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Abstract
Aortic aneurysms are a main death cause in the elderly

population throughout the western world. In recent

years, more aneurysm repairs are performed

endovascularly using stent grafts (SGs) inserted into the

aneurysm site through the arterial system (minimally

invasive). In this study, we analyze the hemodynamics

in an aneurysmatic abdominal aorta (AAA)

endovascularly repaired by a stent graft (SG) system

using the chimney technique. Computational fluid

dynamics (CFD) is employed to study models of a

healthy aorta versus an aorta post 'chimney'

endovascular aneurysm repair (ChEVAR) using

chimney stent grafts (CSG) inserted into each renal

artery in parallel to the aortic SG. Results demonstrate

that the presence of the CSGs results in stagnation

regions and wall shear stress (WSS) modifications, yet

the flow regime remains laminar. Thus, indicating the

spatially contained effects of the ChEVAR technique

and further supporting its merit.

Keywords: ChEVAR, abdominal aortic aneurysm

(AAA), chimney stent grafts (CSG), computational

fluid dynamics (CFD), hemodynamics, wall shear

stresses (WSS)

1 Introduction

Aortic aneurysms are a main cause of death in the

elderly population throughout the western world. The

most common location for an aortic aneurysm formation

is the infrarenal aorta (Guo et al, 2006). The traditional

and most prevailing method of aneurysm repair is open

surgery, whereby a large incision in the patient's

abdomen allows access to the aneurysm site.

In recent years, more aneurysm repairs are performed

endovascularly, excluding the aneurysm sac using stent

grafts (SGs) inserted into the aneurysm site through the

arterial system (minimally invasive). Typically, small

incisions in the groin are created in order to deliver the

SG system to the repair site using the femoral arteries as

entry points. Following SG implantation, the aneurysm

sac is sealed and blood subsequently flows through the

newly created artificial conduit replacing the bulging 

part of the aorta. 

A successful endovascular repair depends on the 

blood vessels and aneurysm morphologies. An 

aneurysm characterized by close proximity to a visceral 

artery ostium, is very challenging for endovascular 

repair. The requirement to properly seal the aneurysm 

sac while avoiding coverage of aortic branches by the 

SG can be very demanding. Innovative solutions for this 

type of problem include the fenestrated SG system. 

Fenestrated SGs are tailored to a specific patient 

morphology (Kandail et al, 2014). 

In urgent cases, where the patient cannot wait several 

months for a custom SG system to be fabricated, an 

innovative solution is recently being employed using 

off-the-shelf SGs. This solution involves an 

endovascular surgical procedure called the 'chimney' 

technique whereby parallel to the main aortic SG that 

excludes the aneurysm sac, one or more tubular covered 

stents ('chimneys') are inserted into the visceral arteries. 

These covered stents facilitate proper blood flow to 

arteries that would otherwise be blocked by the main 

aortic SG due to their proximity to the aneurysm sac. A 

common case of aneurysm repair using the 'chimney' 

technique is the two renal arteries being highly adjacent 

to the aneurysm (Figure 1). Thus, requiring a chimney 

stent graft (CSG) in each renal artery to preserve blood 

flow to the kidneys. 

In this study, a healthy abdominal aorta was 

evaluated in comparison with several configurations of 

post ChEVAR aorta having CSG inserted into each 

renal artery (Figures 1 and 2).  

Computational fluid dynamics (CFD, ANSYS Fluent 

package) simulations of pulsatile blood flow during the 

cardiac cycle were employed. An idealized anatomy of 

the abdominal aorta was modeled based on averages of 

measurements taken from cadaver specimens and 

patient angiograms (Moore et al, 1992). 

The effect of CSGs on abdominal aortic blood flow 

and wall shear stresses (WSS) was analyzed by 

examining blood flow patterns and regimes. 
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Figure 1: Left, healthy abdominal aorta model. Right, 

aneurysmatic aorta (aneurysm is adjacent to the renal 

branches). 

 
Figure 2: 3D model of the post ChEVAR abdominal 

aorta for analysis (aneurysm replaced by SG). Left to 

right: Front, side and top views, respectively. Red arrows: 

direction of blood flow.  

