
Loadbalancing on Parallel Heterogeneous Architectures:
Spin-image Algorithm on CPU and MIC

Ahmed Eleliemy1 Mahmoud Fayze2 Rashid Mehmood3 Iyad Katib3 Naif Aljohani3

1HPC Group, University of Basel, Basel, Switzerland, ahmed.eleliemy@unibas.ch
2Fujitsu & Computer Science, Ain-Shams University, Cairo, Egypt, Mahmoud.Fayez@ts.fujitsu.com

3High Performance Computing Center, King AbdulAziz University, Jeddah, Saudi Arabia, {rmehmood, iakatib,
nraljohani}@kau.edu.sa

Abstract
Loadbalancing of computational tasks over heterogeneous
architectures is an area of paramount importance due
to the growing heterogeneity of HPC platforms and the
higher performance and energy efficiency they could of-
fer. This paper aims to address this challenge for a hetero-
geneous platform comprising Intel Xeon multi-core pro-
cessors and Intel Xeon Phi accelerators (MIC) using an
empirical approach. The proposed approach is investi-
gated through a case study of the spin-image algorithm,
selected due to its computationally intensive nature and
a wide range of applications including 3D database re-
trieval systems and object recognition. The contributions
of this paper are threefold. Firstly, we introduce a parallel
spin-image algorithm (PSIA) that achieves a speedup of
19.8 on 24 CPU cores. Secondly, we provide results for a
hybrid implementation of PSIA for a heterogeneous plat-
form comprising CPU and MIC: to the best of our knowl-
edge, this is the first such heterogeneous implementation
of the spin-image algorithm. Thirdly, we use a range of
3D objects to empirically find a strategy to loadbalance
computations between the MIC and CPU cores, achieving
speedups of up to 32.4 over the sequential version. The
LIRIS 3D mesh watermarking dataset is used to investi-
gate performance analysis and optimization.
Keywords: heterogeneous architectures, MIC, spin-image
algorithm, loadbalancing, performance analysis

1 Introduction
High performance computing (HPC) systems rely on con-
current, parallel and distributed computing technologies
and resources to provide much larger memories and com-
putational power than is possible with a general-purpose
computer. HPC systems have traditionally been used to
solve large problems arising from engineering and sci-
ence. They are now being increasingly utilized in many
other areas including business, economy and social sci-
ences. Early HPC systems have mainly been homoge-
neous. However, the heterogeneity of modern computing
systems is on the rise due to the increasing demands for
higher performance and energy efficiency. Loadbalancing
of computational tasks on homogeneous platforms is gen-

erally considered a difficult problem; it is an even bigger
challenge when it comes to high performance heteroge-
neous systems.

Two most common options for accelerator units in
heterogeneous platforms are GPGPUs (General-Purpose
Computation on Graphics Processing Unit) and MICs
(Intel Many Integrated Core Architecture). GPUs com-
prise thousands of cores and could offer very high mem-
ory bandwidth and computation throughput. In the
last decade, a lot of research work has been done to
speed up different algorithms using such architectures
(Bautista Gomez et al., 2014). Therefore, GPUs have be-
come one of the main accelerators in many HPC facilities.
Although they are low-power, low-cost and massive paral-
lel execution units but unfortunately, they have their own
limitations (Shukla and Bhuyan, 2013). They are not com-
patible with existing x86 C, C++, and FORTRAN source
codes. To use these architectures, we have to rebuild dif-
ferent codes from scratch and this could inhibit HPC users.

The MIC architecture was introduced by Intel in 2012
(Rahman, 2013). It is low-power, low-cost and massive
parallel execution unit Like GPGPUs. However, it is a
massively parallel architecture that is compatible with x86
applications. Programming models like Pthreads, MPI
and OpenMP can be used without any code modifications
(Utrera et al., 2015). Due to the programming simplicity
and compatibility of the MIC architecture, it is the main
accelerator unit in many modern HPC facilities (IntelPR).
According to the Top500 list (http://www.top500.
org/lists/) of most powerful supercomputers in the
world, many fastest supercomputers are powered by Intel
Xeon Phi coprocessors and Intel Xeon processors. There
is a high potential of using MIC coprocessors beside Intel
Xeon processors (Faheem and Konig-Ries, 2014). There-
fore, we have chosen MICs alongside CPUs in this study
of a heterogeneous platform.

This paper presents an empirical approach for achieving
loadbalancing and optimum performance from a heteroge-
neous system comprising Intel Xeon multi-core processor
and MIC. The approach is investigated using a case study
of spin-image algorithm (Johnson, 1997). This algorithm
is selected because it is being used in a wide range of im-
portant applications including 3D Database Retrieval Sys-

EUROSIM 2016 & SIMS 2016

673DOI: 10.3384/ecp17142673 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

http://www.top500.org/lists/
http://www.top500.org/lists/

tems (Assfalg et al., 2004), Face Detection (Choi and Kim,
2013), Object Recognition (Johnson and Hebert, 1999),
Object Categorization (Eleliemy et al., 2013), 3D map reg-
istration (Mei and He, 2013), and registration algorithm
for LiDAR 3D point cloud models (He and Mei, 2015).
The spin-image algorithm is well-known for its high com-
putational complexity and is considered an essential bot-
tleneck in many fields.

The paper makes three contributions. (1) A parallel
spin-image algorithm (PSIA) has been introduced that
achieves the speedup of 19.8 on 24 CPU cores. The pro-
cess of parallelizing spin-image algorithm into a set of
independent tasks which can be optimally scheduled be-
tween Intel Xeon processor and Intel MIC coprocessor is
depicted and described. (2) results from a hybrid version
of PSIA for a heterogeneous platform comprising CPU
and MIC have been provided. (3) A strategy to empiri-
cally find an optimal loadbalancing of computations be-
tween the MIC and CPU cores has been introduced using
a range of 3D objects. Speedups of up to 32.4 over the se-
quential version have been reported. We have used a range
of objects from LIRIS 3D mesh watermarking dataset for
performance analysis and optimization in all our experi-
ments. To the best of our knowledge, no hybrid imple-
mentation of the spin-image algorithm on CPUs and MICs
has been reported in the literature. The study of loadbal-
ancing as a methodology for spin- over CPU and MIC is
also novel.

