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Abstract 
This review study focuses on the application of 
Computational Fluid Dynamics (CFD) in the 
investigation of gas-solids multiphase flow systems. 
The applicability and limitations of conventional 
models and recent developments of existing multiphase 
models for the prediction of gas-solids flows are 
thoroughly overviewed. Use of conventional Eulerian-
Eulerian model for granular flows and Lagrangian 
approach incorporated with Discrete Element Method 
(CFD-DEM) are quite well proven, however some 
limitations restrict the use of these models in wide 
range of applications. Therefore, some new models 
have been introduced to model gas-solids flows, as 
example Dense Discrete Phase Model incorporated 
with Kinetic Theory of Granular Flow (DDPM-
KTGF), Dense Discrete Phase Model incorporated 
with Discrete Element Method (DDPM-DEM) and 
Computational Particle Fluid Dynamics (CPFD) 
numerical scheme incorporated with the MultiPhase-
Particle-In-Cell (MP-PIC) method. These models have 
been validated for certain applications under certain 
conditions, however, further validation of these models 
is still a necessity. 

Keywords: models, CFD-DEM, DDPM-KTGF, 
DDPM-DEM, MP-PIC  

1 Introduction 
Applications involving gas-solids multiphase flows are 
very common in numerous industrial processes and 
also in various natural phenomena, such as sand storms 
and cosmic dusts (Li et al., 2012). Pneumatic 
conveying units, hoppers, solids separation units such 
as cyclones, bubbling and circulating fluidized beds 
used in gasification, carbon capture, etc. can be 
identified as some of the industrial process units 
involved in gas-solids flows. To optimize the design 
and operation of industrial processes and also to 
understand natural phenomena which involve gas-
solids flows, a thorough understanding of gas-solids 
flows is needed.   

Achievement of this understanding involves the 
development of experimental measurement techniques, 
experimentally verified multiphase flow equations and 
numerical simulation tools (Arastoopour, 2001). 
Significant effort has been devoted to improving 
numerical tools, such as Computational Fluid 
Dynamics (CFD) tool, to predict such complex flows. 
However, it has been identified that systems containing 
one or more particulate phases are the most complex 
and challenging in the field of multiphase flow 
modeling. To accurately predict the solids behavior, it 
is necessary to choose a numerical method capable of 
accounting not only particle-fluid interactions but also 
for particle-wall and particle-particle interactions in 
three dimensions and across any particle size 
distribution (Parker et al., 2013).  

Different types of CFD models are available for the 
prediction of gas-solids flows.  Each model has 
inherent merits and disadvantages. Therefore, a certain 
model can be appropriate over another depending on 
the factors prioritized by the user e.g.  accuracy of the 
results, computational time, applicability in large-scale 
systems, etc. Moreover, the models are still far from 
perfect and the available models are undergone many 
improvements within the time. In this review paper, 
some modeling approaches available for the modeling 
of gas-solids flow systems are analyzed including their 
applications and limitations. First, an overview of the 
models is presented. Then, the two basic approaches 
and the different models available under basic 
approaches are discussed. 

2 Basic CFD Approaches for 
Modeling of Gas-Solids Flows 

A brief summary of the discussed approaches and 
models are presented in Figure 1. In dealing with 
modeling of gas-solids flows, the Eulerian-Eulerian 
and the Eulerian-Lagrangian methods are the 
frequently used approaches (Chen and Wang, 2014). In 
Eulerian-Eulerian approach, all the phases are treated 
as continuous phases  while     in     Eulerian- 
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Lagrangian approach, the fluid phase is treated as a 
continuous phase, but the solid phase is treated as a 
discrete phase. Eulerian-Eulerian model for granular 
flows is described under Eulerian-Eulerian approach 
and there are four main models under Eulerian-
Lagrangian approach, namely,   Lagrangian  Discrete  
Phase  Model  (DPM),  Dense Discrete Phase Model 
incorporated with Kinetic Theory of Granular Flow 
(DDPM-KTGF), CFD-Discrete Element Method 
(CFD-DEM) and Computational Particle Fluid 
Dynamics (CPFD) numerical scheme incorporated 
with the MultiPhase-Particle-In-Cell (MP-PIC) 
method. 

In addition to the difference in the way of solid 
phase treatment, another basic difference of the models 
under both approaches is, the way of treating particle-
particle (p-p) interactions. DPM neglects the p-p 
interactions, and other models consider the p-p 
interactions through different approaches such as 
kinetic theory of granular flow, particle normal stress 
model, soft sphere model, etc. 

