongs to 
many models and its description is repeated every time, 
increasing in this way the size of the description of the 
system with alternative structural configurations 
(w/ASC) (Latorre et al, 2014b). 

Moreover, this is not the only type of redundant 
information, present in a set of alternative Petri nets, 
since a given transition between subnets or link 
transitions, can also be present in several alternative 
Petri nets (Latorre-Biel et al, 2015). 

In order to overcome these drawbacks, a family of 
Petri net-based formalisms has been developed. All of 
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them can model a discrete event system w/ASC. The 
exclusiveness of the alternative structural configurations 
is represented by a set of exclusive entities. In particular, 
the alternatives aggregation Petri nets can integrate in a 
natural way a set of shared subnets (Latorre et al, 2013). 
This paper deals with the design process of a discrete 
event system, once a set of subsystems has been chosen. 
Another constrain of the problem is a relation of strict 
precedence of one of the subnets, and the other three. 

The rest of the paper is organized as follows. Section 
2 defines the formalism that will be considered for 
developing the model of the system: the AAPN. Section 
3 states in a detailed way the design problem to be 
solved. The three following sections (Section 4, Section 
5 and Section 6) present different types of relations 
between the subsystems and provide with the 
expressions to calculate the size rate of the AAPN. 
Section 7 addresses the complete AAPN model, 
representing the cases discussed in the previous 
sections, compares the size rates, and comments the 
trend of the size rate of all the cases as the size of the 
shared subnets grow. Finally, the conclusions derived 
from this piece of research are stated in Section 8. 

2 Alternatives Aggregation Petri Nets  
An AAPN is a formalism that contains a set of exclusive 
entities. On the other hand, a set of exclusive entities is 
a collection of mathematical elements representing the 
exclusiveness that characterizes the alternative 
structural configurations of the modeled system, i.e. 
only one of them can be chosen as a result of a decision. 
In particular, the exclusive entities in an AAPN are the 
so called choice variables, Boolean variables that 
configure the guard functions of certain link transitions 
in the model.  

An AAPN is defined by a set of subnets, some of 
which are shared by different alternative Petri nets, 
another set of link transitions between the subnets, and 
a last set of guard functions of choice variables 
associated to some link transitions. 

Alternatives aggregation Petri nets (AAPN) can be 
applied successfully in the modeling process of discrete 
event systems with alternative structural configurations 
(w/ASC), where the different configurations present 
common or shared subnets. 

In this case, the number of redundant information in 
the form of shared subnets that can be removed in the 
AAPN may be significant. Shared subnets contain 
places and transitions and their removal contribute to a 
reduction in the size of the incidence matrix of the 
AAPN, resulting, for example, in a speed up of the 
simulation of the net, useful for performance analysis. 

The construction process of an AAPN from a set of 
alternative Petri net is quite straightforward. The 
following steps can be followed to achieve this 
objective: 

a) Decompose the alternative Petri nets into 
subnets and link transitions. The election of the limits of 
every subnet is a choice of the modeler. However, 
certain criteria can be considered, such as associating 
each subnet with a physical element of the real system 
or trying to guarantee that every subnet is shared by the 
largest number of alternative Petri nets. 

b) Take one of the alternative Petri nets as seed of 
the AAPN. Associate the first choice variable to every 
link transition. 

c) Consider the following alternative Petri net (ith 
alternative Petri net) and compare it to the seed of the 
AAPN. Every subnet of the alternative Petri net that 
does not belong to the AAPN should be added to the 
AAPN. Add to the AAPN all the link transtions of the 
alternative Petri net. Every added link transition should 
be associated to the ith choice variable. 

d) Apply reduction rules to the quasi-identical link 
transitions of the AAPN. 

e) Repeat steps c) and d) until all the alternative 
Petri nets have been added to the seed of the AAPN and 
the final AAPN model is complete. 

With these considerations as background, the 
following section will define the scope of the design 
problem to be solved. 

3 Statement of the problem  
The objective of this paper is to show the feasibility, the 
methodology, and some advantages of constructing an 
AAPN for decision making support in the design 
process of a kind of discrete event system. 

In particular, the system to be designed should 
include a single unit of every one of four different 
subnets {RA, RB, RC, RD}. These subnets are chosen to 
have only an input and an output link transitions. In 
addition, the input transition presents a single output 
place. Analogously, the output transition has a single 
input place. 

Moreover, one of the subnets should comply with a 
relation of strict precedence with the other three subnets, 
which should evolve in parallel, simultaneously and/or 
alternatively. 

Moreover, solutions with other precedence relations 
between the subnets, leading to an unbounded Petri net, 
or presenting deadlocks, should be discarded. 