This paper is organized as follows. Section 2 describes
the sequential spin-image algorithm. Section 3 provides
the dependency analysis of the spin-image algorithm and
the proposed parallel spin-images algorithm. Section 4
provides details of the heterogeneous platform and dataset
we have used for experiments in this paper. Results from
the experiments and their analysis are presented along
with the details of the loadbalancing strategy. Finally, in
Section 5, further research challenges for loadbalancing
on heterogeneous platforms and a number of directions
for future work are given.

2 Spin-Image Algorithm
Spin-image is an algorithm that converts a 3D shape into
a set of 2D images as shape descriptors. It was introduced
in (Johnson, 1997). The main concern regarding the use of
the spin-image algorithm is its computational complexity,
especially with the increase of depth cameras’ resolution.
According to the spin-image algorithm, a spin-image can
only be generated at any point with known normal (ori-
ented point). Generated spin-image can be viewed as a
paper that rotates around point normal while other points
touch and stick to it.

i =
(W/2)−n · (x− p)

B
(1)

j =

√
| |x− p| |2−(n.(x− p))2

B
(2)

Equations 1 and 2 show how to calculate spin-image
at an oriented point (p). This equation calculates two in-
dices i and j, where the generated spin-image should be
incremented by one. In fact, instead of incrementing the
point at index i and j, four indices [i, j], [i, j +1], [i+1, j]
and [i+1, j+1] are incremented with values (1−a)(1−b),
(1− a)b, a(1− b) and ab, respectively. Equations 3 and 4
can be used to calculate the values of a and b. This process
is called smoothness of spin-images.

a = a− i ∗ binsize (3)

b = β− j ∗ binsize (4)

The equations show that i and j are affected by two pa-
rameters; Image-width (W) and Bin-size (B). However,
these parameters affect only the quality of generated spin-
image and do not have impact on spin-image generation
time. Moreover, smoothness process is related to the qual-
ity of the generated spin-image. Therefore, these param-
eters will be considered as constants and smoothness pro-
cess will be ignored in this work. The below pseudo code
shows the generation process spin-images .

1 procedure CalcSpinImages
2 W = ImageWidth
3 B = BinSize
4 Define SpinImages As List
5 for each p in Mesh
6 Define SpinImage[W * W]
7 n = normal of P
8 for each x in Mesh
9 i = ((W/2)−n×(x−p))/B

10 j=
√
| |x−p| |2 −(n.(x−p))2/B

11 SpinImage[i,j]+=1
12 end for
13 SpinImages.add(SpinImage)
14 end for
15 return SpinImages
16 end procedure

3 The Proposed Parallel Spin-Images
Algorithm

Figure 1 shows the spin-image generation process for a
given 3D Mesh. This process contains different levels of
calculations. Each level contains some of the dependent
and/or independent tasks. For example, Let M be a certain
3D Mesh, S is the set of all M oriented points, P1, P2 and
Pn ∈ S. Spin-image calculation at P1 is totally independent
of P2, P3 and Pn. However, at P1, we have to scan P2, P3
till Pn to find different indices i, j to increment spin-image
at these indices. Such calculation cannot be parallelized
directly because it may be required to increment the same
spin-image cell [i, j] simultaneously.

Figure 2 shows the proposed PSIA. In PSIA, we have
two levels of parallelism. At the first level, we calculate
spin-images at different points P1, P2 and Pn simultane-
ously. While at the second level, for each point pair (Px ,

EUROSIM 2016 & SIMS 2016

674DOI: 10.3384/ecp17142673 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

P1 X1 X2 Xn

T1
T2

Tn

Pn X1

X2

Xn

T(n-1)n+1
T(n-1)n+2

Tn2

Spin-Image 1

Spin-Image 2

Spin-image[I,J]++

++

Spin-image[I,J]++

++ Spin-image[I,J]++

++

Spin-image[I,J]++

++
Spin-image[I,J]++

++

Spin-image[I,J]++

++

Figure 1. Generating Spin-images for a given 3D Mesh

P1) , (Px , P2) and (Px , Pn), we have a temporary spin-
image that we call Partial Spin-image. Finally, we add all
partial images to get the spin-image at point Px . Figure 2
shows the process for computing all spin-images concur-
rently using partial spin-images.

4 Results and Analysis
4.1 Platform Specification
The experiments have been carried out on the Aziz super-
computer. Aziz supercomputer is Fujitsu made and is able
to deliver peak performance of 230 teraflops. It has a to-
tal of 11,904 cores in 496 nodes, where each node com-
prises dual socket Intel Xeon E5-2695v2 12-core proces-
sor running at 2.4GHz. 380 of these nodes contain 96
GB memory each, while the rest of the 112 nodes con-
tain 256 GB each, making up a total of 66 TB memory
in the system. The system also contains 2 NVidia Tesla
K20 GPU equipped compute nodes with 48 cores and
2 Intel Phi 5110P co-processor equipped compute nodes
with 48 cores. Aziz was ranked number 360 in the June
2015 Top500 competition, currently it is at number 491
(November 2015).

The platform (part of the Aziz supercomputer) we have
used for the experiments consists of 2 Intel processors E5-
2695v2 each has 12 Cores (2.4GHz), 96GB RAM, Intel
Xeon Phi Coprocessor 5110P (1053GHz, 60Cores). The
code is written in C and compiled for Linux (CentOS 6.4)
using Intel parallel studio XE 2015 version 15.0.

4.2 Experimental Data
Objects from LIRIS 3D mesh watermarking dataset
(Wang et al., 2010) have been used for the performance
analysis and optimization. This dataset has been selected
due to its dense objects. Table 1 shows the number of ver-
tices for each object.