Much information about the model approaches are 
discussed in the following sections. 

3 Eulerian-Eulerian approach 
In the Eulerian-Eulerian approach, fluid and particles 
both  are  considered  as  continuous  phases  which are 
fully inter-penetrating (Zhang et al., 2012) i.e. solid 
phase is treated as a pseudo-fluid  (Abbasi et al., 2013).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Volume fractions of phases are assumed to be 
continuous functions of space and time.  Since the 
volume of a phase cannot be occupied by the other 
phases, the sum of volume fractions is equal to one. 
This is the concept of the phasic volume fraction 
(Abbasi et al., 2011). The conservation equations of 
mass, momentum and energy for the phases are then 
obtained through an appropriate averaging process 
(typically ensemble-averaging) (Chen and Wang, 
2014). The averaging procedure  leads  to  many  
unclosed  terms, which  must  be modeled (Snider et 
al., 2011). Constitutive relationships that are obtained 
from empirical information and/or kinetic theory are 
used for this purpose (Abbasi et al., 2013). Eulerian-
Eulerian model for granular flows (Euler-granular 
model) is an example for Eulerian-Eulerian approach. 
As mentioned (Garg et al., 2012), commercially 
available codes like ANSYS Fluent, and open source 
codes like CFDlib, OpenFOAM® and MFiX are all 
capable of performing Eulerian-Eulerian simulations. 
Similar  forms of governing equations are solved in all 
these codes and main difference can be found in 
closures for various sub models (such as solids 
stresses, interphase drag, etc.) and in numerical 
treatment. 

The Eulerian-Eulerian approach normally requires 
less computational resources compared to Eulerian-
Lagrangian approaches (Chen and Wang, 2014). And 
this approach is quite traditional and has played a very 
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Figure 1. Summary of model approaches for gas-solids multiphase flow modelling. 
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important role in determining the fluid dynamic 
characteristics of gas–solids flow (Chen and Wang, 
2014). Therefore, Eulerian-Eulerian approach has a 
wide application in gas–solids flows (Weber et al., 
2013). However, this approach has major limitations in 
considering variations of particle properties, as 
example, wide particle size distribution, density 
diversification and sphericity consideration. 
Nevertheless, the particle size differences and/or 
density variations can affect the gas–solids flow 
behaviors such as solid segregation (Wang et al., 
2014a), hence cannot be neglected in certain situations. 
In that case, many separate continuity and momentum 
equations are required to accurately represent the 
different particle types and sizes in this model 
(Andrews and O'Rourke, 1996). However, the 
computational cost of inclusion of many phases cannot 
then be overlooked, in fact it depends on the 
computational capacity available. Some researchers 
have quoted that the Euler-granular model cannot 
easily account for some characteristics of realistic 
particles such as shear stresses and inter-particle 
cohesive forces for Geldart A particles when treated as 
a pseudo fluid (Chen et al., 2013). Moreover, many 
researchers emphasize that incorporating of dissipation 
in the Kinetic Theory of Granular Flow (KTGF) model 
considering the effects of wall roughness is an 
important factor for the accurate prediction of results in 
Eulerian-Eulerian model for granular flows (Chen and 
Wang, 2014). 

4 Eulerian-Lagrangian Approach 
In Eulerian–Lagrangian approach, the fluid phase is 
still modeled with time-averaged Navier–Stokes 
equations and other conservation equations (Yin et al., 
2014). The dispersed (solid) phase is treated by 
tracking a large number of particles through the 
calculated flow field (Abbasi et al., 2012). Each 
particle is affected in its trajectory by three-
dimensional forces and Newtonian equations of motion 
are used for the calculations (Yin et al., 2014). 
Commercially available codes like ANSYS Fluent and 
Barracuda®, and open sources codes like MFiX-DEM, 
KIVA, OpenFOAM® are capable of performing 
Eulerian-Lagrangian simulations (Garg et al., 2012). 
The way of treating particle-particle interactions and 
the numerical method used to solve the equations are 
the main differences in different Eulerian-Lagrangian 
codes.    

