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Abstract
Loadbalancing of computational tasks over heterogeneous
architectures is an area of paramount importance due
to the growing heterogeneity of HPC platforms and the
higher performance and energy efficiency they could of-
fer. This paper aims to address this challenge for a hetero-
geneous platform comprising Intel Xeon multi-core pro-
cessors and Intel Xeon Phi accelerators (MIC) using an
empirical approach. The proposed approach is investi-
gated through a case study of the spin-image algorithm,
selected due to its computationally intensive nature and
a wide range of applications including 3D database re-
trieval systems and object recognition. The contributions
of this paper are threefold. Firstly, we introduce a parallel
spin-image algorithm (PSIA) that achieves a speedup of
19.8 on 24 CPU cores. Secondly, we provide results for a
hybrid implementation of PSIA for a heterogeneous plat-
form comprising CPU and MIC: to the best of our knowl-
edge, this is the first such heterogeneous implementation
of the spin-image algorithm. Thirdly, we use a range of
3D objects to empirically find a strategy to loadbalance
computations between the MIC and CPU cores, achieving
speedups of up to 32.4 over the sequential version. The
LIRIS 3D mesh watermarking dataset is used to investi-
gate performance analysis and optimization.
Keywords: heterogeneous architectures, MIC, spin-image
algorithm, loadbalancing, performance analysis

1 Introduction
High performance computing (HPC) systems rely on con-
current, parallel and distributed computing technologies
and resources to provide much larger memories and com-
putational power than is possible with a general-purpose
computer. HPC systems have traditionally been used to
solve large problems arising from engineering and sci-
ence. They are now being increasingly utilized in many
other areas including business, economy and social sci-
ences. Early HPC systems have mainly been homoge-
neous. However, the heterogeneity of modern computing
systems is on the rise due to the increasing demands for
higher performance and energy efficiency. Loadbalancing
of computational tasks on homogeneous platforms is gen-

erally considered a difficult problem; it is an even bigger
challenge when it comes to high performance heteroge-
neous systems.

Two most common options for accelerator units in
heterogeneous platforms are GPGPUs (General-Purpose
Computation on Graphics Processing Unit) and MICs
(Intel Many Integrated Core Architecture). GPUs com-
prise thousands of cores and could offer very high mem-
ory bandwidth and computation throughput. In the
last decade, a lot of research work has been done to
speed up different algorithms using such architectures
(Bautista Gomez et al., 2014). Therefore, GPUs have be-
come one of the main accelerators in many HPC facilities.
Although they are low-power, low-cost and massive paral-
lel execution units but unfortunately, they have their own
limitations (Shukla and Bhuyan, 2013). They are not com-
patible with existing x86 C, C++, and FORTRAN source
codes. To use these architectures, we have to rebuild dif-
ferent codes from scratch and this could inhibit HPC users.

The MIC architecture was introduced by Intel in 2012
(Rahman, 2013). It is low-power, low-cost and massive
parallel execution unit Like GPGPUs. However, it is a
massively parallel architecture that is compatible with x86
applications. Programming models like Pthreads, MPI
and OpenMP can be used without any code modifications
(Utrera et al., 2015). Due to the programming simplicity
and compatibility of the MIC architecture, it is the main
accelerator unit in many modern HPC facilities (IntelPR).
According to the Top500 list (http://www.top500.
org/lists/) of most powerful supercomputers in the
world, many fastest supercomputers are powered by Intel
Xeon Phi coprocessors and Intel Xeon processors. There
is a high potential of using MIC coprocessors beside Intel
Xeon processors (Faheem and Konig-Ries, 2014). There-
fore, we have chosen MICs alongside CPUs in this study
of a heterogeneous platform.

This paper presents an empirical approach for achieving
loadbalancing and optimum performance from a heteroge-
neous system comprising Intel Xeon multi-core processor
and MIC. The approach is investigated using a case study
of spin-image algorithm (Johnson, 1997). This algorithm
is selected because it is being used in a wide range of im-
portant applications including 3D Database Retrieval Sys-
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tems (Assfalg et al., 2004), Face Detection (Choi and Kim,
2013), Object Recognition (Johnson and Hebert, 1999),
Object Categorization (Eleliemy et al., 2013), 3D map reg-
istration (Mei and He, 2013), and registration algorithm
for LiDAR 3D point cloud models (He and Mei, 2015).
The spin-image algorithm is well-known for its high com-
putational complexity and is considered an essential bot-
tleneck in many fields.

