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Abstract
This paper presents a combustion model and a

simulation method for modeling flame acceleration

(FA) and deflagration to detonation transition (DDT) in

a premixed gas. The method is intended to produce the

most important effects in FA and DDT without

resolving the flame front on the computational mesh.

The simulations presented here are of stoichiometric

hydrogen-air mixtures in a channel with repeated

obstacles. The channel is 2 m long and 110 mm wide,

with a height of either 20 mm or 40 mm. The obstacles

gives a blockage ratio of 0.5. These values are the same

as for experiments by other researchers and is used for

comparison. The combustion model combines a

turbulent burning velocity model and a two-step

Arrhenius kinetic rate. The simulations show similar

flame speeds and pressures as seen in experiments, and

the process of DDT is shown to be caused by shock

focusing and shock flame interactions. The simulations

show that the quasi detonation regime is a series of

transition to detonation events followed by failure of

the detonation. Results from both 2D and 3D

simulations are presented, since the 2D simulations

show how the method can reproduce important effects.

Keywords: CFD, flame acceleration, DDT, detonation,

hydrogen

1  Introduction

Simulations of strong flame acceleration and

deflagration to detonation transition (DDT) in gaseous

mixtures are important for understanding the

propagation of gas explosions. Simulation tools are

also important for risk assessment in industries where

gas explosions might occur. Gamezo et al. (2007)

presented simulations of flame acceleration and DDT

in obstructed channels (Gamezo et al., 2007), in which

a single step Arrhenius reaction rate describes the

chemistry. The computational mesh resolution in their

simulations was approximately 100th of a flame

thickness. At a larger scale, such resolutions might be

impossible to accomplish. Strong flame acceleration in

a complex geometry is usually a product of classical

fluid mechanical instabilities such as turbulence,

Kelvin-Helmholtz, Rayleigh-Taylor, and Richtmyer-

Meshkov. Other important effects are the flame-

geometry and pressure wave-geometry interactions, in 

which the flame surface area increases or the reactants 

are compressed. With sufficient compression, the hot 

pockets in the reactants might ignite and possibly lead 

to DDT. Lee and Moen (1980) and Lee et al. (1985) 

described different propagation regimes in obstructed 

channels, including:  i) choked flow, ii) quasi-

detonation, and iii) Chapman-Jouguet (CJ) detonation. 

The choked flow regime is a deflagration in which the 

expansion of gas over an obstacle produces high flame 

speeds. In the quasi-detonation regime, the flame 

undergoes a transition to detonation followed by a 

failure of detonation due to diffraction. This DDT and 

failure process is repeated to produce higher average 

flame speeds than in the choking regime but lower than 

the CJ detonation speed. Thomas (2012), Shepherd 

(2009), Ciccarelli and Dorofeev (2008), and Shepherd 

and Lee (1992) have written excellent reviews on flame 

acceleration and DDT. The objective of this work is to 

develop a simulation method to predict the strong 

flame acceleration and DDT that can occur in gas 

explosions in channels with repeated obstacles. The 

focus of this paper is the development of a combustion 

model that can reproduce the phenomena seen in flame 

acceleration and DDT on an under-resolved 

computational mesh. More details on the method 

presented in this paper are described in Vaagsaether 

(2010).  

2 Combustion Model 

The combustion model combines a turbulent burning 

velocity model with a chemical kinetic rate model. A 

two-step reaction model is used for the chemical 

kinetic rate in all cases. Two reaction variables describe 

the total reaction, one for the initiation and chain 

branching reactions, and one for the termination rates. 

It is assumed that the initiation and branching reactions 

are isothermal. Three species are conserved as two 

reaction progress variables. These species are reactants, 

intermediates (radicals), and products. Here, the two 

progress variables are called α and β and the 

conservation equations are provided in (1) and (2). 
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 (1) 

   (2) 

Since the reaction described by (1) is assumed 

isothermal and the products of that reaction are 

assumed to be radicals, the reaction term for (1) is 

given by the induction time as seen in (3). 

 

  (3) 

Equation (4) shows a typical form for the induction 

time model, where [F]0 and [O2]0 are the non-reacted 

fuel and oxygen concentrations, Aind is a pre-

exponential factor, and Ta,ind is an activation 

temperature. 