Compared to Eulerian-Eulerian approach, Eulerian-
Lagrangian approach can provide analysis of flows 
with a wide range of particle types, sizes, shapes and 
velocities (Lu et al., 2014). However, if details of 
particle–particle and particle-wall collisions are 
explicitly tracked, the traditional Lagrangian models 
also have some major limitations (Chen and Wang, 
2014). For the dense systems in where a large number 

of particles are involved, the calculation of particle–
particle interactions is very complex. It is not possible, 
even with super computers, to simulate a large-scale 
system due to the extensive computational cost of 
tracking each particle (Li et al., 2012). Because of this 
complexity of calculating particle-particle collisions 
and the high collision frequency for volume fractions 
above 5%, these calculations have been limited to the 

order of 2105 particles and are often restricted to two-
dimensional solutions without a fluid phase (Snider et 
al., 2011). To avoid this restriction, some methods 
have been developed with improvements in calculating 
particle-particle and particle-wall interactions and also 
with concept of parcels. The concept of parcel is used 
to reduce the numbers of particles involved in 
computations, resulting in a significant acceleration of 
the speed of simulations (Chen and Wang, 2014). 
According to (Garg et al., 2012), all publicly available 
codes except for MFiX-DEM employ a parcel-based 
approach for the discrete phase. In the parcel approach, 
a finite number of parcels are tracked rather than using 
actual individual particles. Each parcel may represent a 
fractional number of real particles. Typically, several 
particles with same properties (species, size, density, 
temperature, etc.) are grouped and put into a parcel. 
This parcel is also called as a 
computational/numerical/notional/nominal particle in 
different literature. However, as ANSYS Fluent 
mentioned, convergence issues can arise, if fluid 
volume fraction becomes zero due to either when 
parcel size is bigger than cell size or too many parcels 
are squeezed into a cell due to softness of particles. 
Larger parcel size reduces the number of parcels for a 
certain mass flow hence lower computational cost. 
However, the smallest cell should be larger than the 
largest parcel size (as explained above). Therefore, 
finding the balance for the optimum mesh is important 
when using parcel concept. Brief overview of some of 
Eulerian-Lagrangian models are presented in next 
sections. 

4.1 Lagrangian Discrete Phase Model 
(DPM)  

For low and intermediate solids loading, the inter-
particle spacing is high and hence the negligence of 
particle-particle interactions might be justifiable. The 
commercial code; ANSYS Fluent has Lagrangian 
Discrete Phase Model (DPM) with such a treatment for 
the flows with solids volume fraction less than 10%. In 
that model, the volume occupied by solids is not taken 
into account when assembling the continuous phase 
equations and particle pressure and viscous stresses 
due to particles are neglected. The fluid carrier 
influences the particulate phase via drag and turbulence 
and if the interaction with continuous phase is enabled, 
additionally the particles in turn influence the carrier 
fluid via reduction in mean momentum and turbulence. 
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So, this method has either one-way or two-way 
coupling between the phases, but not four-way 
coupling where the particle-particle interactions are 
considered (Fluent, 2013). The particle-wall collisions 
are modeled through relatively simple models, often 
based on a simple reflection coefficients of restitution. 

4.2 Dense Discrete Phase Model 
Incorporated with Kinetic Theory of 
Granular Flow (DDPM-KTGF)  

Dense Discrete Phase Model incorporated with Kinetic 
Theory of Granular Flow (DDPM-KTGF) for modeling 
particle-particle and particle-wall interactions are a 
quite recently developed model. This model is 
available in commercial code ANSYS Fluent and open 
source code OpenFOAM®. This is a hybrid model 
composed with Eulerian-Eulerian and Eulerian-
Lagrangian approaches. In low solids volume fractions, 
the particles are treated in a Lagrangian manner, while 
in high solids volume fractions, the particles are treated 
using Eulerian treatment. The solids stress acting on 
particles resulting from inter-particle interactions is 
computed from the stress tensor given by the KTGF 
which is similar to Eulerian-Eulerian approach for 
granular flows (Euler-granular model). Compared to 
Lagrangian DPM, this model extends the applicability 
from dilute to dense phase since this accounts for the 
effect of volume fraction of solid phase and particle-
particle interactions. Still the preciseness of treating 
particle-particle interactions with KTGF is doubtful. 
Despite, having benefits of Lagrangian methods and is 
applicable to large systems, it demands further tests 
and validations. Some predictions for coal gasification 
and coal oxy-fuel combustion in circulating fluidized 
beds (Adamczyk et al., 2014a; Klimanek et al., 2015), 
circulating fluidized bed boiler (Adamczyk et al., 
2014b), impinging particle jet in a channel (Chen and 
Wang, 2014), solid sorbent carbon capture reactor 
(Ryan et al., 2013) and ceramic dispersion in liquid 
pool (Zhang and Nastac, 2014)  are made using 
DDPM-KTGF model. (Ryan et al., 2013) have 
experienced less stability of DDPM-KTGF solution 
compared to Euler-granular model and MP-PIC 
method for a given reactor design and (Chen and 
Wang, 2014) highlights the requirement of further 
improvements for DDPM-KTGF model. 

