
Parallel Simulation of PDE-based Modelica Models
using ParModelica

Gustaf Thorslund1 Mahder Gebremedhin2 Peter Fritzson2 Adrian Pop2

1ThorslundTech AB, Sweden, gustaf@thorslundtech.se
2Dept. of Computer and Information Science, Linköping University, Sweden,

{mahder.gebremedhin,peter.fritzson,adrian.pop}@liu.se

Abstract
The Modelica language is a modelling and program-
ming language for modelling cyber-physical systems us-
ing equations and algorithms. In this thesis two suggested
extensions of the Modelica language are covered. Those
are Partial Differential Equations (PDE) and explicit par-
allelism in algorithmic code. While PDEs are not yet sup-
ported by the Modelica language, this article presents a
framework for solving PDEs using the algorithmic part
of the Modelica language, including parallel extensions.
Different numerical solvers have been implemented using
the explicit parallel constructs suggested for Modelica by
the ParModelica language extensions, and implemented
as part of OpenModelica. The solvers have been evalu-
ated using different models, and it can be seen how bigger
models are suitable for a parallel solver. The intention has
been to write a framework suitable for modelling and par-
allel simulation of PDEs. This work can, however, also be
seen as a case study of how to write a custom solver us-
ing parallel algorithmic Modelica and how to evaluate the
performance of a parallel solver.
Keywords: OpenModelica, ParModelica, PDE, parallel
computing, GPU, GPGPU

1 Introduction
To understand the behavior of a system, it is desirable
to write down known relations of the system as equa-
tions. Together the equations will form a model of the
system. If the equations contain derivatives with respect to
one variable, they describe an Ordinary Differential Equa-
tion (ODE) or Differential Algebraic Equation (DAE). If,
however, the equations contain derivatives with respect to
more than one variable, they describe a Partial Differential
Equation (PDE).

Modelica1 is an object oriented language2 for model-
ing complex physical systems using equations. The model
can then be simulated using a numerical solver. However,
Modelica does not currently support modeling partial dif-
ferential equations. There are suggested extensions for

1http://www.modelica.org/ accessed May 2016
2The Modelica language is an open standard and can be downloaded

for free. There is also a book (Fritzson, 2014) available with many
examples of how to use the language.

PDEs in (Fritzson, 2014; Saldamli, 2006).
OpenModelica3 is an open source4 implementation of

the Modelica language, and an active research area.
Given that a PDE can describe a model in several di-

mensions, the required computations can grow exponen-
tially with the size of the model. This should make it suit-
able for parallel computing.

1.1 ParModelica
ParModelica (Gebremedhin et al., 2012), implement a
suggested extension for explicit parallelism in the al-
gorithmic subset of Modelica. Similar to CUDA and
OpenCL, it adds the concept of parallel computation de-
vice, device memory, and functions to be called on the
device and within the device.

1.2 Previous Research on PDEs in Modelica
An extensive work on PDEs within Modelica has been
done (Saldamli, 2006), suggesting language extensions
to the Modelica language to support fields and describ-
ing spatial domains. Those extensions were implemented
in PDEModelica. Unfortunately, PDEModelica has not
been maintained during the development of OpenModel-
ica. However, the work is, nevertheless, a good reference
for further work.

1.3 Partial Differential Equations (PDE)
A PDE also depends on derivatives with respect to other
variables than time. For example coordinates in space,
also known as spatial derivatives.

ρl
∂ 2ξ (x, t)

∂ t2 = F
∂ 2ξ (x, t)

∂x2 + fy(x) (1)

∂T
∂ t

= κ∇
2T +

(
κh
λ

)
= κ

(
∂ 2T
∂x2 +

∂ 2T
∂y2

)
+

(
κh
λ

)
(2)

Equation (1) describes the vibration of a string with con-
stant tension and (2) describes heat conduction, both equa-
tions are from (Nordling and Österman, 2006).

3http://www.openmodelica.org/ accessed May 2016
4http://opensource.org/ accessed May 2016

EUROSIM 2016 & SIMS 2016

660DOI: 10.3384/ecp17142660 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

T1,1

T1,2

T1,3

T1,4

T2,1

T2,2

T2,3

T2,4

T3,1

T3,2

T3,3

T3,4

T4,1

T4,2

T4,3

T4,4

T5,1

T5,2

T5,3

T5,4

T6,1

T6,2

T6,3

T6,4

Boundary

Figure 1. Method of lines applied to the heat conduction equa-
tion over a plane.

1.4 Explicit Form

In control theory and modeling it is often desirable to put
an equation into explicit state form, see (Fritzson, 2014;
Glad and Ljung, 1989; Ljung and Glad, 2004). In the gen-
eral form we have the state vector~x(t), the state derivative
~̇x(t), the input vector ~u(t), and the output vector ~y(t). In
the general case we have the equations:

~̇x(t) = ~f (~x(t),~u(t)) (3a)
~y(t) =~g(~x(t),~u(t)) (3b)

In case f and g are linear, matrix notation can be used
instead:

~̇x(t) = A~x(t)+B~u(t) (4a)
~y(t) =C~x(t)+D~u(t) (4b)

This article will only use the general form in (3). Mod-
els where an explicit form cannot be derived will require
solver methods not covered here.

2 Numerics
To give a better understanding of the implementation, this
section covers the algorithms involved in simulating math-
ematical models. For further reading, see: (Eldén and
Wittmeyer-Koch, 1996; Fritzson, 2014; Ljung and Glad,
2004), or another book covering numerical analysis or ap-
plications of numerical analysis.