  (4) 

  (5) 

The reaction term in (2) accounts for both turbulent 

reactions and chemical kinetics. The rate is the 

maximum reaction rate of a turbulent burning velocity 

model and an Arrhenius-type kinetic rate. This term is 

seen in (5) where the first part of the rate is a typical 

flame density model and the second part is a Arrhenius 

kinetic rate. 

   (6) 

Since the turbulent burning velocity model contains all 

reactions in the flame front, unlike the kinetic term it is 

not dependent on α. A typical form of the kinetic rate 

of β is shown in (6), where A is a pre-exponential 

factor and Ta is an activation temperature. In this model 

the α-reaction must finish before the Arrhenius rate in 

the β-reaction can start, as seen in (6). In the unreacted 

unheated gas, α is 0 and increases with increasing 

temperature. In gas mixtures with a low temperature in 

the unreacted gas, the turbulent rate is dominant and 

the model behaves like a turbulent burning rate model. 

When the temperature in the reactants increases and the 

induction time becomes sufficiently small, the kinetic 

rate in the β equation will start to influence the total 

rate. This property of the model can capture the effect 

of ignition by shock compression of the reactants.  

 

Figure 1: Schematic representation of the reaction rates 

with β and temperature curves. The Turbulent rate highest 

at the highest gradient of the reaction rate variable. The 

Arrhenius rate is highest towards the product side. 

Figure 1 shows a schematic representation of the 

combustion model with the two reaction rates for 

turbulent combustion and the Arrhenius rate. When the 

temperature in the reactants increases, the peak in the 

Arrhenius rate moves toward the reactant side. 

3 Geometry Simulation set-up 

Figure 2 shows a schematic of the experimental setup 

from Teodorczyk (2007), which is also the present 

simulation domain. The channel is 2 m long, 110 mm 

wide, and closed in all directions. The blockage ratio 

for all experiments is 0.5. The ignition of the 

stoichiometric hydrogen-air mixture at atmospheric 

pressure and 293 K occurs at the center of one end 

wall. Results from the simulations with channel heights 

of 20 mm and 40 mm are presented here. These 

simulations are for a 2D geometry and show that the 

model handles the most important effects of flame 

acceleration and transition to detonation in this type of 

geometry. Two different mesh sizes, 1 mm and 0.5 

mm, are tested, but most of the results presented here 

use the 1 mm mesh. Some results from the 3D 

simulations are shown and compared with the 

experimental results. The 3D simulations use a constant 

1 mm mesh. Since the real geometry is 3D, the shock 

focusing and reflections behave differently than they 

would in 2D. 

 

Figure 2: Experimental set-up of Teodorczyk with 

channel height and distance between obstacles. 
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3.1 3.1   Simulation set-up 

A second-order centered TVD method (FLIC) solves 

the transport equations for mass, momentum and 

energy and the gas is modeled as an ideal gas. This 

method is described in Toro (1999). A turbulence 

model is used since the flow is turbulent and the 

turbulent length scales are smaller than the mesh size. 

Equation (7) shows the one-equation model for the 

turbulent kinetic energy used in the simulations, where 

[R] is the Reynolds stress, [S] is the mean strain rates, 

Ce is a constant set to 0.92, and the turbulent length 

scale l is set to be the mesh size. The notation “:” is the 

Frobenius inner product of two matrices. 

 

 

  (7) 

 

The turbulent burning velocity is calculated from a 

model presented in (Flohr and Pitsch, 2000) and is 

shown in (8). 

 

   (8) 

 

A is a model constant and is set to 0.52, Re is the 

turbulent eddy Reynolds number, Pr is the Prandtl-

number, Da is the turbulent eddy Dahmkohler number 

and the velocity fluctuation is calculated as u'=(2/3 

k)0.5. 

The induction time model for hydrogen-air is presented 

in Sichel et al. (2002) , where Aind=1.1085∙1010  Pa∙s/K  

for a stoichiometric mixture. 

   (9) 

 

(10)  

 

The rate of the exothermic reaction was presented in 

(Korobeinikov, 1972)  where Aβ=1.04∙10-5 and 

Ea=2000 K. 

 

 (11) 

 

The laminar burning velocity is taken from a model 

presented in Iijima and Takeno (1984), where 

p0s=101325 Pa and T0s=291 K. 