 

2 Methodology 

2.1 Governing Equations 

The governing equations for blood flow in the 

abdominal aorta are the Navier Stokes momentum 

equations and the continuity equation for an 

incompressible fluid: 

 

( ) 0V t V V V p    +  −  + =   (1) 
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where v ,   & p are the fluid velocity, density, 

dynamic viscosity the pressure field experienced by the 

fluid, respectively. Blood is not a Newtonian fluid – 

viscosity depends on the strain rate according to the 

Carreau model for shear thinning fluids: 
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where ∙ is the scalar flow shear rate and ∞ & 0 are the 

viscosities for an infinitely large and zero strain rate, 

respectively.  and n are fluid specific time constant and 

power behavior index. Blood density is assumed 1045 

kg/m3 (Ene-Iordache et al, 2001). 

2.2 Anatomical Model 

The geometric 3D model employed for analyzing the 

idealized healthy abdominal aorta is presented in Figure 

1. The model is based on angiograms and pressurized 

cadaver specimens measurements (Moore et al, 1992). 

The model incorporates the elliptical cross section, the 

tapering nature of the abdominal aorta, the arterial 

branches and the slight curvature towards the posterior 

wall. The model of the abdominal aorta post ChEVAR 

is based on the healthy model. Modifications were made 

in the model in order to account for the CSGs. The 

bulging part of the abdominal aorta is assumed 

completely replaced by the aortic SG, and thus is not a 

part of the numerical domain. The CSGs are modeled as 

long fabric-covered stents having a free diameter of 7 

mm and a wall thickness of 0.1 mm, in compliance with 

suitable endograft dimensions often utilized in chimney 

repairs. The CSG models incorporate their helical-like 

nature (Coscas et al, 2011). A slightly flattened CSG 

region spanning from the orifice of the renal artery to 

the final contact region between the chimney and the 

aortic SG morphing the CSG cross section from a circle 

to an ellipse was also incorporated (de Bruin et al, 

2013).  

The CSGs protrude upstream into the aorta 10 mm 

above the main SG to avoid blockage of blood flow 

into the renal arteries. 

2.3 Numerical Model 

Blood flow behavior in the abdominal aorta during the 

cardiac cycle is considered to be predominantly laminar 

(Morris et al, 2004). Thus, a laminar CFD solver is 

employed. Literature demonstrates flow parameters e.g. 

WSS differ by as much as 30% between distensible and 

rigid blood vessel models (Shipkowitz et al, 1998). 

However, overall flow dynamics remain similar 

(Friedman et al, 1992). Thus, rigid wall approximation 

is sufficient for a comparative study. 

No slip/penetration boundary conditions are applied 

at the walls. The inlet boundary condition employed is a 

pulsatile velocity function adapted from the literature -  

Figure 3 (Taylor et al, 1998). This waveform is 

decomposed into a Fourier series and modified to 

comply with the average velocity (flow rate). A 

parabolic profile distributed over the elliptical inlet is 

assumed (Shipkowitz et al, 1998). The domain has 

seven outlets with a constant flow ratio between them 

during the cardiac cycle (Moore et al, 1992). ANSYS 

Fluent CFD package (second order approximations) is 

used for the analysis.  
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2.4 Numerical Discretization 

The model of the post ChEVAR abdominal aorta was 

meshed using 1.1 million polyhedral cells with 4 million 

nodes. The cycle time was discretized into 800 time 

steps. The scaled residuals value used was 5∙10-6. The 

numerical parameters used for the healthy aorta model 

were similar. 

 
Figure 3: Waveform of the inlet flow rate [10]. 

 

3 Results 

3.1 Validation 

WSS for the healthy aorta (supra-celiac height) were 

compared with values measured in an experimental 

study (Moore et al, 1994). 

WSSs were derived by extracting the temporal 

(during an entire cardiac cycle) minimum, maximum 

and average WSS values for each element of the supra-

celiac ring of Figure 4. A spatial average of each 

parameter along the ring circumference was employed. 

Pulse WSS is defined as the difference between the 

maximum and minimum WSS for each element 

spatially averaged along the ring.  

Results of this comparison are listed in Table 1 

(Y/axial component). The relative errors indicate 

numerical results are in reasonable agreement with 

experimental data. 