2.1 Discretisation

To be able to solve a PDE over space and time, one ap-
proach is to discretized the PDE over space and this way
get a system of ODEs. If we take the heat conduction
equation from (Nordling and Österman, 2006), with ∇2

expanded to two dimensions, and calculate it at nx × ny

Forward ∂x

-1 1

Centre ∂x

-0.5 0 0.5

Backward ∂x

-1 1

Centre ∂y2

1

-2

1

Centre ∇ · (= ∂x+∂y)

0 -0.5 0

-0.5 0 0.5

0 0.5 0

Backward ∂y2

1

-2

1

Figure 2. Example of stencils used for calculating spatial
derivatives. The red box symbolizes the destination, while the
numbers are the weights to use when summing up the neigh-
boring values. They are all approximations, and some can be
derived in different ways, resulting in different weights.

discrete points in space we get:

∂Ti, j

∂ t
= κi, j∇

2
i, jT +

(
κh
λ

)
i, j

= κi, j

(
∂ 2Ti, j

∂x2 +
∂ 2Ti, j

∂y2

)
+

(
κh
λ

)
i, j

(5)

Figure 1 shows how T has been discretised over a grid
with 6× 4 points. The derivatives in (2) can be approxi-
mated with:

∂ 2T
∂x2 =

Ti+1, j −2Ti, j +Ti−1, j

∆x2 (6a)

∂ 2T
∂y2 =

Ti, j+1 −2Ti, j +Ti, j−1

∆y2 (6b)

Those approximations can be derived using Taylor se-
ries, see for example (Eldén and Wittmeyer-Koch, 1996;
Åström, 2015). As seen in (6), the discretisation (in one
direction) will depend on the points on both sides. This
is called a central difference, while there are also for-
ward and backward differences depending only on points
at one side. The weights to used to approximate the spa-
tial derivatives at a given point is commonly referred to as
stencils. Different types of stencils are illustrated in Fig-
ure 2.

Due to the dependency of points at the sides, the bound-
aries need to be treated specially. How they are treated
depends on the boundary condition of the model. In the
heat conduction case one may assume the temperature is
constant at the borders, so for example T0, j = T1, j, and ex-
pand the values at the boundaries. Other models may have
other boundary conditions.

Due to the amount of points, with one ODE at each
point, the method of lines approach will produce, this can
result in fairly large matrices if using an implicit solver.
If, on the other hand, an explicit solver is used, this gives
a potential for lots of parallelism. When running on a

EUROSIM 2016 & SIMS 2016

661DOI: 10.3384/ecp17142660 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

General Purpose Graphic Processing Unit (GPGPU) each
thread can have its own point.

2.2 Runge-Kutta with Variable Step Length
If the value of xn+1 is approximated with different order of
error, the values can be compared to get an estimate of the
local error. In (Bogacki and Shampine, 1989), parameters
for calculating both a third and second order approxima-
tion using four computations of k are suggested:

k1 = f (xn,xn) (7a)

k2 = f (tn +
1
2

h,xn +
1
2

hk1) (7b)

k3 = f (tn +
3
4

h,xn +
3
4

hk2) (7c)

x(3)n+1 = xn +(
2
9

k1 +
1
3

k2 +
4
9

k3)h (7d)

k4 = f (tn +h,xn+1) (7e)

x(2)n+1 = xn +(
7
24

k1 +
1
4

k2 +
1
3

k3 +
1
8

k4)h (7f)

Using the two predictions x(3)n+1 and x(2)n+1 of third and sec-
ond order, it is possible to estimate the error during the
step. The error can be used to decide if the step should
be accepted or restarted with a shorter step size. It is also
possible to estimate a new step size.

3 General-Purpose Computing
on Graphics Processing Units
(GPGPU)

A Graphic Processing Unit (GPU) can be used as a com-
putation device attached to a host, Figure 3. Within a
GPU there are multiple Computation Unit (CU). The CUs
are simplified compared to a CPU, so it is the amount of
them that makes the GPU powerful. The GPU will have its
own memory, divided into a bigger global memory, and a
smaller and faster local memory. The local memory can be
used as a user controlled cache. GPUs usually has its own
cache too, giving a transparent memory hierarchy. When a
GPU device is used within a host computer, it will result in
a heterogeneous system. The host can either be used just
to control the device, or carry out its own computations.

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

cu

Local
Memory Global

Memory

GPGPU

CPU

Host
Memory

Host

Figure 3. Computer equipped with a GPU. The GPGPU has a
number of Computation Units, local and global memory.

host fh1

host fh2

parkernel fk1

parkernel fk2

parallel fp1

parallel fp2

Figure 4. How functions can call each other in ParModelica

4 PDEs in Modelica
PDEs, in general, are not supported in Modelica. Starting
with Modelica 3.3 there is support for spatialDistribution,
allowing modelling of variable speed transport (Fritzson,
2014). The suggested extension in (Fritzson, 2014; Sal-
damli, 2006) are:

• field variables

• indomain construct

Those extensions would allow modelling a heat equation
on a plane as:

model HeatInPlane
parameter Real c;
parameter Real q;
parameter Real h;
field Real T(domain=omega);

equation
c*der(T) = pder(T,D.x2) + pder(T,D.y2)
indomain omage.interior;

T = 50 indomain omega.left;
c*pder(T,D.x) = q+h*(T_ext-T)
indomain omega.right;

pder(T,D.y) = 0 indomain omega.top;
pder(T,D.y) = 0 indomain omega.bottom;

end HeatInPlane;

EUROSIM 2016 & SIMS 2016

662DOI: 10.3384/ecp17142660 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

5 Algorithmic Modelica and ParMod-
elica

In an algorithmic context, the following concepts from
Modelica is of interest:

• Functions

• Records

• Arrays

• Enumeration types

• Type definitions

• Partial function, if implemented by the user they can
be passed as argument to an other function

While it is possible to define arrays of arrays, this should
be seen as a multidimensional array with rectangular/box-
shape. It is not possible to construct arrays containing ar-
rays of different sizes. The same applies if an array of
records containing arrays is constructed.
ParModelica adds the concept of:

• parkernel function, called from non parallel context

• parfor loop, called from non parallel context

• parallel function, called from a parkernel function or
parfor loop

• parlocal memory, static size set at compile time and
used within a parkernel function or parallel function

• parglobal memory, allocated in a non parallel con-
text and passed to a parkernel function during exe-
cutions

Modelica functions can be called recursive. The parallel
functions introduced by ParModelica can, however, only
be called from a parallel context. This is from within a
parkernel function, parfor loop or an other parallel func-
tion. Furthermore, the parallel functions cannot be called
recursively. How functions can call each other is illus-
trated in Figure 4.
ParModelica does, however, add limitations:

• Does not support records

• Does not support partial functions as argument to
other functions

• Arrays of arrays should be considered as multidi-
mensional arrays, so it is not possible to define an
array on the host containing a number of parglobal
arrays to be passed to a parkernel function

6 Solver Framework
This section gives an overview of the framework for solv-
ing PDEs.

6.1 User Defined State Derivative and Settings
The user should provide a function for computing the state
derivative. For a solver using ParModelica this should be
a parallel function and named ParDerState. This func-
tion should be within the PDESolver hierarchy, in the sub-
package Model. A serial solver using algorithmic Mod-
elica will instead use the function DerState within same
package. The function gets the current state, user pro-
vided variables, external fields, a time to compute the state
derivative at, and the discrete coordinates as three scalars.
The function will then return up to three scalars for up to
three different fields. Here the function interface together
with a sample model is given:

within PDESolver.Model;

parallel function ParDerState
"Calculate the state derivative"
import Functions = PDESolver.ParFunctions;
import PDESolver.ParFunctions.Pder;
import PDESolver.Types;

input Types.Field[:] state "Array of state
fields";

input Real var[:];
input Types.Field ext[:];
input Real t

"Time to calculate the state derivative
at";

input Integer i,j,k
"Discrete coordinate within field";

output Real value1;
output Real value2;
output Real value3;

protected
// User defined
Real d2Tdx2, d2Tdy2;
Real c = var[1];

algorithm
// User defined
nDer := 0; // Perfect insulation
d2Tdx2 := Pder.Pder2Neumann(f=state, fi=1,

i=i, j=j, k=k,
dim=1, nder=

nDer);
d2Tdy2 := Pder.Pder2Neumann(f=state, fi=1,

i=i, j=j, k=k,
dim=2, nder=

nDer);
value1 := c*(d2Tdx2 + d2Tdy2)*ext[1,i,j,k];

end ParDerState;

For describing the domain and how the field is discre-
tised, the user should provide a Settings package for the
model. Here it is also possible to add static parameters for
the model.

within PDESolver.Model;

package Settings
// Parameters used by the solver
constant Types.FieldIndex n = {80,40,1};
constant Types.Coordinate first = {0,0,0};
constant Types.Coordinate last = {2,1,0};
constant Integer stateFields = 1 "T";

EUROSIM 2016 & SIMS 2016

663DOI: 10.3384/ecp17142660 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

// Parameters used in the model
constant Integer boxSize = integer(n[2]/2);
constant Integer myBoundary = 3;

end Settings;

6.2 Types Used by the Solver
There are two types used by the solver field type, imple-
mented as a four dimensional array, and an enumeration
type to select solver. For the field type the dimensions are
taken from the user provided settings.

within PDESolver;

type Field = Real[Model.Settings.n[1],
Model.Settings.n[2],
Model.Settings.n[3]]

(each start=0, each fixed=true);

within PDESolver.Solver;

type SolverId =
enumeration(SerialPECE,

SerialRK32,
ParallelPECE,
ParallelRK32);

6.3 Solvers
The user interface for simulating a PDE is the Solve func-
tion. It will take a state array, external fields, user provided
variables, the current time, time to step forward to, and a
SolverId as compulsory arguments. It is also possible to
provide arguments for initial intermediate step size, max-
imum error during one step, maximum intermediate step
size. The arrays provided are host variables and for the
parallel solvers they will be copied to parglobal variables
before calling the solver. The result is then copied back
and returned as next state.

within PDESolver.Solver;

function Solve
input Types.Field state[:] "Current state";
input Types.Field ext[:] "External field";
input Real var[:] "External variables";
input Real t0 "Time at state";
input Real t1 "Time at next";
input SolverId solverId;
input Real dt = (t1-t0)*2

"Initial intermediate step length.";
input Real eMax = 0.1 "Max error";
input Real hMax = dt

"Max intermediate step lengh.";
input Integer th1=1, th2=1, th3=1;
output Types.Field next[size(state,1)]

"New state";
protected
// ...

algorithm
// ...

end Solve;

The solvers need different intermediate fields. Since
a parkernel function in ParModelica cannot have internal
arrays, output variables are used as intermediate fields.

For merging fields within the parallel solvers, ordinary
for-loops are used. Each thread will calculate the initial
index, step size, and final value for the loops.

7 Use Case — Heat in Plane
In this section two use cases with heat conduction in a
plane and different boundary conditions are presented, to-
gether with results and a discussion about result.