Py X1 X2 Xn

Tp
Tp

Tp

Spin-Image 1

For Pyn

Tp: Spin-image [I,J]++

++

Tp: Spin-image [I,J]++

++

Tp: Spin-image [I,J]++

++

Spin-Image 1

For Py2

Spin-Image 1

For Py1

Sum all

Spin-Image 1

Figure 2. Proposed Parallel Spin-Image Algorithm

Table 1. 3D Objects in 3D Mesh Watermarking Dataset

Object Label Number of vertices

Ramesses 826266
Horse 112642
Venus 100759
Rabbit 70658
Crank 50012
Dragon 50000
Hand 36619
Bunny 34835
Casting 5096
Cow 2904

4.3 Results
It can be seen from our discussions in Sections 2 and 3 that
the execution time of spin-images generation process for
any object is the key measure of the computational com-
plexity. As mentioned in section 2, the complexity of such
process is O(n2). Therefore, any increase in the number of
object points leads to significant increase in the total time
of spin-image generation process. In order to illustrate that
fact, only percentage of 1% spin-images for each object
has been generated. In figure3, the time to spin-images
generation for Bunny and Rabbit is 0.73 and 2.881 sec-
onds respectively, while their sizes are 34835 and 70658
points respectively. Simply, Rabbit is almost 2 times in
size comparing with Bunny, but its spin-images generation
takes almost 4 times as what it takes in the Bunny object.
Also, it is the same for both Horse and Bunny, time to gen-
erate spin-images for Horse is 9 times as Bunny, while its

EUROSIM 2016 & SIMS 2016

675DOI: 10.3384/ecp17142673 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

0.005

0.015

0.73

0.804

1.499

1.65

2.881

6.75

7.282

427.706

0.001

0.01

0.1

1

10

100

1000

Time to genetarte Spin images (Second)

Figure 3. Sequential implementation of spin-image algorithm
which number of generated spin-images equals to 1% of object
size

0.511

0.93

6.125

6.37

9.541

8.771

11.816
19.471

18.615

149.726

0.1

1

10

100

1000

Time of Spin-Image Generation (Seconds)

Figure 4. Sequential implementation of spin-image algorithm
and the number of generated spin-images equals to 2904

is 3 times as Bunny. Some approaches from Object Recog-
nition field as well as Object Categorization like (Hegazy,
2016) try to avoid such problem by avoiding spin-image
generation at each point of a 3D object, it only generate
spin-images at certain points which will not affect correct
recognition or categorization rate. However, the problem
remains specially for dense objects like LIRIS objects.

In Figure 4, the total number of generated spin-images
is 2409 images per each object, this number represents the
common maximum number of spin-images between all
objects, because Cow Object is the smallest object and it
contains 2409 vertices. Figure 4 shows that dense objects
like Ramesses, Horse, and Venus consume at huge time
such it can not be used in real-time systems. For example,
Horse, Venus, and Rabbit objects take 19.471, 18.615, and
11.816 seconds respectively. Moreover Ramesses object
takes 149.726 seconds.

0.01

0.1

1

10

100

1000

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
to

 g
en

er
at

e
sp

in
 -

im
ag

es
 (

Se
co

n
d

s)

Number of working threads

Ramesses Cow Casting
Bunny Dragon Horse
Hand Rabbit Venus
Crank

Figure 5. Performance of PSIA over 24-cores CPU and the
number of generated spin-images is 2904

In fact, the Ramesses object is 284.5 times in size com-
pared to the smallest object in the dataset. Therefore,
it will always be a challenge to generate all of its spin-
images, taking into consideration that all points of any
LIRIS object are oriented points, which means that for
Ramesses we need to generate 826266 spin-images.

Figure 5 shows the performance of our enhanced PSIA
algorithm for multi-core CPUs. Note that As discussed in
section 3, PSIA is a parallel version of the original spin-
image algorithm where openMP threads are used to per-
form the parallel tasks. The figure shows that there is a
reverse relation between the number of OpenMP threads
and the total run-time. Simply, increasing the number of
working OpenMP threads will decrease the total run-time.
However, there is a turnover point on OpenMP threads
axis at 24 thread, where this relation is not valid. Such
relation violation is due to the physical characteristics of
the used hardware, as mentioned before this experiment
runs over 24-Cores CPU.

Another experiment has been conducted to investigate
the scalability of the proposed parallel SIA algorithm us-
ing another shared memory architecture like Xeon phi
(MIC technology). As mentioned before, we have an Intel
Xeon Phi card that consists of 60 cores. There is two im-
portant feature in such hardware; First each core can run 4
concurrent threads. Second, there is no need to change any
code, it is compatible with x86 processors. In other words,
same code can be recompiled. Figure 6 shows same per-
formance which means scalability of the algorithm, but it
also shows the turnover point changed to be around 230
core which is logically due to the physical characteristics
of the hardware platform.

Actually due to the type of spin-image calculations
which all are floating point operations, results of running

EUROSIM 2016 & SIMS 2016

676DOI: 10.3384/ecp17142673 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

0.0625

0.25

1

4

16

64

50 90 130 170 210 250 290 330

Ti
m

e
to

 g
en

er
at

e
sp

in
-

im
ag

es
(S

ec
o

n
d

s)

Number of working threads

Ramesses Cow Casting
Bunny Dragon Horse
Hand Rabbit Venus
Crank

Figure 6. Performance of PSIA over 60-cores MIC accelerator
and the number of generated spin-images is 2904

4.3

7.3

52.8

58.4

69

72.7

113.1

150.7

167.4

1280.9

1

10

100

1000

10000

C
o

w

C
as

ti
n

g

B
u

n
n

y

H
an

d

C
ra

n
k

D
ra

go
n

R
ab

b
it

V
e

n
u

s

H
o

rs
e

R
am

es
se

s

Time to generate spin-images (Seconds)

Figure 7. Sequential implementation of spin-image algorithm
runs over MIC accelerator and the number of generated spin-
images is 2904

PSIA over MIC is not promising as running over CPU,
however, the total time to generate 2904 spin-images is
reduced comparing to sequential spin-image algorithm. In
order to complete the image, the original sequential spin-
image has been compile to MIC architectures. Figure 7
shows that how the original sequential spin-image algo-
rithm behave for MIC. Therefore, it expected that PSIA
over MIC is not promising as running over CPU.

It can be observed from the results so far that the PSIA
performance over CPU is better than its performance over
MIC. However, using both CPU and MIC together should
give better results than using any of them individually. The
remaining question is how to divide the workload between
CPU and MIC. According to (Faheem and Konig-Ries,
2014), because all PSIA tasks are identical with almost
no dependency, workload for MIC can be calculated as
follows.

