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Abstract
The Modelica language is a modelling and program-
ming language for modelling cyber-physical systems us-
ing equations and algorithms. In this thesis two suggested
extensions of the Modelica language are covered. Those
are Partial Differential Equations (PDE) and explicit par-
allelism in algorithmic code. While PDEs are not yet sup-
ported by the Modelica language, this article presents a
framework for solving PDEs using the algorithmic part
of the Modelica language, including parallel extensions.
Different numerical solvers have been implemented using
the explicit parallel constructs suggested for Modelica by
the ParModelica language extensions, and implemented
as part of OpenModelica. The solvers have been evalu-
ated using different models, and it can be seen how bigger
models are suitable for a parallel solver. The intention has
been to write a framework suitable for modelling and par-
allel simulation of PDEs. This work can, however, also be
seen as a case study of how to write a custom solver us-
ing parallel algorithmic Modelica and how to evaluate the
performance of a parallel solver.
Keywords: OpenModelica, ParModelica, PDE, parallel
computing, GPU, GPGPU

1 Introduction
To understand the behavior of a system, it is desirable
to write down known relations of the system as equa-
tions. Together the equations will form a model of the
system. If the equations contain derivatives with respect to
one variable, they describe an Ordinary Differential Equa-
tion (ODE) or Differential Algebraic Equation (DAE). If,
however, the equations contain derivatives with respect to
more than one variable, they describe a Partial Differential
Equation (PDE).

Modelica1 is an object oriented language2 for model-
ing complex physical systems using equations. The model
can then be simulated using a numerical solver. However,
Modelica does not currently support modeling partial dif-
ferential equations. There are suggested extensions for

1http://www.modelica.org/ accessed May 2016
2The Modelica language is an open standard and can be downloaded

for free. There is also a book (Fritzson, 2014) available with many
examples of how to use the language.

PDEs in (Fritzson, 2014; Saldamli, 2006).
OpenModelica3 is an open source4 implementation of

the Modelica language, and an active research area.
Given that a PDE can describe a model in several di-

mensions, the required computations can grow exponen-
tially with the size of the model. This should make it suit-
able for parallel computing.

1.1 ParModelica
ParModelica (Gebremedhin et al., 2012), implement a
suggested extension for explicit parallelism in the al-
gorithmic subset of Modelica. Similar to CUDA and
OpenCL, it adds the concept of parallel computation de-
vice, device memory, and functions to be called on the
device and within the device.

1.2 Previous Research on PDEs in Modelica
An extensive work on PDEs within Modelica has been
done (Saldamli, 2006), suggesting language extensions
to the Modelica language to support fields and describ-
ing spatial domains. Those extensions were implemented
in PDEModelica. Unfortunately, PDEModelica has not
been maintained during the development of OpenModel-
ica. However, the work is, nevertheless, a good reference
for further work.

1.3 Partial Differential Equations (PDE)
A PDE also depends on derivatives with respect to other
variables than time. For example coordinates in space,
also known as spatial derivatives.

ρl
∂ 2ξ (x, t)

∂ t2 = F
∂ 2ξ (x, t)

∂x2 + fy(x) (1)

∂T
∂ t

= κ∇
2T +

(
κh
λ

)
= κ

(
∂ 2T
∂x2 +

∂ 2T
∂y2

)
+

(
κh
λ

)
(2)

Equation (1) describes the vibration of a string with con-
stant tension and (2) describes heat conduction, both equa-
tions are from (Nordling and Österman, 2006).

3http://www.openmodelica.org/ accessed May 2016
4http://opensource.org/ accessed May 2016
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Figure 1. Method of lines applied to the heat conduction equa-
tion over a plane.