7.1 Poor Insulation and Constant Tempera-
ture

The boundary conditions here are similar to those in
(Fritzson, 2014), with constant temperature at one side,
poor insulation at opposite side and perfect insulation at
the remaining two sides. Figure 5 shows how the tem-
perature falls from the side with constant temperature to
the side with poor insulation, while the sides with perfect
insulation does not have an impact on the temperature.

if Functions.AtBoundary(i,j,k) then
if Functions.AtFirst(i=i,j=j,k=k,dim=1)

then
// Left side
d2Tdx2 :=
Pder.Pder2Dirichlet(f=state, fi=1,

i=i, j=j, k=k,
dim=1, boundary=50)

;
elseif Functions.AtLast(i=i,j=j,k=k,dim=1)

then
// Right side
nDer := q + h*(T_ext - state[1,i,j,1]);
d2Tdx2 :=
Pder.Pder2Neumann(f=state, fi=1,

i=i, j=j, k=k,
dim=1, nder=nDer);

else
d2Tdy2 :=
Pder.Pder2Neumann(f=state, fi=1,

i=i, j=j, k=k,
dim=2, nder=0);

end if;
else
d2Tdx2 :=

Pder.Pder2Inner(f=state,
fi=1, i=i, j=j, k=k, dim=

1);
d2Tdy2 :=

Pder.Pder2Inner(f=state,
fi=1, i=i, j=j, k=k, dim=

2);
end if;
value1 := c*(d2Tdx2 + d2Tdy2);

7.2 Constant Temperature Depending on Lo-
cation

In this example boundaries have constant temperature de-
pending on location around the plate. The result after a
500ms simulation can be seen in Figure 6. The tempera-

EUROSIM 2016 & SIMS 2016

664DOI: 10.3384/ecp17142660 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

20 40 60 80

20

40

40

50

0 20 40 60 80 100

Figure 5. Plane with constant heat at the left side and poor in-
sulation at the right side (t = 0.5).

20 40 60 80

20

40

0

50

100

0 20 40 60 80 100

Figure 6. Boundary have constant temperature depending on
location (t = 0.5).

ture have been forced towards 0 or 100 depending on the
boundary conditions.

boundaryT := 100*BoxZeroOne(i,j);
d2Tdx2 :=
Pder.Pder2Dirichlet(f=state, fi=1,

i=i, j=j, k=k,
dim=1, boundary=

boundaryT);
d2Tdy2 :=
Pder.Pder2Dirichlet(f=state, fi=1,

i=i, j=j, k=k,
dim=2, boundary=

boundaryT);
value1 := c*(d2Tdx2 + d2Tdy2);

8 Performance Measurement
Performance measurement where done on a Fermi M2050
GPU with a total of 448 CUDA cores available. The same
simulation was started using different number of threads
and the speedup compared to just using one thread can be
seen in Figure 7. In parallel computation there will always
be a sequential part limiting the maximum speedup. This
is due to the sequential part will take the same amount of
time no matter how fast the parallel part may run.

0 100 200 300 400 500
0

50

100

150

200

250

Threads

Sp
ee

du
p

Speedup

Figure 7. Speedup when simulating same model using different
amount of threads for the simulation on a GPU with 448 CUDA
cores.

9 Pros & Cons of Solver Written in
Modelica

In the context of a bigger system, where part of it need a
special solver, there can be advantages to write the solver
in Modelica. The solver can then form a framework where
the user only add a small portion of code. For this the sug-
gested ParModelica extensions may also be used to gain
better performance. Another advantage with ParModelica
can be when evaluating the performance of a potential par-
allel solver. Then the solver can be written using ParMod-
elica to get an idea of performance gain and bottlenecks
when appying the solver to different problems.

The true power of Modelica is to solve equations.
While the language does have an algorithmic subset, it is
hard to compete with other general purpose programming
languages.

10 Conclusions
In this article we show how an algorithmic solver can be
implemented to utilise the explicit parallelism of ParMod-
elica. To gain performance, however, care must be taken
of where the user code is added. If the solver is written
as a kernel function, calling a parallel function provided
by the user, it is possible to get two order of magnitudes

EUROSIM 2016 & SIMS 2016

665DOI: 10.3384/ecp17142660 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

better performance.
While this work tries to provide the functionality to

solve various PDEs, it is hard to predict all needed func-
tionality without specific use cases. For this it is necessary
to simulate more models. Stability and errors introduced
by the discretisation and solvers also need further work.
There is also ongoing work, by PhD student Jan Šilar, to
add PDE extensions to the frontend. This was presented
during the OpenModelica workshop 2016, (Šilar, 2016).
Once OpenModelica have PDE extensions in the frontend,
and there is an efficient way to simulate PDEs, this needs
to be integrated into all stages of the OpenModelica com-
piler and simulation runtime.

This work is still a research prototype and not stable
enough to be included in the OpenModelica release. The
work we present was initiated by (Thorslund, 2015).

References
P. Bogacki and L.F. Shampine. A 3(2) pair of Runge - Kutta

formulas. Appl. Math. Lett., 2(4):321–325, 1989.

Lars Eldén and Linde Wittmeyer-Koch. Numerisk analys — en
intruduktion. Studentlitteratur, third edition, 1996.

Peter Fritzson. Principles of Object-Oriented Modeling and
Simulation with Modelica 3.3. A cyber-physical approach.
Wiley, second edition, 2014. ISBN 9781118859124.

Mahder Gebremedhin, Afshin Hemmati Moghadam, Peter Fritz-
son, and Kristian Stavåker. A data-parallel algorithmic mod-
elica extension for efficient execution on multi-core plat-

forms. In Proceedings of the 9th International MODELICA
Conference; September 3-5; 2012;, pages 393–404, Munich,
Germany, September 2012.

Torkel Glad and Lennart Ljung. Reglerteknik Grundläggande
teori. Studentlitteratur, second edition, 1989.

Lennart Ljung and Torkel Glad. Modellbygge och simulering.
Studentlitteratur, second edition, 2004.

Carl Nordling and Jonny Österman. Physics Handbook. Stu-
dentlitteratur, 2006. ISBN 978-91-44-04453-8.

Levon Saldamli. PDEModelica – A High-Level Language for
Modeling with Partial Differential Equations. PhD thesis,
Linköping University, PELAB - Programming Environment
Laboratory, The Institute of Technology, 2006.