3.2 Flow Patterns 

Stagnant regions are formed in the post ChEVAR aorta 

downstream near the CSGs. These regions persist 

throughout the cardiac cycle (Figures 5 and 6). There are 

no stagnant regions in the healthy model (Figures 7 and 

8). 

        
Figure 4: Left: WSS supraceliac comparison surface (ring 

in red). Right: Coordinate system and sectors of a 

horizontal ring of the abdominal aorta wall. A - anterior 

sector, P - posterior sector, R - right sector, L - left sector. 

 

Table 1. Numerical validation results for wss values 

(y/axial component) in the supra-celiac region. 

 

 Minimum 

WSS [Pa] 

Maximum 

WSS [Pa] 

Average 

WSS [Pa] 

Pulse 

WSS [Pa] 

Numerical Model -0.48 0.99 0.19 1.47 

Experiment -0.45 0.87 0.13 1.32 

Relative Error [%] 6 14 44 12 

 

 
Figure 5: Velocity contours at peak systole and start of 

diastole at two distances below the CSGs (marked in red 

on the right). Arrows: stagnant regions. 
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Figure 6: Post ChEVAR abdominal aorta. Top: planes of 

velocity contours are marked in red. Middle: Velocity 

contours at peak systole. Bottom: Velocity contours at 

diastole beginning. 

 
Figure 7: Velocity contours at peak systole and start of 

diastole at the same distances from the inlet as in Figure 5 

(marked in red on the right) for a healthy aorta. 

 
Figure 8: Healthy aorta. Top: planes of velocity contours 

are marked in red. Middle: Velocity contours at peak 

systole. Bottom: Velocity contours at diastole beginning. 

 

3.3 Flow Regime 

Y (axial) component of the WSSs for the aorta post 

ChEVAR at various positions and distances from the 

inlet (according to Figures 9 and 10) are plotted in 

Figure 11 through Figure 13. Y component of the 

velocity along the centerline is plotted in Figure 14. The 

WSSs and the velocity follow the inlet velocity 

waveform. There are no high frequency components 

present. If the inlet blood flow waveform is free of high 

frequency components yet points inside the control 

volume present velocity/WSS waveforms with high 

frequency noise then the flow exhibits transitional 

regime behavior. If the waveforms are free of high 

frequency components/noise, it indicates a laminar flow 

regime (Bozzetto et al, 2015). This implies that the flow 

in the post ChEVAR abdominal aorta is free of 

transitional behavior and is indeed laminar. 
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Figure 9: Section planes and their distances from the 

inlet. 

 
Figure 10:  Points evaluated for WSSs at different 

horizontal planes. 

 

Figure 11: Y/axial component of WSS along the right 

side of the post ChEVAR aorta during the cardiac cycle. 

 
Figure 12: Y/axial component of WSS along the left side 

of the post ChEVAR aorta during the cardiac cycle. 

 
Figure 13: Y/axial component of WSS along the anterior 

and posterior of the post ChEVAR aorta during the 

cardiac cycle. 

 
Figure 14: Y/axial component of velocity along the 

centerline of the post ChEVAR aorta. 

 

cross section plane (distance from inlet along the y-axis) 

y = - 40 mm 

 

y = - 65 mm 

 
y = - 50 mm 

 

y = - 70 mm 

 

y = - 55 mm 

 

y = - 75 mm 

 

y = - 60 mm 

 

y = - 80 mm 

 
y = - 90 mm 
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4 Discussion and Conclusions 

Our results suggest that CSGs presence in the abdominal 

aorta introduces variations in blood flow patterns and 

the formation of stagnant regions downstream from the 

CSGs throughout the cardiac cycle, potentially 

contributing to thrombosis (Ku et al, 1997). However, 

as can be deduced from the smooth and non-disturbed 

nature of the curves portrayed in Figure 11 through 

Figure 14 and in accordance with a previous study, the 

CSGs do not cause the flow regime to become turbulent 

or transitional  (Bozzetto et al, 2015). This indicates 

limited flow field changes due to CSGs, thus further 

supporting the predictability of the flow in the 

abdominal aorta following an implantation of two renal 

stent grafts. These findings reconcile with data 

indicating a relatively high success rate in ChEVAR 

procedures performed in recent years, evident both in 

short and long-term patient follow ups (Zhang et al, 

2015). 
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