1.4 Explicit Form

In control theory and modeling it is often desirable to put
an equation into explicit state form, see (Fritzson, 2014;
Glad and Ljung, 1989; Ljung and Glad, 2004). In the gen-
eral form we have the state vector~x(t), the state derivative
~̇x(t), the input vector ~u(t), and the output vector ~y(t). In
the general case we have the equations:

~̇x(t) = ~f (~x(t),~u(t)) (3a)
~y(t) =~g(~x(t),~u(t)) (3b)

In case f and g are linear, matrix notation can be used
instead:

~̇x(t) = A~x(t)+B~u(t) (4a)
~y(t) =C~x(t)+D~u(t) (4b)

This article will only use the general form in (3). Mod-
els where an explicit form cannot be derived will require
solver methods not covered here.

2 Numerics
To give a better understanding of the implementation, this
section covers the algorithms involved in simulating math-
ematical models. For further reading, see: (Eldén and
Wittmeyer-Koch, 1996; Fritzson, 2014; Ljung and Glad,
2004), or another book covering numerical analysis or ap-
plications of numerical analysis.

2.1 Discretisation

To be able to solve a PDE over space and time, one ap-
proach is to discretized the PDE over space and this way
get a system of ODEs. If we take the heat conduction
equation from (Nordling and Österman, 2006), with ∇2

expanded to two dimensions, and calculate it at nx × ny
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Figure 2. Example of stencils used for calculating spatial
derivatives. The red box symbolizes the destination, while the
numbers are the weights to use when summing up the neigh-
boring values. They are all approximations, and some can be
derived in different ways, resulting in different weights.

discrete points in space we get:

∂Ti, j
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2
i, jT +
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i, j
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∂ 2Ti, j

∂x2 +
∂ 2Ti, j

∂y2

)
+

(
κh
λ

)
i, j

(5)

Figure 1 shows how T has been discretised over a grid
with 6× 4 points. The derivatives in (2) can be approxi-
mated with:

∂ 2T
∂x2 =

Ti+1, j −2Ti, j +Ti−1, j

∆x2 (6a)

∂ 2T
∂y2 =

Ti, j+1 −2Ti, j +Ti, j−1

∆y2 (6b)

Those approximations can be derived using Taylor se-
ries, see for example (Eldén and Wittmeyer-Koch, 1996;
Åström, 2015). As seen in (6), the discretisation (in one
direction) will depend on the points on both sides. This
is called a central difference, while there are also for-
ward and backward differences depending only on points
at one side. The weights to used to approximate the spa-
tial derivatives at a given point is commonly referred to as
stencils. Different types of stencils are illustrated in Fig-
ure 2.

Due to the dependency of points at the sides, the bound-
aries need to be treated specially. How they are treated
depends on the boundary condition of the model. In the
heat conduction case one may assume the temperature is
constant at the borders, so for example T0, j = T1, j, and ex-
pand the values at the boundaries. Other models may have
other boundary conditions.

Due to the amount of points, with one ODE at each
point, the method of lines approach will produce, this can
result in fairly large matrices if using an implicit solver.
If, on the other hand, an explicit solver is used, this gives
a potential for lots of parallelism. When running on a
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General Purpose Graphic Processing Unit (GPGPU) each
thread can have its own point.

2.2 Runge-Kutta with Variable Step Length
If the value of xn+1 is approximated with different order of
error, the values can be compared to get an estimate of the
local error. In (Bogacki and Shampine, 1989), parameters
for calculating both a third and second order approxima-
tion using four computations of k are suggested:

k1 = f (xn,xn) (7a)

k2 = f (tn +
1
2

h,xn +
1
2

hk1) (7b)

k3 = f (tn +
3
4

h,xn +
3
4

hk2) (7c)

x(3)n+1 = xn +(
2
9

k1 +
1
3

k2 +
4
9

k3)h (7d)

k4 = f (tn +h,xn+1) (7e)

x(2)n+1 = xn +(
7
24

k1 +
1
4

k2 +
1
3

k3 +
1
8

k4)h (7f)

Using the two predictions x(3)n+1 and x(2)n+1 of third and sec-
ond order, it is possible to estimate the error during the
step. The error can be used to decide if the step should
be accepted or restarted with a shorter step size. It is also
possible to estimate a new step size.