  (12) 

 

  (13) 

 

   (14) 

 

   (15) 

 

The total energy per volume is: 

 

  (16) 

 

The properties Q = 3.2 MJ/kg, γu=1.402, γb=1.242 are 

used for the stoichiometric mixture of hydrogen-air, 

where the subscripts u and b indicate the unburned and 

burned states. 

4 Results and discussion, 2D 

simulation 

To demonstrate how the simulation method handles 

shock ignition and DDT. Two-dimensional simulations 

are presented and discussed in this section. These 

results are presented as contour plots of the density 

gradients as well as plots of the flame speeds along the 

channel length just below the top wall. Fig. 3 shows the 

flame speed along the length of the 40 mm high 

channel. From ignition, the flame speed increases as 

the flame passes the obstacles. The expansion of the 

gas across the obstacles produces high flame speed and 

increases the burning rates, which in turn produce a 

shock wave traveling in front of the flame. Figure 4 

shows the process of DDT in the 40 mm channel. 

When the shock passes an obstacle, a diffracted shock 

front reflects at the bottom wall and creates a Mach 

stem. Both the leading shock and the Mach stem reflect 

at the obstacles and are focused in the corner between 

the bottom wall and the obstacle. They ignite the gas 

behind the focused shock to send a strong shock wave 

into the products. This shock wave diffracts over the 

obstacles and reflects at the top wall. The reflected and 

diffracted shock interacts with the flame from the 

product side and accelerates the flame, and it may even 

heat the reactants in the front of the flame to cause 

DDT. 
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Figure 3: Simulated flame speed as a function of time for 

the 40 mm channel with repeated obstacles with 1 mm 

mesh. Stoichiometric hydrogen-air at 293 K and 1 atm. 

 

 

Figure 4: 2D simulation of 40 mm channel height 

showing density gradients of shock-flame-obstacle 

interactions where transition to detonation occurs. 

When the detonation in the 40 mm channel propagates 

past an obstacle, the shock diffracts and the detonation 

fails, as can be seen in Figure 5. Due to the diffraction 

over an obstacle, the flame does not propagate as a CJ 

detonation. The average flame speed after this point is 

about 1400 m/s and can be interpreted as the quasi-

detonation regime. In the experiments, there is 

significant scatter in the locations of the first DDT. The 

average flame speed in the experiments after this first 

transition is about 1250 m/s, but varies as much as 200 

m/s. A similar process of DDT and failure is seen in 

high-speed photographs in experiments in Teodorczyk 

et al., (1988).  

The simulations of the 20 mm channel show similar 

flame acceleration to what occurred in the 40 mm 

channel. Figure 6 shows the simulated flame speed 

along the channel length. After about 0.4 m distance 

from ignition, the flame reaches an average speed of 

over 1000 m/s, fluctuating between 1200 m/s and 800 

m/s, and it is described as the choking regime for this 

case. In the experimental results there is likely a 

transition to detonation around 0.7 m, which is not seen 

in the simulation. But after about 1.0 m the flame speed 

is on average constant around 1000 m/s in both the 

experiments and in the simulations. The coarse mesh is 

unable to resolve the smaller scales of the different 

instabilities important in flame acceleration, and these 

instabilities may form small hotspots that can cause 

DDT. The results of a grid sensitivity test are shown in 

Figure 7. The 40 mm channel is probably the most 

interesting case since it includes flame acceleration, 

DDT, and failure. The flame speed along the 40 mm 

channel is roughly the same for both mesh sizes. 

 

Figure 5: Simulated density gradients of shock-flame-

obstacle interactions for the 40 mm channel with repeated 

obstacles. The images show the failure of detonation. 

Stoichiometric hydrogen-air at 293 K and 1 atm. 
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Figure 6: Simulated flame speed as a function of time for 

the 20 mm channel with repeated obstacles with 1 mm 

mesh. Stoichiometric hydrogen-air at 293 K and 1 atm. 

 

Figure 7: Grid sensitivity for the 40 mm channel with 

repeated obstacles for 1 mm mesh and 0.5 mm mesh. 

Stoichiometric hydrogen-air at 293 K and 1 atm. 

 

 

Figure 8: 3D simulation with 1 mm mesh of the flame 

speed along the center of the channel top wall for the 40 

mm channel with repeated obstacles. Stoichiometric 

hydrogen-air at 293 K and 1 atm. 