Complying with the mentioned constraints, three 
options with different types of relations between the 
subnets are considered and analyzed in the following 
sections. 

The following notation will be considered: 
 Ar, Br, Cr, Dr, are the number of rows of the incidence 

matrix of the alternative Petri nets RA, RB, RC, RD 
respectively. 

Ac, Bc, Cc, Dc, are the number of columns of the 
incidence matrix of the alternative Petri nets RA, RB, RC, 
RD respectively. 
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4 Case I  
The first structure for the solution of the decision 
problem has been drawn in Figure 1, where a general 
structure of an alternative Petri net has been represented. 
In this figure, the four different subnets are depicted by 
means of clouds, which is an informal or incomplete 
description of a Petri net, since the input and output 
places of the link transitions, belonging to every subnet, 
are not specified. 

Furthermore, the internal structure of the subnet is not 
detailed, due to the fact that the purpose of this 
representation is to develop a general description, where 
the relationship between the subnets is pointed out. The 
link transitions are depicted explicitly in the 
representation of Figure 1. 

In this figure, the different subnets are represented by 
a general name of Rw, Rx, Ry, Rz, since all the 
combinations of the shared subnets {RA, RB, RC, RD} can 
be substituted in the positions of {Rw, Rx, Ry, Rz} 
defining feasible solutions for the discrete event system 
to be designed. In fact, there are four feasible 
combinations of subnets in this case 1, leading to four 
alternative Petri nets {R1, R2, R3, R4}. Two of them are 
depicted in Figure 2. 

 

 
Figure 1. Structure of the link transitions for the case 1 as 
solution of the discrete event system to be designed. 
It can be seen that the link transitions can be named after 
their input or output subnets. Since the four subnets are 
connected to each link transition, any of the link 
transitions can have four different names, as it can be 
seen in Figure 2. 

 

 
Figure 1. Two feasible solutions of case I: R1a and R2a. 

 
Following the steps detailed in section 2, it is possible to 
construct a single alternatives aggregation Petri net from 
the complete set of four alternative Petri nets. This 
AAPN contains the four subnets {RA, RB, RC, RD}, as 
well as two link transitions from every alternative Petri 
net {R1a, R2a, R3a, R4a}. Due to the fact that it is not 
possible to find quasi-identical transitions among the 
link transitions of the AAPN, it is not possible to apply 
a reduction rule to diminish the number of link 
transitions. For this reason, the number of link 
transitions of the AAPN is 2 · 4 = 8. 

Let us consider the following notation: 
r and c are the number of rows and columns of an 

alternative Petri net respectively. 
r’ and c’ are the number of rows and columns of the 

resulting AAPN respectively. 
It has to be considered that the size of the four 

alternative Petri nets {R1a, R2a, R3a, R4a} is the same and 
can be calculated as follows: 

 r = Ar + Br + Cr + Dr    
 c = Ac + Bc + Cc + Dc + 2   (1) 

where the number 2 added to the calculation of c comes 
from the two link transitions of every alternative Petri 
net {R1a, R2a, R3a, R4a}. 

Moreover, the size of the incidence matrix of the 
AAPN is: 

 r’ = Ar + Br + Cr + Dr    
 c’ = Ac + Bc + Cc + Dc + 8  (2) 

Let us call x = Ac + Bc + Cc + Dc; hence, 
 c = x + 2     
 c’ = x + 8    (3) 

It is possible to calculate the reduction size of the 
AAPN, when compared with the set of alternative Petri 
nets SR = {R1a, R2a, R3a, R4a}. Both of them, the AAPN 
and SR represent the same system and contain exactly 
the same information. However, the amount of data 
required by any of them is quite different: 

    size rate = size(AAPN) / size (SR) = 
         =  r’·c’/(4·r·c)    (4) 

According to (1) and (2), it is possible to state that  
    r = r’ = Ar + Br + Cr + Dr   (5) 

as a consequence 
    size rate = c’/(4·c)     (6) 

Moreover, considering (3) it is obtained that 
    size rate = (x+8) / [4·(x+2)]    (7) 

Figure 3, represents the trend of the size rate for 
different values of x = Ac + Bc + Cc + Dc, which is the 
addition of the number of places belonging to every 
shared subnet. In particular, it can be seen that as x 
increases, the size rate decreases to a limit value given 
by: 

    size rate = (1+8/x) / [4·(1+2/x)]   (8) 
Calculating the limit of the previous expression as x 
increases to infinity is 1/4 = 0.25. 

This means that as the number of places in the shared 
subnets grows, the size of the AAPN approaches to 25% 
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of the size of the original set of alternative PN SR. In 
other words, with a 25% of the data, the AAPN provides 
the same modeling information than the set SR. 