The paper makes three contributions. (1) A parallel
spin-image algorithm (PSIA) has been introduced that
achieves the speedup of 19.8 on 24 CPU cores. The pro-
cess of parallelizing spin-image algorithm into a set of
independent tasks which can be optimally scheduled be-
tween Intel Xeon processor and Intel MIC coprocessor is
depicted and described. (2) results from a hybrid version
of PSIA for a heterogeneous platform comprising CPU
and MIC have been provided. (3) A strategy to empiri-
cally find an optimal loadbalancing of computations be-
tween the MIC and CPU cores has been introduced using
a range of 3D objects. Speedups of up to 32.4 over the se-
quential version have been reported. We have used a range
of objects from LIRIS 3D mesh watermarking dataset for
performance analysis and optimization in all our experi-
ments. To the best of our knowledge, no hybrid imple-
mentation of the spin-image algorithm on CPUs and MICs
has been reported in the literature. The study of loadbal-
ancing as a methodology for spin- over CPU and MIC is
also novel.

This paper is organized as follows. Section 2 describes
the sequential spin-image algorithm. Section 3 provides
the dependency analysis of the spin-image algorithm and
the proposed parallel spin-images algorithm. Section 4
provides details of the heterogeneous platform and dataset
we have used for experiments in this paper. Results from
the experiments and their analysis are presented along
with the details of the loadbalancing strategy. Finally, in
Section 5, further research challenges for loadbalancing
on heterogeneous platforms and a number of directions
for future work are given.

2 Spin-Image Algorithm
Spin-image is an algorithm that converts a 3D shape into
a set of 2D images as shape descriptors. It was introduced
in (Johnson, 1997). The main concern regarding the use of
the spin-image algorithm is its computational complexity,
especially with the increase of depth cameras’ resolution.
According to the spin-image algorithm, a spin-image can
only be generated at any point with known normal (ori-
ented point). Generated spin-image can be viewed as a
paper that rotates around point normal while other points
touch and stick to it.

i =
(W/2)−n · (x− p)

B
(1)

j =

√
| |x− p| |2−(n.(x− p))2

B
(2)

Equations 1 and 2 show how to calculate spin-image
at an oriented point (p). This equation calculates two in-
dices i and j, where the generated spin-image should be
incremented by one. In fact, instead of incrementing the
point at index i and j, four indices [i, j], [i, j +1], [i+1, j]
and [i+1, j+1] are incremented with values (1−a)(1−b),
(1− a)b, a(1− b) and ab, respectively. Equations 3 and 4
can be used to calculate the values of a and b. This process
is called smoothness of spin-images.

a = a− i ∗ binsize (3)

b = β− j ∗ binsize (4)

The equations show that i and j are affected by two pa-
rameters; Image-width (W) and Bin-size (B). However,
these parameters affect only the quality of generated spin-
image and do not have impact on spin-image generation
time. Moreover, smoothness process is related to the qual-
ity of the generated spin-image. Therefore, these param-
eters will be considered as constants and smoothness pro-
cess will be ignored in this work. The below pseudo code
shows the generation process spin-images .

1 procedure CalcSpinImages
2 W = ImageWidth
3 B = BinSize
4 Define SpinImages As List
5 for each p in Mesh
6 Define SpinImage[W * W]
7 n = normal of P
8 for each x in Mesh
9 i = ((W/2)−n×(x−p))/B

10 j=
√
| |x−p| |2 −(n.(x−p))2/B

11 SpinImage[i,j]+=1
12 end for
13 SpinImages.add(SpinImage)
14 end for
15 return SpinImages
16 end procedure

3 The Proposed Parallel Spin-Images
Algorithm

Figure 1 shows the spin-image generation process for a
given 3D Mesh. This process contains different levels of
calculations. Each level contains some of the dependent
and/or independent tasks. For example, Let M be a certain
3D Mesh, S is the set of all M oriented points, P1, P2 and
Pn ∈ S. Spin-image calculation at P1 is totally independent
of P2, P3 and Pn. However, at P1, we have to scan P2, P3
till Pn to find different indices i, j to increment spin-image
at these indices. Such calculation cannot be parallelized
directly because it may be required to increment the same
spin-image cell [i, j] simultaneously.