4.3 CFD-Discrete Element Method (CFD-
DEM)  

Soft sphere model based on Cundall and Strack, also 
called “Discrete Element Method (DEM)” or “Distinct 
Element Method” can be used to explicitly track the 
particle-particle and particle-wall interaction terms in 
typical Eulerian-Lagrangian approach (Crowe et al., 
2012). This model approach is often referred to as 
“CFD-DEM” in most of the literature. In-house 
developed CFD-DEM codes or DEM codes coupled to 

available CFD platforms through user defined 
functions are quite common practices. Standalone 
DEM simulation codes (codes for pure particulate 
flows without carrier fluid) include open source codes, 
such as LAMMPS and YADE, and commercial codes, 
such as EDEM® and ITASCA. Efforts to couple such 
standalone DEM codes to existing computational fluid 
dynamic solvers have recently been undertaken. For 
example, the EDEM code provides users the ability to 
couple its DEM modules with other CFD codes such as 
ANSYS Fluent. Recently, OpenFOAM® has been 
coupled to YADE and LAMMPS (Garg et al., 2012). 
In DEM, the whole process of collision or contact is 
solved by numerical integration of the equations of 
motion. A collision is treated as a continuous process 
that occurs over a finite time wherein the contact force 
is calculated as a continuous function of the distance 
between colliding particles. These are based on 
physically realistic interaction laws; as example spring, 
spring dashpot and Coulomb’s law of friction. 
Empirical values for the spring stiffness coefficient, 
damping constant and friction coefficient are required. 
Compared to Lagrangian DPM, this model gives more 
accurate predictions for dense and near-packing limit, 
however at the cost of slower computations. As many 
other Eulerian-Lagrangian models, CFD-DEM 
incorporates with parcel concept in some codes, since 
recently. The parcel concept reduces an inherent 
limitation of using DEM in large-scale and dense 
particle systems. Explicitly tracking collisions of all 
real particles demands very high computational cost 
compared to tracking parcels which consist of group of 
real particles. Billions of real particles in large 
commercial systems can be analyzed using millions of 
parcels (Snider, 2007). As example, in-built DEM 
capability including parcel concept is now available in 
CFD solver, ANSYS Fluent. It is called Dense Discrete 
Phase Model incorporated with Discrete Element 
Method (DDPM-DEM) and this is quite a new feature 
in ANSYS Fluent. Published data for the application of 
DDPM-DEM are rare and some information can be 
found for modeling of micron-particle transport, 
interactions and deposition in triple lung-airways (Feng 
and Kleinstreuer, 2014) and coal-direct chemical-
looping combustion (Zhang et al., 2014). Another 
CFD-DEM code; MFiX-DEM is limited to small 
problem sizes due to high computational cost incurred 
in the particle neighbor search algorithm in where real 
particles are considered (Garg et al., 2012). The CFD-
DEM has been extensively proven to be effective in 
many gas-solids applications (Chen and Wang, 2014). 
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4.4 Computational Particle Fluid Dynamics 
(CPFD) Numerical Scheme  
Incorporated with the Multiphase-
Particle-in-Cell (MP-PIC) Method  

The Computational Particle Fluid Dynamics (CPFD) 
numerical scheme incorporated with the MultiPhase-
Particle-In-Cell (MP-PIC) method to describe the solid 
phase is quite new Eulerian-Lagrangian approach for 
calculating gas-solids flows. This is a version after 
several significant improvements of Particle-In-Cell 
(PIC) method used for single-phase flows since 1960s 
(Snider, 2001). As Snider, Clark and O'rourke 
mentioned, the MP-PIC method is, in turn, an 
extension of the stochastic particle method of the 
KIVA code (Snider et al., 2011). In the CPFD method, 
the real particles are grouped into parcels as in many 
other Eulerian-Lagrangian methods (Zhang et al., 
2012). The dynamics of the particle phase is predicted 
in the MP-PIC method by solving a transport equation 
which is called Liouville equation for the particle 
distribution function. The particle distribution function 
contains particle properties as example, particle spatial 
location, particle velocity, particle mass, time, etc. 
(Karimipour and Pugsley, 2012). Unlike DEM models 
which calculate particle-to-particle force by a spring–
damper model and direct particle contact, the CPFD 
methodology models particles' collision force on each 
particle as a spatial gradient. A particle normal stress 
model is developed from this concept to describe the 
particle collisions (Wang et al., 2014b). In the 
computation, the stress gradient on the grid is first 
calculated and then interpolated to discrete particles 
(Abbasi et al., 2013). The model has been undergone 
through many improvements such as including 
Bhatnager, Gross and Krook (BKG) collision model 
for gas/liquid/solids flows (O’Rourke et al., 2009), 
including collision damping fluctuations due to 
inelastic collisions (O’Rourke and Snider, 2010), 
including return-to-isotropy term in collision source 
term (O'Rourke and Snider, 2012), including the 
effects of the contact force variations caused by 
inhibition of relative motions due to different particle 
sizes and densities (O'Rourke and Snider, 2014), etc. 
Arena-Flow®, Barracuda® and OpenFOAM® are 
some examples for the software/codes which have 
CPFD implementation. Compared to Lagrangian DPM, 
this model can accurately model gas-solids flows of 
dense and close-pack limits.  Solution cost is reduced 
since the collisions are not directly solved as in DEM 
and also due to implementation of the parcel concept. 
Furthermore, MP-PIC method does not need to take the 
particle collisions implicitly, therefore a much larger 
time step can be adopted (Yin et al., 2014). As 
mentioned (Lu et al., 2014), this method can be used to 
model systems with physical particle counts over 
1×1015 particles. In addition, the CPFD method has 
shown the ability to model full particle size distribution 