Let R1 is the ratio between the number of generated
spin-images and run-time over 24 CPU cores, and R2 is the
ratio between the number of generated spin-images and
run-time over 230 MIC cores. Formally, Rx = (the num-

0.01

1

0 15 30 45 60 75 90

Ti
m

e
to

 g
en

er
at

e
sp

in
-i

m
ag

es

(S
ec

o
n

d
s)

MIC Workload percentage

Ramesses Cow Casting
Bunny Dragon Horse
Rabbit Venus Crank
Hand

Figure 8. Performance for the hybrid implementation of PSIA
at different workload distributions between CPU and MIC-cores

Table 2. The values for MIC Workload Ratios for the given
objects

Object
Name

R1 R2 MIC
Workload
%

Ramesses 0.232666667 0.095204348 29.04
Cow 0.00075 0.000334783 30.86
Casting 0.001291667 0.000521739 28.77
Bunny 0.017833333 0.003573913 16.69
Dragon 0.019291667 0.004995652 20.56
Horse 0.038833333 0.012530435 24.39
Hand 0.0135 0.003965217 22.70
Rabbit 0.02325 0.007830435 25.19
Venus 0.034875 0.00853913 19.67
Crank 0.020583333 0.004608696 18.29

ber of generated spin-images / total run time) / the num-
ber of working threads, where x represent the available
architectures (CPU = 1 and MIC = 2) The MIC Work-
load Ratio W of MIC to the total workload could be cal-
culated as R2/(R1 + R2). The number of generated spin-
images is same for both R1 and R2, and therefore, it could
be excluded from the workload Ratios (W). The values
for MIC Workload Ratios (as well as R1 and R2) for vari-
ous objects are given in Table 2. The table shows that the
lowest MIC Workload Ratio (Column 4) is for the Bunny
object (16.69%), while the highest is for the Cow object
(30.86%). Consequently, based on the results given in Ta-
ble 2, we can conclude that the maximum performance can
be obtained by allocating around 23% (average of the val-
ues in Column 4) of the total workload to MIC and the re-
maining part to CPU. This is not the exact optimum value,
rather a value around which optimum performance can be
found.

To investigate the workload distribution between MIC
and CPU further, we performed another set of experi-

EUROSIM 2016 & SIMS 2016

677DOI: 10.3384/ecp17142673 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

ments. Figure 8 shows the results for a range of work-
load distributions between MIC and CPU. The first result
(the leftmost) is for the case where MIC is given 5% of
the workload, while CPU gets 95% of the workload. The
MIC workload is increased in steps of 5% until it reaches
95%, where CPU gets a 5% of the total load. Based on
the numerical values of the results depicted in the figure,
the optimum MIC Workload Ratio is dependent on the
object, and falls between 10% to 30%. Although further
analysis of such behavior is required, our preliminary ex-
planation is as follows. According to Equations (1), (2),
(3), and (4), the values of i, j require 4 memory accesses
— [i, j], [i, j + 1], [i + 1, j] and [i + 1, j + 1] — in order
to increment the value of the spin-image. These mem-
ory accesses are avoided when the values j, j are outside
the spin-image boundary. However, there are no guaran-
tees that the MIC in the assigned workload may require,
or may not require, these 4 memory accesses. This mem-
ory access behavior will be examined further in our future
work.

5 Conclusions and future work
Improving loadbalancing of computational tasks over het-
erogeneous architectures is an area of paramount im-
portance. This paper aimed at addressing the loadbal-
ancing problem for a heterogeneous platform compris-
ing CPUs and MICs. The approach proposed in this pa-
per was investigated through a case study of the spin-
image algorithm, selected due to its computationally in-
tensive nature and a wide range of applications including
3D database retrieval systems and object recognition. The
paper made three contributions. A parallel spin-image al-
gorithm (PSIA) was introduced and its implementation
achieved the speedup of 19.8 on 24 CPU cores. Re-
sults from a hybrid implementation of PSIA were pre-
sented. We empirically found a strategy to loadbalance
computations between the MIC and CPU cores, achiev-
ing speedups of up to 32.4. Objects from LIRIS 3D mesh
watermarking dataset were used to provide performance
analysis and optimization.

The proposed PSIA on the heterogeneous platform can
replace the original spin-image for many different applica-
tions as mentioned in Section 1. Also, the proposed PSIA
is scalable. It can run over a different number of cores
equal to N, such that N is less than or equal to the number
of generated spin-images. The use of the PSIA algorithm
is recommended for the case where the objects are dense.
Moreover, the proposed PSIA hybrid implementation al-
lows real-time generation of spin-images.

The results and analysis of our approach for loadbal-
ancing on heterogeneous platforms show great promise.
However, there are some concerns regarding the proposed
PSIA that need further investigation. For example, PSIA
is based on creating partial spin-images, which means that
higher memory resources are required. Further investiga-
tion in needed to find out the memory profile of the pro-

posed PSIA algorithm compared to the original version?
The loadbalancing strategy needs to be investigated fur-
ther with a wider range and size of objects. Analytical
or heuristic formulations need to be devised. We need to
investigate various cases where, for instance, one of the
computing resources does not have sufficient memory to
take its workload: is it better to distribute the workload
based on the characteristics of the work or the amount of
work? Finding answers to these questions forms our moti-
vation for the future work. We also plan to add the energy
efficiency dimensions to this work. We plan to look at
optimizing the loadbalancing strategy against energy effi-
ciency, memory profile and computational performance.

Acknowledgment
This work is supported by the King AbdulAziz Univer-
sity’s High Performance Computing Center (http://
hpc.kau.edu.sa). The spin-image computations de-
scribed in this paper are performed on the Aziz supercom-
puter, part of the HPC Center.

References
J. Assfalg, G. D’Amico, A. Del Bimbo, and P. Pala.

3D content-based retrieval with spin images. In Mul-
timedia and Expo, 2004. ICME ’04. 2004 IEEE Interna-
tional Conference on, volume 2, pages 771–774, June
2004. doi:10.1109/ICME.2004.1394314.

L. Bautista Gomez, F. Cappello, L. Carro, N. DeBardeleben,
B. Fang, S. Gurumurthi, K. Pattabiraman, P. Rech, and
M. Sonza Reorda. GPGPUs: How to combine high com-
putational power with high reliability. In Design, Automation
and Test in Europe Conference and Exhibition (DATE), 2014,
pages 1–9, March 2014. doi:10.7873/DATE.2014.354.

K. S. Choi and D. H. Kim. Angular-partitioned spin image de-
scriptor for robust 3D facial landmark detection. Elec-
tronics Letters, 49(23):1454–1455, Nov 2013. ISSN 0013-
5194. doi:10.1049/el.2013.1577.

A. Eleliemy, D. Hegazy, and W.S. Elkilani. MPI
parallel implementation of 3D object categorization
using spin-images. In Computer Engineering Confer-
ence (ICENCO), 2013 9th International, pages 25–31, Dec
2013. doi:10.1109/ICENCO.2013.6736471.