3 General-Purpose Computing
on Graphics Processing Units
(GPGPU)

A Graphic Processing Unit (GPU) can be used as a com-
putation device attached to a host, Figure 3. Within a
GPU there are multiple Computation Unit (CU). The CUs
are simplified compared to a CPU, so it is the amount of
them that makes the GPU powerful. The GPU will have its
own memory, divided into a bigger global memory, and a
smaller and faster local memory. The local memory can be
used as a user controlled cache. GPUs usually has its own
cache too, giving a transparent memory hierarchy. When a
GPU device is used within a host computer, it will result in
a heterogeneous system. The host can either be used just
to control the device, or carry out its own computations.
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Figure 3. Computer equipped with a GPU. The GPGPU has a
number of Computation Units, local and global memory.
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Figure 4. How functions can call each other in ParModelica

4 PDEs in Modelica
PDEs, in general, are not supported in Modelica. Starting
with Modelica 3.3 there is support for spatialDistribution,
allowing modelling of variable speed transport (Fritzson,
2014). The suggested extension in (Fritzson, 2014; Sal-
damli, 2006) are:

• field variables

• indomain construct

Those extensions would allow modelling a heat equation
on a plane as:

model HeatInPlane
parameter Real c;
parameter Real q;
parameter Real h;
field Real T(domain=omega);

equation
c*der(T) = pder(T,D.x2) + pder(T,D.y2)
indomain omage.interior;

T = 50 indomain omega.left;
c*pder(T,D.x) = q+h*(T_ext-T)
indomain omega.right;

pder(T,D.y) = 0 indomain omega.top;
pder(T,D.y) = 0 indomain omega.bottom;

end HeatInPlane;
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5 Algorithmic Modelica and ParMod-
elica

In an algorithmic context, the following concepts from
Modelica is of interest:

• Functions

• Records

• Arrays

• Enumeration types

• Type definitions

• Partial function, if implemented by the user they can
be passed as argument to an other function

While it is possible to define arrays of arrays, this should
be seen as a multidimensional array with rectangular/box-
shape. It is not possible to construct arrays containing ar-
rays of different sizes. The same applies if an array of
records containing arrays is constructed.
ParModelica adds the concept of:

• parkernel function, called from non parallel context

• parfor loop, called from non parallel context

• parallel function, called from a parkernel function or
parfor loop

• parlocal memory, static size set at compile time and
used within a parkernel function or parallel function

• parglobal memory, allocated in a non parallel con-
text and passed to a parkernel function during exe-
cutions

Modelica functions can be called recursive. The parallel
functions introduced by ParModelica can, however, only
be called from a parallel context. This is from within a
parkernel function, parfor loop or an other parallel func-
tion. Furthermore, the parallel functions cannot be called
recursively. How functions can call each other is illus-
trated in Figure 4.
ParModelica does, however, add limitations:

• Does not support records

• Does not support partial functions as argument to
other functions

• Arrays of arrays should be considered as multidi-
mensional arrays, so it is not possible to define an
array on the host containing a number of parglobal
arrays to be passed to a parkernel function

6 Solver Framework
This section gives an overview of the framework for solv-
ing PDEs.

6.1 User Defined State Derivative and Settings
The user should provide a function for computing the state
derivative. For a solver using ParModelica this should be
a parallel function and named ParDerState. This func-
tion should be within the PDESolver hierarchy, in the sub-
package Model. A serial solver using algorithmic Mod-
elica will instead use the function DerState within same
package. The function gets the current state, user pro-
vided variables, external fields, a time to compute the state
derivative at, and the discrete coordinates as three scalars.
The function will then return up to three scalars for up to
three different fields. Here the function interface together
with a sample model is given:

within PDESolver.Model;

parallel function ParDerState
"Calculate the state derivative"
import Functions = PDESolver.ParFunctions;
import PDESolver.ParFunctions.Pder;
import PDESolver.Types;