for any number of solid species and to model particle
volume fraction from dilute (<0.1%) upto dense
(>60%).  Some of the applications of MP-PIC method
are bubbling and circulating fluidized beds (Chen et al.,
2013; Jiang et al., 2014; Karimipour and Pugsley,
2012; Lan et al., 2013; Liang et al., 2014; Parker et al.,
2013; Wang et al., 2014b; Weber et al., 2013; Yin et
al., 2014; Zhang et al., 2012), fluidized bed gasifiers
(Abbasi et al., 2011; Loha et al., 2014; Singh et al.,
2013; Snider et al., 2011; Thapa et al., 2014), fluidized
beds for carbon capture (Breault and Huckaby, 2013;
Clark et al., 2013; Parker, 2014; Ryan et al., 2013),
gas/liquid/solid fluidized beds (O’Rourke et al., 2009;
Vivacqua et al., 2013; Zhao et al., 2009), Rayleigh-
Taylor mixing layers (Snider, 2001), sedimentation
(Andrews and O'Rourke, 1996; Snider, 2001), downer
reactors (Abbasi et al., 2012, 2013), dryer (Bigda,
2014) , 3-D particle jet (Snider, 2001), hopper flow (Lu
et al., 2014; Snider, 2007), particle flow in U-tube
(Snider, 2007).

In addition to these models, Sommerfeld has
developed a stochastic collision model to model the
inter-particle collisions (Laín and Sommerfeld, 2012).
Furthermore, a brief comparison of results obtained
using above mentioned models can be found in
elsewhere (Chen and Wang, 2014).

5 Conclusions
A general overview of some of the available gas-solids
flow modeling approaches is made in the current
review paper. Eulerian-Eulerian and Eulerian-
Lagrangian are the approaches in use. Further,
Lagrangian Discrete Phase Model (DPM), Dense
Discrete Phase Model incorporated with Kinetic
Theory of Granular Flow (DDPM-KTGF), CFD-
Discrete Element Method (CFD-DEM) and
Computational Particle Fluid Dynamics (CPFD)
numerical scheme incorporated with the MultiPhase-
Particle-In-Cell (MP-PIC) method are the models
discussed under Eulerian-Lagrangian approach.

The conventional Eulerian-Eulerian model for
granular flows and CFD-DEM models have widely
been used for many applications and validated quite
well. Despite this, both models still have major
limitations with respect to accuracy and computational
cost, hence applying to large scale systems and to
model flows with different particle properties are not
very straightforward. Therefore, these models are being
under improvements and some new models have been
introduced to model gas-solids flows, as example
DDPM-KTGF, DDPM-DEM and MP-PIC. In addition
to getting advantage of Lagrangian treatment of the
particles, these models are said to be efficient
compared to the conventional models. This might be
due to the use of parcel concept and/or due to use of
empirical approaches for modeling particle-particle
interactions, alternative algorithms and grid.  Few
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publications related to use of MP-PIC method are 
available mainly in fluidized bed applications, however 
published information for the applications of other 
models are not very abundant. Therefore, the 
applicability and validity of these quite recent models 
for the accurate predictions of gas-solids multiphase 
flow modeling should be investigated. Moreover, all 
the models need further improvements in order to 
apply for wide range of applications and scales. 
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