Figure 2 shows the proposed PSIA. In PSIA, we have
two levels of parallelism. At the first level, we calculate
spin-images at different points P1, P2 and Pn simultane-
ously. While at the second level, for each point pair (Px ,
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Figure 1. Generating Spin-images for a given 3D Mesh

P1) , (Px , P2) and (Px , Pn), we have a temporary spin-
image that we call Partial Spin-image. Finally, we add all
partial images to get the spin-image at point Px . Figure 2
shows the process for computing all spin-images concur-
rently using partial spin-images.

4 Results and Analysis
4.1 Platform Specification
The experiments have been carried out on the Aziz super-
computer. Aziz supercomputer is Fujitsu made and is able
to deliver peak performance of 230 teraflops. It has a to-
tal of 11,904 cores in 496 nodes, where each node com-
prises dual socket Intel Xeon E5-2695v2 12-core proces-
sor running at 2.4GHz. 380 of these nodes contain 96
GB memory each, while the rest of the 112 nodes con-
tain 256 GB each, making up a total of 66 TB memory
in the system. The system also contains 2 NVidia Tesla
K20 GPU equipped compute nodes with 48 cores and
2 Intel Phi 5110P co-processor equipped compute nodes
with 48 cores. Aziz was ranked number 360 in the June
2015 Top500 competition, currently it is at number 491
(November 2015).

The platform (part of the Aziz supercomputer) we have
used for the experiments consists of 2 Intel processors E5-
2695v2 each has 12 Cores (2.4GHz), 96GB RAM, Intel
Xeon Phi Coprocessor 5110P (1053GHz, 60Cores). The
code is written in C and compiled for Linux (CentOS 6.4)
using Intel parallel studio XE 2015 version 15.0.

4.2 Experimental Data
Objects from LIRIS 3D mesh watermarking dataset
(Wang et al., 2010) have been used for the performance
analysis and optimization. This dataset has been selected
due to its dense objects. Table 1 shows the number of ver-
tices for each object.
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Figure 2. Proposed Parallel Spin-Image Algorithm

Table 1. 3D Objects in 3D Mesh Watermarking Dataset

Object Label Number of vertices

Ramesses 826266
Horse 112642
Venus 100759
Rabbit 70658
Crank 50012
Dragon 50000
Hand 36619
Bunny 34835
Casting 5096
Cow 2904

4.3 Results
It can be seen from our discussions in Sections 2 and 3 that
the execution time of spin-images generation process for
any object is the key measure of the computational com-
plexity. As mentioned in section 2, the complexity of such
process is O(n2). Therefore, any increase in the number of
object points leads to significant increase in the total time
of spin-image generation process. In order to illustrate that
fact, only percentage of 1% spin-images for each object
has been generated. In figure3, the time to spin-images
generation for Bunny and Rabbit is 0.73 and 2.881 sec-
onds respectively, while their sizes are 34835 and 70658
points respectively. Simply, Rabbit is almost 2 times in
size comparing with Bunny, but its spin-images generation
takes almost 4 times as what it takes in the Bunny object.
Also, it is the same for both Horse and Bunny, time to gen-
erate spin-images for Horse is 9 times as Bunny, while its
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Figure 4. Sequential implementation of spin-image algorithm
and the number of generated spin-images equals to 2904

is 3 times as Bunny. Some approaches from Object Recog-
nition field as well as Object Categorization like (Hegazy,
2016) try to avoid such problem by avoiding spin-image
generation at each point of a 3D object, it only generate
spin-images at certain points which will not affect correct
recognition or categorization rate. However, the problem
remains specially for dense objects like LIRIS objects.