Gustaf Thorslund. Simulating partial differential equations us-
ing the explicit parallelism of ParModelica. Master’s thesis,
Linköping University, Software and Systems, Faculty of Sci-
ence & Engineering, 2015.

Freddie Åström. Variational Tensor-Based Models for Image
Diffusion in Non-Linear Domains. PhD thesis, Department
of Electrical Engineering, Linköping University, 2015.

Jan Šilar. Partial Differential Equations in Mod-
elica. OpenModelica2016-talk12-JanSilar-
PartialDifferentialEquationsinModelica.pdf,
2016. URL https://openmodelica.
org/events/openmodelica-workshop/
openmodelica-program-2016.

EUROSIM 2016 & SIMS 2016

666DOI: 10.3384/ecp17142660 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

https://openmodelica.org/events/openmodelica-workshop/openmodelica-program-2016
https://openmodelica.org/events/openmodelica-workshop/openmodelica-program-2016
https://openmodelica.org/events/openmodelica-workshop/openmodelica-program-2016

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	Introduction
	Calculation formulas
	Calculation of Intra-Ocular Lens for Non-Normal Eyes

	Back ground of studies
	Artificial Neural Network
	Real data
	Collected Data
	Specification of Patients Data Selected for Collection
	Specification of Preprocessing Parameters

	Results
	Objective
	ANN training
	ANN settings
	Results

	Conclusion
	Future work
	Introduction
	Homeostasis, Disturbance Rejection and Set Point Tracking
	Controller Motifs

	Results
	Dynamic Properties of Controller Motifs
	Tuning of Individual Controllers

	Conclusions
	Introduction
	Modelling the pharmacokinetics of propofol
	The 3-compartmental model
	Effect-site concentration model
	Model parameters

	Model verification
	Simulation results
	Propofol inflow
	Plasmatic concentration
	Effect-site concentration
	Evaluation of the predictive quality of the model

	Conclusion
	Introduction
	Modular Model Predictive Control Concept
	Building Setup
	Modular Predictive Control Concept

	Energy Supply Level - ESS - Models
	Linear Models
	Hybrid Models

	Model Predictive Controllers
	Objective Function
	LMPC
	MI-MPC

	Simulation Results
	Simulation Setup
	Demonstration of MPCC Performance
	Comparison between MPCC and RBC

	Conclusion
	Introduction
	Data Properties
	Macro Money Systems in QEs
	Behavior in QE1=(2008m11,2010m06)
	Behavior in QE2+=(2010m11,2012m08)
	Behavior in QE3=(2012m09,2014m10)

	Transmission Path of Housing Price from Reserve to Economic Activity
	Decomposition of M2 into Transaction and Precautionary Money Demands in (1975m10, 2016m03)
	Estimation of Precautionary Money Demand
	The Role of Business Condition u(t)=napm-50 in Transmission Mechanism of QEMP during QE1, QE2+ and QE3

	Conclusion
	Introduction
	Mathematical Model
	Model Parameters and Geometry
	Results and Discussions
	Conclusions
	Introduction
	Field Excitation Control
	Capability Curve
	Classical Control

	Concept and Formulation of MPC
	MPC as Excitation Control
	Modeling and Control Workflow

	Tuning the MPC Controller
	Time Response
	Open Circuit Conditions

	First-swing Angle Stability Enhancement
	Long-term Voltage Stability Enhancement
	Steady-state Voltage Stability
	Power System Simulator
	LTVS Simulations

	Discussion
	Conclusion
	Introduction
	Grid impedance model
	Impedance-based instability studies
	Practical implementation
	Conclusion
	Aknowledgements
	Introduction
	Literature Review
	Circulating Fluidized Bed Boilers
	Characteristics of RDF
	Agglomeration

	Methodology
	Description of Model
	Mass and Energy Balances
	Hydrodynamics

	Results and Discussion
	Validation
	Agglomerate Prediction

	Conclusion
	Introduction
	Theory
	Stability of Grid-Connected System
	Maximum-Length Binary Sequence

	Implementation in dSPACE
	System Setup
	Experiment

	Conclusions
	Introduction
	Governing Equation for Flow Modeling
	KP Numerical Scheme
	Simulation of the River Flow
	Results and Discussion
	Simulation Results
	Simulation Results for Numerical Stability Analysis

	Conclusion
	Introduction
	Air preparation process
	Fuzzy identification
	Takagi-Sugeno fuzzy model
	Fuzzy clustering

	Data collection
	Structure selection
	Input and output variables
	Representation of the systems' dynamics
	Fuzzy models granularity

	Fuzzy clustering and model validation
	Comments on resulting model performance

	Control experiments
	PID control
	Supervisory logic

	Conclusions
	Introduction
	First step - DES model
	Second Step - Portfolio optimization

	Stochastic DES model through markovian properties
	Product-Form Networks - Convolution algorithm
	Marginal probability
	Mean response time

	Load-haulage cycle
	DES model: Load-haulage system
	Project portfolio formulation
	Conclusion
	Introduction
	Overview of the Method
	Computing the Encounter Probabilities
	Example

	State Transition Matrix
	Projectile with a Single Sensor Fuzed Submunition
	Example
	Projectile with Two Sensor Fuzed Submunitions

	Failure Probability of the System
	Conclusion
	Hydro-pneumatic Accumulator
	Recent Research
	Purpose of This Study

	Logical Structure of Simulation Model
	Physics of Piston Type Hydro-Pneumatic Accumulator
	Nitrogen gas
	Mechanical Structure
	Hydraulic Fluid

	Conceptual Model

	Mathematical Model
	Equations for Nitrogen Gas
	Equations for Piston
	Equations for Friction
	Equations for Hydraulic Fluid
	Equations for Orifice

	Modelling in MATLAB/Simulink
	Calibration and Validation of the Simulation Model
	Testing Setup
	Laboratory Tests
	Validation