H. M. Faheem and B. Konig-Ries. A new scheduling strategy
for solving the motif finding problem on heterogeneous ar-
chitectures. International Journal of Computer Applications,
101(5), September 2014.

Y. He and Y. Mei. An efficient registration algorithm based
on spin image for Lidar 3D point cloud models.
Neurocom-puting, 151, Part 1:354 – 363, 2015. ISSN
0925-2312. doi:http://dx.doi.org/10.1016/
j.neucom.2014.09.029.

D. Hegazy. Symmetric multi-processing 3d object catego-
rization model using a spin-point curvature selection strat-
egy. Egyptian Computer Science (ECS) Journal, 40(1):73–
83, January 2016.

EUROSIM 2016 & SIMS 2016

678DOI: 10.3384/ecp17142673 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

http://hpc.kau.edu.sa
http://hpc.kau.edu.sa
http://dx.doi.org/10.1109/ICME.2004.1394314
http://dx.doi.org/10.7873/DATE.2014.354
http://dx.doi.org/10.1049/el.2013.1577
http://dx.doi.org/10.1109/ICENCO.2013.6736471
http://dx.doi.org/http://dx.doi.org/10.1016/j.neucom.2014.09.029

A. Johnson. Spin-Images: A Representation for 3-D Surface
Matching. PhD thesis, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, August 1997.

A.E. Johnson and M. Hebert. Using spin images for efficient
object recognition in cluttered 3D scenes. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
21(5):433– 449, May 1999. ISSN 0162-8828. doi:10.1109/
34.765655.

Y. Mei and Y. He. A new spin-image based 3D map
registration algorithm using low-dimensional feature
space. In Information and Automation (ICIA), 2013
IEEE International Conference on, pages 545–551,
Aug 2013. doi:10.1109/ICInfA.2013.6720358.

Intel Newsroom. Intel Delivers New Architecture for Dis-
covery with Intel Xeon Phi Coprocessors. Available via
https://www.bayesfusion.com/ [accessed November 8, 2016].

R. Rahman. Intel R© Xeon PhiTM Coprocessor Architecture and
Tools. The Guide for Application Developers. Apress Media,
ISBN13: 978-1-4302-5926-8, 2013.

S.K. Shukla and L.N. Bhuyan. A hybrid shared mem-
ory heterogeneous execution platform for PCIe-based
GPDGUs. In High Performance Computing (HiPC),
2013 20th International Conference on, pages 343–352,
Dec 2013. doi:10.1109/HiPC.2013.6799140.

G. Utrera, M. Gil, and X. Martorell. In search of the best
MPI-OpenMP distribution for optimum Intel-mic cluster
performance. In High Performance Computing Simu-
lation (HPCS), 2015 International Conference on, pages
429–435, July 2015. doi:10.1109/HPCSim.2015.7237072.

K. Wang, G. Lavoué, F. Denis, A. Baskurt, and X. He. A bench-
mark for 3D mesh watermarking. In Proc. of the IEEE Inter-
national Conference on Shape Modeling and Applications,
pages 231–235, 2010.

EUROSIM 2016 & SIMS 2016

679DOI: 10.3384/ecp17142673 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

http://dx.doi.org/10.1109/34.765655
http://dx.doi.org/10.1109/ICInfA.2013.6720358
http://dx.doi.org/10.1109/HiPC.2013.6799140
http://dx.doi.org/10.1109/HPCSim.2015.7237072

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	Introduction
	Calculation formulas
	Calculation of Intra-Ocular Lens for Non-Normal Eyes

	Back ground of studies
	Artificial Neural Network
	Real data
	Collected Data
	Specification of Patients Data Selected for Collection
	Specification of Preprocessing Parameters

	Results
	Objective
	ANN training
	ANN settings
	Results

	Conclusion
	Future work
	Introduction
	Homeostasis, Disturbance Rejection and Set Point Tracking
	Controller Motifs

	Results
	Dynamic Properties of Controller Motifs
	Tuning of Individual Controllers

	Conclusions
	Introduction
	Modelling the pharmacokinetics of propofol
	The 3-compartmental model
	Effect-site concentration model
	Model parameters

	Model verification
	Simulation results
	Propofol inflow
	Plasmatic concentration
	Effect-site concentration
	Evaluation of the predictive quality of the model

	Conclusion
	Introduction
	Modular Model Predictive Control Concept
	Building Setup
	Modular Predictive Control Concept

	Energy Supply Level - ESS - Models
	Linear Models
	Hybrid Models

	Model Predictive Controllers
	Objective Function
	LMPC
	MI-MPC

	Simulation Results
	Simulation Setup
	Demonstration of MPCC Performance
	Comparison between MPCC and RBC

	Conclusion
	Introduction
	Data Properties
	Macro Money Systems in QEs
	Behavior in QE1=(2008m11,2010m06)
	Behavior in QE2+=(2010m11,2012m08)
	Behavior in QE3=(2012m09,2014m10)

	Transmission Path of Housing Price from Reserve to Economic Activity
	Decomposition of M2 into Transaction and Precautionary Money Demands in (1975m10, 2016m03)
	Estimation of Precautionary Money Demand
	The Role of Business Condition u(t)=napm-50 in Transmission Mechanism of QEMP during QE1, QE2+ and QE3

	Conclusion
	Introduction
	Mathematical Model
	Model Parameters and Geometry
	Results and Discussions
	Conclusions
	Introduction
	Field Excitation Control
	Capability Curve
	Classical Control

	Concept and Formulation of MPC
	MPC as Excitation Control
	Modeling and Control Workflow

	Tuning the MPC Controller
	Time Response
	Open Circuit Conditions

	First-swing Angle Stability Enhancement
	Long-term Voltage Stability Enhancement
	Steady-state Voltage Stability
	Power System Simulator
	LTVS Simulations

	Discussion
	Conclusion
	Introduction
	Grid impedance model
	Impedance-based instability studies
	Practical implementation
	Conclusion
	Aknowledgements
	Introduction
	Literature Review
	Circulating Fluidized Bed Boilers
	Characteristics of RDF
	Agglomeration

	Methodology
	Description of Model
	Mass and Energy Balances
	Hydrodynamics

	Results and Discussion
	Validation
	Agglomerate Prediction

	Conclusion
	Introduction
	Theory
	Stability of Grid-Connected System
	Maximum-Length Binary Sequence