In Figure 4, the total number of generated spin-images
is 2409 images per each object, this number represents the
common maximum number of spin-images between all
objects, because Cow Object is the smallest object and it
contains 2409 vertices. Figure 4 shows that dense objects
like Ramesses, Horse, and Venus consume at huge time
such it can not be used in real-time systems. For example,
Horse, Venus, and Rabbit objects take 19.471, 18.615, and
11.816 seconds respectively. Moreover Ramesses object
takes 149.726 seconds.
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Figure 5. Performance of PSIA over 24-cores CPU and the
number of generated spin-images is 2904

In fact, the Ramesses object is 284.5 times in size com-
pared to the smallest object in the dataset. Therefore,
it will always be a challenge to generate all of its spin-
images, taking into consideration that all points of any
LIRIS object are oriented points, which means that for
Ramesses we need to generate 826266 spin-images.

Figure 5 shows the performance of our enhanced PSIA
algorithm for multi-core CPUs. Note that As discussed in
section 3, PSIA is a parallel version of the original spin-
image algorithm where openMP threads are used to per-
form the parallel tasks. The figure shows that there is a
reverse relation between the number of OpenMP threads
and the total run-time. Simply, increasing the number of
working OpenMP threads will decrease the total run-time.
However, there is a turnover point on OpenMP threads
axis at 24 thread, where this relation is not valid. Such
relation violation is due to the physical characteristics of
the used hardware, as mentioned before this experiment
runs over 24-Cores CPU.

Another experiment has been conducted to investigate
the scalability of the proposed parallel SIA algorithm us-
ing another shared memory architecture like Xeon phi
(MIC technology). As mentioned before, we have an Intel
Xeon Phi card that consists of 60 cores. There is two im-
portant feature in such hardware; First each core can run 4
concurrent threads. Second, there is no need to change any
code, it is compatible with x86 processors. In other words,
same code can be recompiled. Figure 6 shows same per-
formance which means scalability of the algorithm, but it
also shows the turnover point changed to be around 230
core which is logically due to the physical characteristics
of the hardware platform.

Actually due to the type of spin-image calculations
which all are floating point operations, results of running
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Figure 6. Performance of PSIA over 60-cores MIC accelerator
and the number of generated spin-images is 2904
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Figure 7. Sequential implementation of spin-image algorithm
runs over MIC accelerator and the number of generated spin-
images is 2904

PSIA over MIC is not promising as running over CPU,
however, the total time to generate 2904 spin-images is
reduced comparing to sequential spin-image algorithm. In
order to complete the image, the original sequential spin-
image has been compile to MIC architectures. Figure 7
shows that how the original sequential spin-image algo-
rithm behave for MIC. Therefore, it expected that PSIA
over MIC is not promising as running over CPU.

It can be observed from the results so far that the PSIA
performance over CPU is better than its performance over
MIC. However, using both CPU and MIC together should
give better results than using any of them individually. The
remaining question is how to divide the workload between
CPU and MIC. According to (Faheem and Konig-Ries,
2014), because all PSIA tasks are identical with almost
no dependency, workload for MIC can be calculated as
follows.

Let R1 is the ratio between the number of generated
spin-images and run-time over 24 CPU cores, and R2 is the
ratio between the number of generated spin-images and
run-time over 230 MIC cores. Formally, Rx = (the num-
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Figure 8. Performance for the hybrid implementation of PSIA
at different workload distributions between CPU and MIC-cores

Table 2. The values for MIC Workload Ratios for the given
objects

Object
Name

R1 R2 MIC
Workload
%

Ramesses 0.232666667 0.095204348 29.04
Cow 0.00075 0.000334783 30.86
Casting 0.001291667 0.000521739 28.77
Bunny 0.017833333 0.003573913 16.69
Dragon 0.019291667 0.004995652 20.56
Horse 0.038833333 0.012530435 24.39
Hand 0.0135 0.003965217 22.70
Rabbit 0.02325 0.007830435 25.19
Venus 0.034875 0.00853913 19.67
Crank 0.020583333 0.004608696 18.29