	Conclusion
	Introduction
	Contributions
	Setup for the analysis
	Experimental data
	Compressor Map
	Compressor Isentropic Efficiency
	Corrected Mass Flow
	Data Treatment

	 Pressure Losses in Gas Stand
	Pressure Loss in Straight Pipe
	Friction Factor - Laminar Flow
	Friction Factor - Turbulent Flow
	Pressure Loss In Bend
	Pressure Loss in Inlet Nozzle and Outlet Diffuser
	Adjust Measured Data
	Calculate New Compressor Efficiency

	Effect of pressure losses on measured compressor efficiency
	Compressor and Pipes Dimensions
	Case 1: Straight Pipes
	Case 2: Pipes with Diffuser and Nozzle
	Case 3: Pipes with Diffuser, Nozzle and Bend

	Summary and Discussion
	Future Work
	Conclusion
	Introduction
	Traffic Regulation: Stage selection
	Signal Control Schemes
	Pre-timed network control
	Max-Pressure Practical (MPract)

	Modelling and Simulation Overview
	An event-driven approach
	PointQ design

	Case Study-Data description
	From theory to applications
	System Stability
	Trajectory Delay Measurement
	Queue Delay Measurement
	Varying Traffic Conditions

	 PointQ versus AIMSUN Network Performance
	Evolution of phase (137,154)
	Evolution of phase (254,237)

	Conclusion
	Introduction
	Background
	MVB and Master Transfer
	Multifunction Vehicle Bus
	Mastership Transfer

	Model Checking with temporal logic

	System Modelling
	Bus Administrator Modelling
	basic data structure
	finite state machine of Bus Administrator

	Communication and Timing Modelling
	communication mechanism of BusAdmin
	timing mechanism

	Property Modelling
	Property Classification
	safety property
	liveness property

	Live sequence charts
	Observer Automata modelling

	Experiments
	Conclusion
	Introduction
	Experimental data
	Modeling
	Compressor
	Turbine
	EGR Blowers
	Auxiliary Blower
	Exhaust Back Pressure
	Combustion Species and Thermodynamic Parameters

	Parameterization Procedure
	Complete stationary parameterization
	Dynamic estimation

	Model Validation
	Conclusions
	Nomenclature
	Introduction
	Fundamentals
	Safe Active Learning
	The high pressure fuel supply system

	Design and Implementation
	Training of the hyperparameters
	The discriminative model
	The risk function
	The path to the next sample
	The algorithm

	Evaluation
	Evaluation in simulation
	Evaluation at a test vehicle

	Conclusion
	Introduction
	Modelling
	Centre of Gravity
	Aerodynamic Forces
	Definition of Angles
	Lever Arms
	Catenary
	Equations of Motion
	Velocities
	Self Stabilisation
	Complete Model

	Model Parameters
	Simulation Results
	Gliding Flight
	Towing Process

	Conclusions
	Introduction
	Context
	Compton scattering tomography (CST)

	Modelling of the new CST modality
	Proposed setup by back-scattering
	Direct problem : Image formation
	The half-space Radon transform (HRT)
	Image formation

	Inverse problem : Object Reconstruction
	Inversion of the HRT
	Filtered back-projection

	Simulation of the new CST modality
	Energy resolution of the detector
	Spatial discretization
	Window functions

	Conclusion and perspectives
	Introduction
	Powertrain model
	Problem formulation
	Tip-in problem constraints
	Boundary conditions for the tip-in problem
	Path constraints during tip-in

	Optimal control problem formulation
	Numerical solution of optimal control problems

	Optimal control results
	Extreme transients
	Compromise between time, Jerk and energy
	Jerk-Energy trade-off
	Efficient state and control transients

	Conclusions
	An Improved Kriging Model Based on Differential Evolution
	1 Introduction
	2 Theory of kriging model
	3 Kriging model based on DE algorithm
	3.1 Theory of DE algorithm
	3.2 Kriging interpolation based on DE algorithm
	3.3 Process of kriging Model based on DE algorithm

	4 An engineering example
	4.1 Setting DE algorithm parameters
	4.2 Data preprocessing
	4.3 Model computation and optimization

	5 Conclusion
	Introduction
	Model for slug flow
	Simulation for slug flow
	State estimation
	Control strategies
	Model predictive control
	PI control

	Simulation results and discussion
	Control structure I
	Control structure II
	Control structure III

	Computational time for MPC
	Maximum valve opening
	Conclusion
	Introduction
	Description of the loading bridge
	Modelling with Modelica
	Package of mechanical components Mechanics
	Package of causal components Blocks
	Structure and components of the overall model
	Model of the loading bridge
	World
	Cart
	Pendulum
	Drive

	Controller in Matlab Simulink environment
	Experiments
	Open loop experiments
	Closed loop experiments

	Conclusion
	Introduction
	MMT - Mathematics, Modelling and Tools
	Structure of MMT
	Usage of MMT

	Maple T.A. - Maple Testing and Assessment
	Structure MTA
	Usage MTA
	Mathapps
	MTA - Moodle Connector

	Case Study
	Conclusion
	Outlook
	Introduction
	Signal processing
	DFT and derivatives
	lp-norms and MIT-indices
	Nadaraya-Watson nonparametric regression

	Measurements and gearbox properties
	Load haul dumper front axle
	Water power station gearboxes

	Calculations from the LHD measurements
	Calculations from the WPS measurements
	Conclusion
	Introduction
	Preliminaries
	Problem Statement
	Vector Smoothing Splines

	Trajectory Planning
	Trajectory between Two Lines
	Centerline and Intermediate Time Instants
	Smoothing Spline Trajectory

	Numerical Examples
	Path with Piecewise Linear Boundaries
	Path in Obstacle Avoidance Problem