5 Results and discussion, 3D 

simulation 

Figure 8 shows the simulated flame speed along the 

channel. Figure 9, Figure 10 and Figure 11 show the 

experimental pressure histories at 795 mm, 875 mm, 

and 955 mm from ignition, respectively, as well as the 

simulated pressure three obstacle distances farther 

down the channel. The experimental pressure records 

are extracted from the image files in Teodorczyk 

(2007) by a simple code. The accuracy of the extraction 

is not validated but it should reproduce the same curves 

as in the paper. The simulated time is set to match the 

strong pressure peak in Figure 9, since this peak is 

thought to be due to the initiation of the detonation. 

 

Figure 9: Experimental and simulated pressure history in 

the 40 mm channel with repeated obstacles. 

Stoichiometric hydrogen-air at 293 K and 1 atm. The 

pressure transducer is 795 mm from ignition; the 

transducer in the simulation is placed three obstacle 

distances farther from ignition. 
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Figure 10: Experimental and simulated pressure history 

in the 40 mm channel with repeated obstacles. 

Stoichiometric hydrogen-air at 293 K and 1 atm. The 

pressure transducer is 875 mm from ignition; the 

transducer in the simulation is placed three obstacle 

distances farther from ignition. 

 

Figure 11: Experimental and simulated pressure history 

in the 40 mm channel with repeated obstacles. 

Stoichiometric hydrogen-air at 293 K and 1 atm. The 

pressure transducer is 955 mm from ignition; the 

transducer in the simulation is placed three obstacle 

distances farther from ignition. 

The pressure histories from the simulation are taken at 

a transducer position that is three obstacle distances 

farther from ignition. Since there is significant scatter 

in the experiments, the position of the first DDT is 

difficult to match with the experimental pressure data. 

The distance between the first pressure rise and the 

shock from the initiation of the detonation is longer in 

the simulations than in the experiments. Since the 

simulated pressure is shifted three obstacle distances, 

the leading shock has propagated farther from the 

flame. The coarse resolution of the mesh does not 

capture all the hotspots. This might average out small 

areas of high temperature to a lower temperature, 

whereas the hotspots may ignite and lead to detonation 

in the experiments. Compared with the 2D simulation,

the 3D simulation predicts the first DDT one obstacle

later. This might be because any strong shock produced

from focusing may propagate in three directions,

compared with two directions in the 2D case;

furthermore, a simulated hotspot in 2D may lead to

transition while in 3D it weakens faster and may not

cause transition. Another reason might be that in 2D,

the gas is ignited in the entire width of the channel and

the flame propagates cylindrically and not spherically,

so that the position is moved to where a sufficiently

strong shock wave is formed. The 3D simulation does

not show the same frequency of the pressure

oscillations as with the 2D simulation. The flame

propagates with the detonation velocity for the length

of three obstacles, compared with only one for the 2D

simulation. The shock diffraction is not as critical for

the 3D simulation since the propagating detonation

front is not planar. As the detonation passes the

obstacle, parts of the detonation fail and cause

transverse waves that keep the detonation going as a CJ

detonation. Previous work on simulation of transition

to detonation has been performed with much finer

mesh (Gamezo et. al., 2007) but with simpler

chemistry. The transition phenomena can be predicted

with the present method even when the mesh size is

larger than the flame thickness.

6 Conclusions

Simulations of flame acceleration and DDT using the

present method reproduce the main effects seen in

experiments of flame acceleration in channels with

repeated obstacles. Shock focusing and reflections are

the most important sources for producing hotspots that

lead to the onset of detonation in channels with

repeated obstacles. The same processes that led to

detonation in the experimental results in Teodorczyk

(2007) and Teodorczyk et al. (1988) are seen in the

present results. The 3D simulation shows similar

behavior to the 2D simulation where DDT occurs, and

the flame propagates in the quasi-detonation regime.

The simulated initiation and failure of detonation

shows that this geometry with a point ignition behaves

three-dimensionally, and the details are handled

differently for 2D and 3D. The coarse mesh might be

the reason for the difference between the simulations

and experiments. Since the coarse mesh averages the

flame over a few millimeters, the details in the

formation of hotspots and the diffraction of the front

are not captured. The experiments show significant

scatter in the position of the DDT, and it is difficult to

say how good the predictions are on that account.
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