ber of generated spin-images / total run time) / the num-
ber of working threads, where x represent the available
architectures (CPU = 1 and MIC = 2) The MIC Work-
load Ratio W of MIC to the total workload could be cal-
culated as R2/(R1 + R2). The number of generated spin-
images is same for both R1 and R2, and therefore, it could
be excluded from the workload Ratios (W). The values
for MIC Workload Ratios (as well as R1 and R2) for vari-
ous objects are given in Table 2. The table shows that the
lowest MIC Workload Ratio (Column 4) is for the Bunny
object (16.69%), while the highest is for the Cow object
(30.86%). Consequently, based on the results given in Ta-
ble 2, we can conclude that the maximum performance can
be obtained by allocating around 23% (average of the val-
ues in Column 4) of the total workload to MIC and the re-
maining part to CPU. This is not the exact optimum value,
rather a value around which optimum performance can be
found.

To investigate the workload distribution between MIC
and CPU further, we performed another set of experi-

EUROSIM 2016 & SIMS 2016

677DOI: 10.3384/ecp17142673       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



ments. Figure 8 shows the results for a range of work-
load distributions between MIC and CPU. The first result
(the leftmost) is for the case where MIC is given 5% of
the workload, while CPU gets 95% of the workload. The
MIC workload is increased in steps of 5% until it reaches
95%, where CPU gets a 5% of the total load. Based on
the numerical values of the results depicted in the figure,
the optimum MIC Workload Ratio is dependent on the
object, and falls between 10% to 30%. Although further
analysis of such behavior is required, our preliminary ex-
planation is as follows. According to Equations (1), (2),
(3), and (4), the values of i, j require 4 memory accesses
— [i, j], [i, j + 1], [i + 1, j] and [i + 1, j + 1] — in order
to increment the value of the spin-image. These mem-
ory accesses are avoided when the values j, j are outside
the spin-image boundary. However, there are no guaran-
tees that the MIC in the assigned workload may require,
or may not require, these 4 memory accesses. This mem-
ory access behavior will be examined further in our future
work.

5 Conclusions and future work
Improving loadbalancing of computational tasks over het-
erogeneous architectures is an area of paramount im-
portance. This paper aimed at addressing the loadbal-
ancing problem for a heterogeneous platform compris-
ing CPUs and MICs. The approach proposed in this pa-
per was investigated through a case study of the spin-
image algorithm, selected due to its computationally in-
tensive nature and a wide range of applications including
3D database retrieval systems and object recognition. The
paper made three contributions. A parallel spin-image al-
gorithm (PSIA) was introduced and its implementation
achieved the speedup of 19.8 on 24 CPU cores. Re-
sults from a hybrid implementation of PSIA were pre-
sented. We empirically found a strategy to loadbalance
computations between the MIC and CPU cores, achiev-
ing speedups of up to 32.4. Objects from LIRIS 3D mesh
watermarking dataset were used to provide performance
analysis and optimization.

The proposed PSIA on the heterogeneous platform can
replace the original spin-image for many different applica-
tions as mentioned in Section 1. Also, the proposed PSIA
is scalable. It can run over a different number of cores
equal to N, such that N is less than or equal to the number
of generated spin-images. The use of the PSIA algorithm
is recommended for the case where the objects are dense.
Moreover, the proposed PSIA hybrid implementation al-
lows real-time generation of spin-images.

The results and analysis of our approach for loadbal-
ancing on heterogeneous platforms show great promise.
However, there are some concerns regarding the proposed
PSIA that need further investigation. For example, PSIA
is based on creating partial spin-images, which means that
higher memory resources are required. Further investiga-
tion in needed to find out the memory profile of the pro-

posed PSIA algorithm compared to the original version?
The loadbalancing strategy needs to be investigated fur-
ther with a wider range and size of objects. Analytical
or heuristic formulations need to be devised. We need to
investigate various cases where, for instance, one of the
computing resources does not have sufficient memory to
take its workload: is it better to distribute the workload
based on the characteristics of the work or the amount of
work? Finding answers to these questions forms our moti-
vation for the future work. We also plan to add the energy
efficiency dimensions to this work. We plan to look at
optimizing the loadbalancing strategy against energy effi-
ciency, memory profile and computational performance.
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