	Concluding Remarks
	Introduction
	Literature Review
	Dynamic multi-workstation model based on electrical components

	Simulation Model with a PI Controller
	Test and Results
	Final Remarks
	Introduction
	Related Work
	Methodology
	DataSet

	Semantic Identification Through Multiple Classifiers
	Global Feature Extraction through Wavelet Decomposition
	Deep Learning of Neural Network

	Image Retrieval
	Performance Analysis
	Conclusion
	Motivation
	Related work
	Data set and pre-processing
	Defining the curvature of a steel plate
	Experiment
	Discussion
	Conclusion
	Introduction
	New Evolutionary Computation
	Island model parallel distributed in NN-DEGA
	Self-adaptive using Neural Network
	Reconstruction of differential vector
	Elite strategy

	Numerical Experiments
	Benchmark Functions
	Experiment Results
	Comparison for Robustness

	Conclusion
	Introduction
	Classical RF Prediction
	Fuzzy Clustering Prediction
	Analysis
	Conclusion
	Introduction
	Dynamic Artificial Neural Network
	Back Propagation Through Time (BPTT)
	Real Time Recurrent Learning (RTRL)
	Extended Kalman Filter Learning (EKF)

	Experimental Set-up
	Results
	Simulation Study
	Experimental Study

	Conclusion
	Introduction
	Overview of Toolbox
	DANN Main
	Uploading data set
	Division of data set
	Validation check
	Bias
	Learning algorithm
	Learning parameters
	Past inputs and outputs
	Additional parameters

	Parameter Tuning
	Plot Menu
	Performance plot
	Regression plot
	Prediction plot
	Parameter plot
	Error plot

	Additional information
	Installing the MATLAB DANN toolbox

	Case Studies
	Case I: BPTT learning algorithm for flow measurement
	Case II: EKF learning algorithm for temperature measurement
	Case III: RTRL learning algorithm for mortality prediction

	Conclusion
	Modeling and Simulation of Train Networks Using Max-Plus Algebra
	1. Introduction
	2. Max-plus algebra
	3. Scheduled max-plus linear systems
	4. Timetable stability
	4.1 Delay sensitivity analysis
	4.2 Dynamic Delay Propagation
	4.3 Recovery Matrix

	5. Conclusion
	Introduction
	Construction of DBN metamodels
	Utilization of DBN metamodels
	Example analysis - simulated operation of air base
	Conclusion
	Introduction
	Metastable liquids

	Model for two phase flow and phase transition
	The van der Waals equation of state

	Solver
	Stiff pressure relaxation
	Stiff thermodynamic relaxation

	Experiments
	Simulation set-up
	Results and discussion
	Conclusion
	Introduction
	ParModelica
	Previous Research on PDEs in Modelica
	Partial Differential Equations (PDE)
	Explicit Form

	Numerics
	Discretisation
	Runge-Kutta with Variable Step Length

	General-Purpose Computing on Graphics Processing Units (GPGPU)
	PDEs in Modelica
	Algorithmic Modelica and ParModelica
	Solver Framework
	User Defined State Derivative and Settings
	Types Used by the Solver
	Solvers

	Use Case — Heat in Plane
	Poor Insulation and Constant Temperature
	Constant Temperature Depending on Location

	Performance Measurement
	Pros & Cons of Solver Written in Modelica
	Conclusions
	Blood Flow in the Abdominal Aorta Post 'Chimney' Endovascular Aneurysm Repair
	1 Introduction
	2 Methodology
	2.1 Governing Equations
	2.2 Anatomical Model
	2.3 Numerical Model
	2.4 Numerical Discretization

	3 Results
	3.1 Validation
	3.2 Flow Patterns
	3.3 Flow Regime

	4 Discussion and Conclusions
	Introduction
	Spin-Image Algorithm
	The Proposed Parallel Spin-Images Algorithm
	Results and Analysis
	Platform Specification
	Experimental Data
	Results

	Conclusions and future work
	Introduction
	Overview of Python API
	Goal
	Installing the OMPython Extension
	Status
	Description of the API
	Python Class and Constructor
	Utility Routines, Converting Modelica FMU
	Getting and Setting Information
	Operating on Python Object: Simulation, Optimization
	Operating on Python Object: Linearization

	Use of API for Model Analysis
	Case Study: Simple Tank Filled with Liquid
	Model Summary
	Modelica Encoding of Model
	Use of Python API
	Basic Simulation of Model
	Parameter Sensitivity/Monte Carlo Simulation

	Discussion and Conclusions
	Introduction
	Related Work
	Virtual Testing of Open embedded Systems
	Simulator Coupling for Network Simulation
	Network Fault Injection Testing
	Case Study
	Conclusions and future work
	Validation Method for Hardware-in-the-Loop Simulation Models
	1 Introduction
	2 Validation Methods
	2.1 Open-Loop Operation
	2.2 Independent Closed-Loop Operation
	2.3 Compensated Closed-Loop Operation

	3 Related Work
	3.1 Example Circuit
	3.2 Simulation Models

	4 Simulation Results
	4.1 Models with Different Switching Delays
	4.2 Discrete-Time Models
	4.3 Fixed-Point Models

	5 Conclusion
	Introduction
	Control Engineering: The Teacher's Challenge
	New Curriculum For Teaching Automatic Control
	Luma Activity
	Conclusion
	Introduction
	The Activated Sludge Process
	Mass balances and expression for the sludge age
	The settler

	ASP with ideal settler model
	Steady-state solutions
	Substrate input-output relationship for constant sludge age

	ASP with DZC settler model
	Steady-state solutions
	Substrate input-output relation for constant sludge age

	An approximation for S* given 0
	Numerical example
	Theorem 1
	Theorem 2

	Conclusions
	Introduction
	Materials and Methods
	Gaussian Mixture Models
	GMM based fault detection criteria