input Types.Field[:] state "Array of state
fields";

input Real var[:];
input Types.Field ext[:];
input Real t

"Time to calculate the state derivative
at";

input Integer i,j,k
"Discrete coordinate within field";

output Real value1;
output Real value2;
output Real value3;

protected
// User defined
Real d2Tdx2, d2Tdy2;
Real c = var[1];

algorithm
// User defined
nDer := 0; // Perfect insulation
d2Tdx2 := Pder.Pder2Neumann(f=state, fi=1,

i=i, j=j, k=k,
dim=1, nder=

nDer);
d2Tdy2 := Pder.Pder2Neumann(f=state, fi=1,

i=i, j=j, k=k,
dim=2, nder=

nDer);
value1 := c*(d2Tdx2 + d2Tdy2)*ext[1,i,j,k];

end ParDerState;

For describing the domain and how the field is discre-
tised, the user should provide a Settings package for the
model. Here it is also possible to add static parameters for
the model.

within PDESolver.Model;

package Settings
// Parameters used by the solver
constant Types.FieldIndex n = {80,40,1};
constant Types.Coordinate first = {0,0,0};
constant Types.Coordinate last = {2,1,0};
constant Integer stateFields = 1 "T";
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// Parameters used in the model
constant Integer boxSize = integer(n[2]/2);
constant Integer myBoundary = 3;

end Settings;

6.2 Types Used by the Solver
There are two types used by the solver field type, imple-
mented as a four dimensional array, and an enumeration
type to select solver. For the field type the dimensions are
taken from the user provided settings.

within PDESolver;

type Field = Real[Model.Settings.n[1],
Model.Settings.n[2],
Model.Settings.n[3]]

(each start=0, each fixed=true);

within PDESolver.Solver;

type SolverId =
enumeration(SerialPECE,

SerialRK32,
ParallelPECE,
ParallelRK32);

6.3 Solvers
The user interface for simulating a PDE is the Solve func-
tion. It will take a state array, external fields, user provided
variables, the current time, time to step forward to, and a
SolverId as compulsory arguments. It is also possible to
provide arguments for initial intermediate step size, max-
imum error during one step, maximum intermediate step
size. The arrays provided are host variables and for the
parallel solvers they will be copied to parglobal variables
before calling the solver. The result is then copied back
and returned as next state.

within PDESolver.Solver;

function Solve
input Types.Field state[:] "Current state";
input Types.Field ext[:] "External field";
input Real var[:] "External variables";
input Real t0 "Time at state";
input Real t1 "Time at next";
input SolverId solverId;
input Real dt = (t1-t0)*2

"Initial intermediate step length.";
input Real eMax = 0.1 "Max error";
input Real hMax = dt

"Max intermediate step lengh.";
input Integer th1=1, th2=1, th3=1;
output Types.Field next[size(state,1)]

"New state";
protected
// ...

algorithm
// ...

end Solve;

The solvers need different intermediate fields. Since
a parkernel function in ParModelica cannot have internal
arrays, output variables are used as intermediate fields.

For merging fields within the parallel solvers, ordinary
for-loops are used. Each thread will calculate the initial
index, step size, and final value for the loops.

7 Use Case — Heat in Plane
In this section two use cases with heat conduction in a
plane and different boundary conditions are presented, to-
gether with results and a discussion about result.