	Implementation in dSPACE
	System Setup
	Experiment

	Conclusions
	Introduction
	Governing Equation for Flow Modeling
	KP Numerical Scheme
	Simulation of the River Flow
	Results and Discussion
	Simulation Results
	Simulation Results for Numerical Stability Analysis

	Conclusion
	Introduction
	Air preparation process
	Fuzzy identification
	Takagi-Sugeno fuzzy model
	Fuzzy clustering

	Data collection
	Structure selection
	Input and output variables
	Representation of the systems' dynamics
	Fuzzy models granularity

	Fuzzy clustering and model validation
	Comments on resulting model performance

	Control experiments
	PID control
	Supervisory logic

	Conclusions
	Introduction
	First step - DES model
	Second Step - Portfolio optimization

	Stochastic DES model through markovian properties
	Product-Form Networks - Convolution algorithm
	Marginal probability
	Mean response time

	Load-haulage cycle
	DES model: Load-haulage system
	Project portfolio formulation
	Conclusion
	Introduction
	Overview of the Method
	Computing the Encounter Probabilities
	Example

	State Transition Matrix
	Projectile with a Single Sensor Fuzed Submunition
	Example
	Projectile with Two Sensor Fuzed Submunitions

	Failure Probability of the System
	Conclusion
	Hydro-pneumatic Accumulator
	Recent Research
	Purpose of This Study

	Logical Structure of Simulation Model
	Physics of Piston Type Hydro-Pneumatic Accumulator
	Nitrogen gas
	Mechanical Structure
	Hydraulic Fluid

	Conceptual Model

	Mathematical Model
	Equations for Nitrogen Gas
	Equations for Piston
	Equations for Friction
	Equations for Hydraulic Fluid
	Equations for Orifice

	Modelling in MATLAB/Simulink
	Calibration and Validation of the Simulation Model
	Testing Setup
	Laboratory Tests
	Validation

	Conclusion
	Introduction
	Contributions
	Setup for the analysis
	Experimental data
	Compressor Map
	Compressor Isentropic Efficiency
	Corrected Mass Flow
	Data Treatment

	 Pressure Losses in Gas Stand
	Pressure Loss in Straight Pipe
	Friction Factor - Laminar Flow
	Friction Factor - Turbulent Flow
	Pressure Loss In Bend
	Pressure Loss in Inlet Nozzle and Outlet Diffuser
	Adjust Measured Data
	Calculate New Compressor Efficiency

	Effect of pressure losses on measured compressor efficiency
	Compressor and Pipes Dimensions
	Case 1: Straight Pipes
	Case 2: Pipes with Diffuser and Nozzle
	Case 3: Pipes with Diffuser, Nozzle and Bend

	Summary and Discussion
	Future Work
	Conclusion
	Introduction
	Traffic Regulation: Stage selection
	Signal Control Schemes
	Pre-timed network control
	Max-Pressure Practical (MPract)

	Modelling and Simulation Overview
	An event-driven approach
	PointQ design

	Case Study-Data description
	From theory to applications
	System Stability
	Trajectory Delay Measurement
	Queue Delay Measurement
	Varying Traffic Conditions

	 PointQ versus AIMSUN Network Performance
	Evolution of phase (137,154)
	Evolution of phase (254,237)

	Conclusion
	Introduction
	Background
	MVB and Master Transfer
	Multifunction Vehicle Bus
	Mastership Transfer

	Model Checking with temporal logic

	System Modelling
	Bus Administrator Modelling
	basic data structure
	finite state machine of Bus Administrator

	Communication and Timing Modelling
	communication mechanism of BusAdmin
	timing mechanism

	Property Modelling
	Property Classification
	safety property
	liveness property

	Live sequence charts
	Observer Automata modelling

	Experiments
	Conclusion
	Introduction
	Experimental data
	Modeling
	Compressor
	Turbine
	EGR Blowers
	Auxiliary Blower
	Exhaust Back Pressure
	Combustion Species and Thermodynamic Parameters

	Parameterization Procedure
	Complete stationary parameterization
	Dynamic estimation

	Model Validation
	Conclusions
	Nomenclature
	Introduction
	Fundamentals
	Safe Active Learning
	The high pressure fuel supply system

	Design and Implementation
	Training of the hyperparameters
	The discriminative model
	The risk function
	The path to the next sample
	The algorithm

	Evaluation
	Evaluation in simulation
	Evaluation at a test vehicle

	Conclusion
	Introduction
	Modelling
	Centre of Gravity
	Aerodynamic Forces
	Definition of Angles
	Lever Arms
	Catenary
	Equations of Motion
	Velocities
	Self Stabilisation
	Complete Model

	Model Parameters
	Simulation Results
	Gliding Flight
	Towing Process

	Conclusions
	Introduction
	Context
	Compton scattering tomography (CST)

	Modelling of the new CST modality
	Proposed setup by back-scattering
	Direct problem : Image formation
	The half-space Radon transform (HRT)
	Image formation

	Inverse problem : Object Reconstruction
	Inversion of the HRT
	Filtered back-projection

	Simulation of the new CST modality
	Energy resolution of the detector
	Spatial discretization
	Window functions

	Conclusion and perspectives
	Introduction
	Powertrain model
	Problem formulation
	Tip-in problem constraints
	Boundary conditions for the tip-in problem
	Path constraints during tip-in

	Optimal control problem formulation
	Numerical solution of optimal control problems

	Optimal control results
	Extreme transients
	Compromise between time, Jerk and energy
	Jerk-Energy trade-off
	Efficient state and control transients

	Conclusions
	An Improved Kriging Model Based on Differential Evolution
	1 Introduction
	2 Theory of kriging model
	3 Kriging model based on DE algorithm
	3.1 Theory of DE algorithm
	3.2 Kriging interpolation based on DE algorithm
	3.3 Process of kriging Model based on DE algorithm

	4 An engineering example
	4.1 Setting DE algorithm parameters
	4.2 Data preprocessing
	4.3 Model computation and optimization

	5 Conclusion
	Introduction
	Model for slug flow
	Simulation for slug flow
	State estimation
	Control strategies
	Model predictive control
	PI control

	Simulation results and discussion
	Control structure I
	Control structure II
	Control structure III

	Computational time for MPC
	Maximum valve opening
	Conclusion
	Introduction
	Description of the loading bridge
	Modelling with Modelica
	Package of mechanical components Mechanics
	Package of causal components Blocks
	Structure and components of the overall model
	Model of the loading bridge
	World
	Cart
	Pendulum
	Drive