	Case Study: Monitoring a Secondary Settler
	Results
	Discussions
	Conclusions
	Introduction
	Industrial Process Description
	SIAAP Waste water and sewage Sludge Treatment Process
	Incineration Process
	The Furnace
	The Heat Exchanger

	Identification Process Overview
	Sludge Incineration sub-models: Input-output interaction.
	Identification Strategy

	Validation Methods
	Absolute Criteria
	Relative reference-model criteria

	Results and Discussions
	Relative Reference-Model Criteria Results

	Conclusion
	1 Introduction
	2 Modelling
	2.1 Basic Process Components
	2.2 Boiler Evaporator Loop
	2.3 Test Model

	3 Simulation Tests
	3.1 Comparison of Numerical Solvers
	3.2 Effects of Initial State and Parameters

	4 Conclusions
	Introduction
	TCP-100 solar field description
	Mathematical modeling of TCP-100 solar field
	 Optical and geometric efficiencies
	Characteristics of the heat transfer fluid
	Thermal losses

	Simulations
	Conclusion
	Introduction
	Description of a Basic Gas Turbine Model
	Compressor
	Combustion Chamber
	Turbine Module

	Computational Causality And Conditions for Numerical Convergence
	First Principles Compression and Expansion Maps
	Compression Case
	Expansion Case

	Simulation Results
	Conclusion
	Appendix
	Introduction
	Modelling methodology, libraries and tools
	Plant Description
	Innovative aspects
	OTSG topology

	Device modelling
	Re-used components
	Custom component models
	Separator
	Feedwater heater
	Deaerator
	MS fluid model

	Plant modelling
	OTSG model
	Turbine model
	Feedwater preheaters train
	Plant control system
	Complete plant model

	Simulation objectives - methodology
	Simulation performance
	Conclusion
	Introduction
	Formal Problem Statement and SVM
	SVM by Set-Valued Training Data
	A Modification of the AdaBoost
	Imprecise Updating Weights of Robots
	Conclusion
	Introduction
	Methodology
	Power grid connection
	Electrolyser
	Interim gas storages
	Methanation
	MEA CO2 capture
	CH4 compression

	Control sequences
	CH4 compression
	Start-up
	Power grid connection
	Methanation reactor
	Electrolysers
	Interim gas storages
	CH4 compression

	Shutdown
	Methanation reactor
	CH4 compression
	Interim gas storages
	Electrolysers

	Results
	Conclusion and future work
	Acknowledgment
	Introduction
	Mathematical Model
	Assumptions
	Development of Model
	Material Balance
	Energy Balance
	Heat Exchanger

	Simulation Results and Discussion
	Simulation Results
	Comparison with Previous Work

	Conclusions
	1 Introduction
	2 Herding behavior of rhinos
	2.1 A synoptic model of space use
	2.2 Population size updating model

	3 Rhino herd (RH) algorithm
	3.1 Synoptic model
	3.2 Population size updating model
	3.3 RH algorithm

	4 Simulation results
	5 Discussions and conclusions
	Acknowledgements
	References

	Introduction
	Structure and Kinematics of the Double-Spiral Mobile Robot
	Structure
	Forward kinematics
	Gripper positions
	COG

	NESM
	Numerical Case Study
	Conditions and methods
	Results

	Discussion
	Conclusion
	Introduction
	Data analysis
	Nonlinear scaling
	Interactions
	Uncertainty
	Natural language

	Recursive analysis
	Scaling
	Interactions
	Fuzzy logic
	Smart adaptive systems

	Temporal analysis
	Trend indices
	Fluctuations
	Changes of operating conditions

	Conclusion
	Introduction
	MOEA/D
	Algorithm
	Focused Issue

	Proposed Method: Chain-Reaction Initial Solution Arrangement
	Aim and Concept
	Method

	Experimental Settings
	Results and Discussion
	Search Performance at Final Generation
	Search Performance over Generations

	Conclusions
	Introduction
	Modeling demand-side management
	Markets
	Actors
	Other elements

	Controlling consumption
	Optimizing scheduling
	Controlling (via) frequency

	Discussion and conclusions
	Introduction
	Components and Parameters of Musical Expression
	Learning Support System of Musical Representation
	Generation of Example of Musical Expression
	Construction of Kansei Space
	Image Estimation
	Parameter Values Estimation using Fuzzy Inference
	Interactive Modification of Musical Expression

	Comparison of Parameter of Musical Expression
	Advice for Parameter of Musical Expression

	Range of Learner's Musical Expression on Kansei Space
	Estimation of Range of Musical Expression
	Advice about Impression

	Experiment
	Results and Discussions

	Conclusion
	Introduction
	Formulating the GA Optimization
	The Problem Encoding
	The Objective Function (Fitness)
	Selecting The GA Operators
	Tuning the GA Parameters

	FPGA Implementation
	GA's HDL Entities
	Fitness
	Selection
	Crossover
	Mutation
	Generating Pseudo Random Sequences
	Replacement

	Performance Evaluation
	Functional Verification
	Fitness
	Selection
	Replacement
	Crossover
	Mutation
	LFSRs
	Comparator

	Integrating GA into the SoC
	Interfacing GA with the HPS
	Controlling GA from the Linux host

	Conclusion and Future Work
	Introduction
	Related Work
	Earthmoving Simulator
	Workspace Subdivision with Scoop Area
	High Point and Zero Contour Methods
	Simulation Results and Discussion
	Conclusion and Future Work
	Introduction
	SDNized Wireless LAN Testbed
	 Central Manager
	 Aggregator and Transport Network
	 Network Edge
	 Android Measurement Application
	Experiment Automation

	Mobility Management - A Use-Case Scenario Implementation
	Mobility Handling in Developed Testbed
	Logging
	Running the Experiment
	Parsing and aggregating results

	Conclusion