The axis of abscissas in Figure 3 has been represented 
with a logarithmic scale with the purpose of detailing the 
trend for small sizes of the shared subnets. 

Figure 3. Size rate of and AAPN representing a complete 
set of alternative Petri nets in case I. 

5 Case II 
This second case corresponds to another structure for the 
link transitions in the construction of alternative Petri 
nets that verify the constraints of the problem stated in 
section 3. Figure 4 depicts two examples of the four 
feasible combinations of the shared subnets for 
constructing such alternative Petri nets. 

 

 
Figure 4. Two feasible solutions of case II: R1 (left) and 
R3 (right). 
The four subnets {RA, RB, RC, RD} can be combined in 
four different ways for constructing four alternative 
Petri nets SRb = {R1b, R2b, R3b, R4b}. Every one of these 
alternative Petri nets presents 6 link transitions. 
Moreover, the application of the steps for constructing 
an AAPN, described in section 2, allow obtaining a 
single Petri net, representing the complete set of 
alternative Petri nets SRb. 

The resulting AAPN presents 24 link transitions. 
However, every link transition has a quasi-identical 
transition in this set. It is possible to find a couple of 
examples in Figure 4. In particular, transition tCi of R1 is 

quasi-identical to tCix in R3. Moreover tCo in R1 is quasi-
identical to tCox in R3. In fact, these transitions are not 
identical due to the fact that in the AAPN, a different 
choice variable is associated to each transition from 
every couple of quasi-identical transitions.   

As a consequence of the previous considerations 12 
quasi-identical transitions of the AAPN can be 
combined with their quasi-identical counterparts, 
leading a Petri net with only 12 link transitions from the 
original 24 (6 from every original alternative Petri net). 

It has to be considered that the size of incidence 
matrices of the four alternative Petri nets {R1b, R2b, R3b, 
R4b} is the same, r · c, where: 

 r = Ar + Br + Cr + Dr    
 c = Ac + Bc + Cc + Dc + 6   (9) 

where 6 is the number of link transitions of any of the 
original alternative Petri nets {R1b, R2b, R3b, R4b}. 

Analogously, the size of the incidence matrix of the 
AAPN is r’ · c’, where: 

 r’ = Ar + Br + Cr + Dr    
 c’ = Ac + Bc + Cc + Dc + 12  (10) 

Let us call x = Ac + Bc + Cc + Dc; hence, 
 c = x + 6     
 c’ = x + 12    (11) 

The reduction size of the AAPN is: 
    size rate = size (AAPN) / size (SRb) = r’·c’/(4·r·c) 
According to (9) and (10), it is possible to state that  
    r = r’ = Ar + Br + Cr + Dr   (12) 

as a consequence 
    size rate = c’/(4·c)     (13) 

Moreover, considering (11) it is obtained that 
    size rate = (x+12) / [4·(x+6)]   (14) 

 
Figure 5. Size rate of and AAPN representing a complete 
set of alternative Petri nets in case II. 

 
Figure 5 represents the trend of the size rate for different 
values of x = Ac + Bc + Cc + Dc, which is the addition of 
the number of places belonging to every shared subnet. 
In particular, it can be seen that as x increases, the size 
rate decreases to a limit value given by:  

size rate = (1+12/x) / [4·(1+6/x)]   (15) 
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Calculating the limit of the previous expression as x 
increases to infinity is 1/4 = 0.25, the same as in case I. 
However, the curve that represents the size rate in case 
I is different to the one representing the same parameter 
in case II due to a different function of x: (7) versus (14). 
In fact, the size rate corresponding to case II is smaller 
than the size rate of case I. 

Figure 5 represents the trend of the size rate of the 
AAPN obtained for case II. 

6 Case III 
A different structure for the link transitions in the 

construction of alternative Petri nets that verify the 
constraints of the problem stated in section 3 is 
presented in this case III. Figure 6 represents two 
examples of the twelve feasible combinations of the 
shared subnets for constructing such alternative Petri 
nets. 

 
Figure 6. Two feasible solutions of case III: R1 (left) and 
R12 (right). 
In case III The four subnets {RA, RB, RC, RD} can be 
combined in twelve different ways for constructing 
twelve alternative Petri nets SRc = {R1c, R2c, … , R12c}. 
Every alternative Petri net of SRc contains 4 link 
transitions. Furthermore, it is possible to apply to SRc the 
steps mentioned in section 2 for obtaining and 
equivalent AAPN. 

As a result, an AAPN with 48 link transitions can be 
obtained. In this Petro net 12 couples of quasi-identical 
transitions can be found. Just to give two examples that 
have been depicted in Figure 6, it is possible to consider 
transition tDi of R1 is quasi-identical to tDiy in R12. 
Moreover tAiy in R1 is quasi-identical to tAi in R12.  