	Controller in Matlab Simulink environment
	Experiments
	Open loop experiments
	Closed loop experiments

	Conclusion
	Introduction
	MMT - Mathematics, Modelling and Tools
	Structure of MMT
	Usage of MMT

	Maple T.A. - Maple Testing and Assessment
	Structure MTA
	Usage MTA
	Mathapps
	MTA - Moodle Connector

	Case Study
	Conclusion
	Outlook
	Introduction
	Signal processing
	DFT and derivatives
	lp-norms and MIT-indices
	Nadaraya-Watson nonparametric regression

	Measurements and gearbox properties
	Load haul dumper front axle
	Water power station gearboxes

	Calculations from the LHD measurements
	Calculations from the WPS measurements
	Conclusion
	Introduction
	Preliminaries
	Problem Statement
	Vector Smoothing Splines

	Trajectory Planning
	Trajectory between Two Lines
	Centerline and Intermediate Time Instants
	Smoothing Spline Trajectory

	Numerical Examples
	Path with Piecewise Linear Boundaries
	Path in Obstacle Avoidance Problem

	Concluding Remarks
	Introduction
	Literature Review
	Dynamic multi-workstation model based on electrical components

	Simulation Model with a PI Controller
	Test and Results
	Final Remarks
	Introduction
	Related Work
	Methodology
	DataSet

	Semantic Identification Through Multiple Classifiers
	Global Feature Extraction through Wavelet Decomposition
	Deep Learning of Neural Network

	Image Retrieval
	Performance Analysis
	Conclusion
	Motivation
	Related work
	Data set and pre-processing
	Defining the curvature of a steel plate
	Experiment
	Discussion
	Conclusion
	Introduction
	New Evolutionary Computation
	Island model parallel distributed in NN-DEGA
	Self-adaptive using Neural Network
	Reconstruction of differential vector
	Elite strategy

	Numerical Experiments
	Benchmark Functions
	Experiment Results
	Comparison for Robustness

	Conclusion
	Introduction
	Classical RF Prediction
	Fuzzy Clustering Prediction
	Analysis
	Conclusion
	Introduction
	Dynamic Artificial Neural Network
	Back Propagation Through Time (BPTT)
	Real Time Recurrent Learning (RTRL)
	Extended Kalman Filter Learning (EKF)

	Experimental Set-up
	Results
	Simulation Study
	Experimental Study

	Conclusion
	Introduction
	Overview of Toolbox
	DANN Main
	Uploading data set
	Division of data set
	Validation check
	Bias
	Learning algorithm
	Learning parameters
	Past inputs and outputs
	Additional parameters

	Parameter Tuning
	Plot Menu
	Performance plot
	Regression plot
	Prediction plot
	Parameter plot
	Error plot

	Additional information
	Installing the MATLAB DANN toolbox

	Case Studies
	Case I: BPTT learning algorithm for flow measurement
	Case II: EKF learning algorithm for temperature measurement
	Case III: RTRL learning algorithm for mortality prediction

	Conclusion
	Modeling and Simulation of Train Networks Using Max-Plus Algebra
	1. Introduction
	2. Max-plus algebra
	3. Scheduled max-plus linear systems
	4. Timetable stability
	4.1 Delay sensitivity analysis
	4.2 Dynamic Delay Propagation
	4.3 Recovery Matrix

	5. Conclusion
	Introduction
	Construction of DBN metamodels
	Utilization of DBN metamodels
	Example analysis - simulated operation of air base
	Conclusion
	Introduction
	Metastable liquids

	Model for two phase flow and phase transition
	The van der Waals equation of state

	Solver
	Stiff pressure relaxation
	Stiff thermodynamic relaxation

	Experiments
	Simulation set-up
	Results and discussion
	Conclusion
	Introduction
	ParModelica
	Previous Research on PDEs in Modelica
	Partial Differential Equations (PDE)
	Explicit Form

	Numerics
	Discretisation
	Runge-Kutta with Variable Step Length

	General-Purpose Computing on Graphics Processing Units (GPGPU)
	PDEs in Modelica
	Algorithmic Modelica and ParModelica
	Solver Framework
	User Defined State Derivative and Settings
	Types Used by the Solver
	Solvers

	Use Case — Heat in Plane
	Poor Insulation and Constant Temperature
	Constant Temperature Depending on Location

	Performance Measurement
	Pros & Cons of Solver Written in Modelica
	Conclusions
	Blood Flow in the Abdominal Aorta Post 'Chimney' Endovascular Aneurysm Repair
	1 Introduction
	2 Methodology
	2.1 Governing Equations
	2.2 Anatomical Model
	2.3 Numerical Model
	2.4 Numerical Discretization

	3 Results
	3.1 Validation
	3.2 Flow Patterns
	3.3 Flow Regime

	4 Discussion and Conclusions
	Introduction
	Spin-Image Algorithm
	The Proposed Parallel Spin-Images Algorithm
	Results and Analysis
	Platform Specification
	Experimental Data
	Results

	Conclusions and future work
	Introduction
	Overview of Python API
	Goal
	Installing the OMPython Extension
	Status
	Description of the API
	Python Class and Constructor
	Utility Routines, Converting Modelica FMU
	Getting and Setting Information
	Operating on Python Object: Simulation, Optimization
	Operating on Python Object: Linearization

	Use of API for Model Analysis
	Case Study: Simple Tank Filled with Liquid
	Model Summary
	Modelica Encoding of Model
	Use of Python API
	Basic Simulation of Model
	Parameter Sensitivity/Monte Carlo Simulation

	Discussion and Conclusions
	Introduction
	Related Work
	Virtual Testing of Open embedded Systems
	Simulator Coupling for Network Simulation
	Network Fault Injection Testing
	Case Study
	Conclusions and future work
	Validation Method for Hardware-in-the-Loop Simulation Models
	1 Introduction
	2 Validation Methods
	2.1 Open-Loop Operation
	2.2 Independent Closed-Loop Operation
	2.3 Compensated Closed-Loop Operation

	3 Related Work
	3.1 Example Circuit
	3.2 Simulation Models

	4 Simulation Results
	4.1 Models with Different Switching Delays
	4.2 Discrete-Time Models
	4.3 Fixed-Point Models

	5 Conclusion
	Introduction
	Control Engineering: The Teacher's Challenge
	New Curriculum For Teaching Automatic Control
	Luma Activity
	Conclusion
	Introduction
	The Activated Sludge Process
	Mass balances and expression for the sludge age
	The settler