7.1 Poor Insulation and Constant Tempera-
ture

The boundary conditions here are similar to those in
(Fritzson, 2014), with constant temperature at one side,
poor insulation at opposite side and perfect insulation at
the remaining two sides. Figure 5 shows how the tem-
perature falls from the side with constant temperature to
the side with poor insulation, while the sides with perfect
insulation does not have an impact on the temperature.

if Functions.AtBoundary(i,j,k) then
if Functions.AtFirst(i=i,j=j,k=k,dim=1)

then
// Left side
d2Tdx2 :=
Pder.Pder2Dirichlet(f=state, fi=1,

i=i, j=j, k=k,
dim=1, boundary=50)

;
elseif Functions.AtLast(i=i,j=j,k=k,dim=1)

then
// Right side
nDer := q + h*(T_ext - state[1,i,j,1]);
d2Tdx2 :=
Pder.Pder2Neumann(f=state, fi=1,

i=i, j=j, k=k,
dim=1, nder=nDer);

else
d2Tdy2 :=
Pder.Pder2Neumann(f=state, fi=1,

i=i, j=j, k=k,
dim=2, nder=0);

end if;
else
d2Tdx2 :=

Pder.Pder2Inner(f=state,
fi=1, i=i, j=j, k=k, dim=

1);
d2Tdy2 :=

Pder.Pder2Inner(f=state,
fi=1, i=i, j=j, k=k, dim=

2);
end if;
value1 := c*(d2Tdx2 + d2Tdy2);

7.2 Constant Temperature Depending on Lo-
cation

In this example boundaries have constant temperature de-
pending on location around the plate. The result after a
500ms simulation can be seen in Figure 6. The tempera-
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Figure 5. Plane with constant heat at the left side and poor in-
sulation at the right side (t = 0.5).
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Figure 6. Boundary have constant temperature depending on
location (t = 0.5).

ture have been forced towards 0 or 100 depending on the
boundary conditions.

boundaryT := 100*BoxZeroOne(i,j);
d2Tdx2 :=
Pder.Pder2Dirichlet(f=state, fi=1,

i=i, j=j, k=k,
dim=1, boundary=

boundaryT);
d2Tdy2 :=
Pder.Pder2Dirichlet(f=state, fi=1,

i=i, j=j, k=k,
dim=2, boundary=

boundaryT);
value1 := c*(d2Tdx2 + d2Tdy2);

8 Performance Measurement
Performance measurement where done on a Fermi M2050
GPU with a total of 448 CUDA cores available. The same
simulation was started using different number of threads
and the speedup compared to just using one thread can be
seen in Figure 7. In parallel computation there will always
be a sequential part limiting the maximum speedup. This
is due to the sequential part will take the same amount of
time no matter how fast the parallel part may run.
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Threads
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Figure 7. Speedup when simulating same model using different
amount of threads for the simulation on a GPU with 448 CUDA
cores.

9 Pros & Cons of Solver Written in
Modelica

In the context of a bigger system, where part of it need a
special solver, there can be advantages to write the solver
in Modelica. The solver can then form a framework where
the user only add a small portion of code. For this the sug-
gested ParModelica extensions may also be used to gain
better performance. Another advantage with ParModelica
can be when evaluating the performance of a potential par-
allel solver. Then the solver can be written using ParMod-
elica to get an idea of performance gain and bottlenecks
when appying the solver to different problems.

The true power of Modelica is to solve equations.
While the language does have an algorithmic subset, it is
hard to compete with other general purpose programming
languages.

10 Conclusions
In this article we show how an algorithmic solver can be
implemented to utilise the explicit parallelism of ParMod-
elica. To gain performance, however, care must be taken
of where the user code is added. If the solver is written
as a kernel function, calling a parallel function provided
by the user, it is possible to get two order of magnitudes
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better performance.
While this work tries to provide the functionality to

solve various PDEs, it is hard to predict all needed func-
tionality without specific use cases. For this it is necessary
to simulate more models. Stability and errors introduced
by the discretisation and solvers also need further work.
There is also ongoing work, by PhD student Jan Šilar, to
add PDE extensions to the frontend. This was presented
during the OpenModelica workshop 2016, (Šilar, 2016).
Once OpenModelica have PDE extensions in the frontend,
and there is an efficient way to simulate PDEs, this needs
to be integrated into all stages of the OpenModelica com-
piler and simulation runtime.

This work is still a research prototype and not stable
enough to be included in the OpenModelica release. The
work we present was initiated by (Thorslund, 2015).
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