As a consequence of the previous considerations 12 
quasi-identical transitions of the AAPN can be 
combined with their quasi-identical counterparts, 
leading a Petri net with only 36 link transitions from the 
original 48 (4 from every original alternative Petri net). 

The incidence matrices’ size of SRc = {R1c, R2c, … , 
R12c} is: 

 r = Ar + Br + Cr + Dr    
 c = Ac + Bc + Cc + Dc + 4   (16) 

where 4 is the number of link transitions of any of the 
original alternative Petri nets SRc = {R1c, R2c, … , R12c}. 

Analogously, the size of the incidence matrix of the 
AAPN is r’ · c’, where: 

 

 r’ = Ar + Br + Cr + Dr    
 c’ = Ac + Bc + Cc + Dc + 36  (17) 

Let us call x = Ac + Bc + Cc + Dc; hence, 
 c = x + 4     
 c’ = x + 36    (18) 

The reduction size of the AAPN is: 
    size rate = size (AAPN) / size (SRb) = 
     =  r’·c’/(4·r·c)     (19) 

According to (16) and (17), it is possible to state that  
    r = r’ = Ar + Br + Cr + Dr   (20) 

as a consequence 
    size rate = c’/(12·c)     (21) 

Moreover, considering (18) it is obtained that 
    size rate = (x+36) / [12·(x+4)]   (22) 

Figure 7, represents the trend of the size rate for 
different values of x. In particular, it can be seen that as 
x increases, the size rate decreases to a limit value given 
by 

    size rate = (1+36/x) / [12·(1+4/x)]   (23) 
Calculating the limit of the previous expression as x 
increases to infinity is 1/12 = 0.0833. 

Figure 7 represents the trend of the size rate of the 
AAPN obtained for case III. 

 
Figure 7. Size rate of and AAPN representing a complete 
set of alternative Petri nets in case III. 

7 Complete model 
The steps for constructing an AAPN can also be applied 
to all the alternative Petri nets in the sets SRa,  SRb, and 
SRc, defined in the previous sections. 

As a result, a single AAPN can be developed to 
represent the 20 alternative Petri nets defined by the sets 
SRa,  SRb, and SRc. The size rate of this AAPN, compared 
to the original sets of alternative Petri nets can be 
defined as follows: 

size rate = size (AAPN) / [size (SRa) + size (SRb) + 
+ size (SRc)] = (r’ · c’) / [ 4 · r · (x + 2) + 
+ 4 · r · (x + 6) + 12 · r · (x + 4) ]   (24) 

where r’ = r; hence, 
size rate = c’ / [ 4 · (x + 2) + 4 · (x + 6) + 12 · (x + 4)] 
c’ = x + 8 + 12 + 36 – 12    (25) 
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In this last expression, the added numbers correspond to 
the link transitions provided to the global AAPN by the 
partial AAPN constructed from SRa,  SRb, and SRc 
respectively. The negative number corresponds to quasi-
identical transitions. As a result: 

    size rate = (x + 44) / (20 · x + 80)   (26) 
Calculating the limit of the previous expression as x 
increases to infinity is 1/20 = 0.05. 

Figure 8 represents the trend of the size rate of the 
AAPN obtained for the global AAPN 

 
Figure 8. Size rate of global AAPN representing 20 
alternative Petri nets. 
As an example of the power of reduction of the size of 
the model achieved by an AAPN, it can be considered 
that, for example, if the addition of the number of 
transitions of the four subnets is 200, the size rate of the 
AAPN that corresponds to the complete model is 0.06. 
This value means that the size of the AAPN is only 6% 
of the size of the complete set of 20 alternative Petri 
nets, despite the fact that the amount of useful 
information is the same in both models. In other words, 
94% of the information contained in the set of 20 
alternative PN can be removed to alleviate the 
computational effort for simulation. 

8 Conclusions 
The modular construction of a Petri net model of a 
system has been discussed. This concept has useful 
application in searching for feasible solutions for a 
design process of a discrete event system with 
alternative structural configurations. 

The use of an appropriate formalism, such as the 
AAPN, allows reducing significantly the size of the 
model that represents all the feasible solutions of the 
design problem. In the case study presented in this 
paper, a minimal size rate of 5% can be obtained by the 
global model, when compared to the original alternative 
Petri nets. In particular, in the mentioned case study, 
95% of the data of the original models is removed in the 
AAPN. However, the useful information contained in 
the AAPN is exactly the same as in the original model. 

The impact of this research on discrete event systems 
can be summarized by the fact that in certain cases the 
design of a system might be developed much faster by a 
modular construction of alternative solutions and the 
simulation of compact Petri net models. 
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