	ASP with ideal settler model
	Steady-state solutions
	Substrate input-output relationship for constant sludge age

	ASP with DZC settler model
	Steady-state solutions
	Substrate input-output relation for constant sludge age

	An approximation for S* given 0
	Numerical example
	Theorem 1
	Theorem 2

	Conclusions
	Introduction
	Materials and Methods
	Gaussian Mixture Models
	GMM based fault detection criteria

	Case Study: Monitoring a Secondary Settler
	Results
	Discussions
	Conclusions
	Introduction
	Industrial Process Description
	SIAAP Waste water and sewage Sludge Treatment Process
	Incineration Process
	The Furnace
	The Heat Exchanger

	Identification Process Overview
	Sludge Incineration sub-models: Input-output interaction.
	Identification Strategy

	Validation Methods
	Absolute Criteria
	Relative reference-model criteria

	Results and Discussions
	Relative Reference-Model Criteria Results

	Conclusion
	1 Introduction
	2 Modelling
	2.1 Basic Process Components
	2.2 Boiler Evaporator Loop
	2.3 Test Model

	3 Simulation Tests
	3.1 Comparison of Numerical Solvers
	3.2 Effects of Initial State and Parameters

	4 Conclusions
	Introduction
	TCP-100 solar field description
	Mathematical modeling of TCP-100 solar field
	 Optical and geometric efficiencies
	Characteristics of the heat transfer fluid
	Thermal losses

	Simulations
	Conclusion
	Introduction
	Description of a Basic Gas Turbine Model
	Compressor
	Combustion Chamber
	Turbine Module

	Computational Causality And Conditions for Numerical Convergence
	First Principles Compression and Expansion Maps
	Compression Case
	Expansion Case

	Simulation Results
	Conclusion
	Appendix
	Introduction
	Modelling methodology, libraries and tools
	Plant Description
	Innovative aspects
	OTSG topology

	Device modelling
	Re-used components
	Custom component models
	Separator
	Feedwater heater
	Deaerator
	MS fluid model

	Plant modelling
	OTSG model
	Turbine model
	Feedwater preheaters train
	Plant control system
	Complete plant model

	Simulation objectives - methodology
	Simulation performance
	Conclusion
	Introduction
	Formal Problem Statement and SVM
	SVM by Set-Valued Training Data
	A Modification of the AdaBoost
	Imprecise Updating Weights of Robots
	Conclusion
	Introduction
	Methodology
	Power grid connection
	Electrolyser
	Interim gas storages
	Methanation
	MEA CO2 capture
	CH4 compression

	Control sequences
	CH4 compression
	Start-up
	Power grid connection
	Methanation reactor
	Electrolysers
	Interim gas storages
	CH4 compression

	Shutdown
	Methanation reactor
	CH4 compression
	Interim gas storages
	Electrolysers

	Results
	Conclusion and future work
	Acknowledgment
	Introduction
	Mathematical Model
	Assumptions
	Development of Model
	Material Balance
	Energy Balance
	Heat Exchanger

	Simulation Results and Discussion
	Simulation Results
	Comparison with Previous Work

	Conclusions
	1 Introduction
	2 Herding behavior of rhinos
	2.1 A synoptic model of space use
	2.2 Population size updating model

	3 Rhino herd (RH) algorithm
	3.1 Synoptic model
	3.2 Population size updating model
	3.3 RH algorithm

	4 Simulation results
	5 Discussions and conclusions
	Acknowledgements
	References

	Introduction
	Structure and Kinematics of the Double-Spiral Mobile Robot
	Structure
	Forward kinematics
	Gripper positions
	COG

	NESM
	Numerical Case Study
	Conditions and methods
	Results

	Discussion
	Conclusion
	Introduction
	Data analysis
	Nonlinear scaling
	Interactions
	Uncertainty
	Natural language

	Recursive analysis
	Scaling
	Interactions
	Fuzzy logic
	Smart adaptive systems

	Temporal analysis
	Trend indices
	Fluctuations
	Changes of operating conditions

	Conclusion
	Introduction
	MOEA/D
	Algorithm
	Focused Issue

	Proposed Method: Chain-Reaction Initial Solution Arrangement
	Aim and Concept
	Method

	Experimental Settings
	Results and Discussion
	Search Performance at Final Generation
	Search Performance over Generations

	Conclusions
	Introduction
	Modeling demand-side management
	Markets
	Actors
	Other elements

	Controlling consumption
	Optimizing scheduling
	Controlling (via) frequency

	Discussion and conclusions
	Introduction
	Components and Parameters of Musical Expression
	Learning Support System of Musical Representation
	Generation of Example of Musical Expression
	Construction of Kansei Space
	Image Estimation
	Parameter Values Estimation using Fuzzy Inference
	Interactive Modification of Musical Expression

	Comparison of Parameter of Musical Expression
	Advice for Parameter of Musical Expression

	Range of Learner's Musical Expression on Kansei Space
	Estimation of Range of Musical Expression
	Advice about Impression

	Experiment
	Results and Discussions

	Conclusion
	Introduction
	Formulating the GA Optimization
	The Problem Encoding
	The Objective Function (Fitness)
	Selecting The GA Operators
	Tuning the GA Parameters

	FPGA Implementation
	GA's HDL Entities
	Fitness
	Selection
	Crossover
	Mutation
	Generating Pseudo Random Sequences
	Replacement

	Performance Evaluation
	Functional Verification
	Fitness
	Selection
	Replacement
	Crossover
	Mutation
	LFSRs
	Comparator

	Integrating GA into the SoC
	Interfacing GA with the HPS
	Controlling GA from the Linux host

	Conclusion and Future Work
	Introduction
	Related Work
	Earthmoving Simulator
	Workspace Subdivision with Scoop Area
	High Point and Zero Contour Methods
	Simulation Results and Discussion
	Conclusion and Future Work
	Introduction
	SDNized Wireless LAN Testbed
	 Central Manager
	 Aggregator and Transport Network
	 Network Edge
	 Android Measurement Application
	Experiment Automation

	Mobility Management - A Use-Case Scenario Implementation
	Mobility Handling in Developed Testbed
	Logging
	Running the Experiment
	Parsing and aggregating results

	Conclusion

