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Abstract
The rate of inflow to a horizontal well could vary along

the completion length due frictional pressure losses or

heterogeneity in the reservoir. These variations reduce

oil sweep efficiency and the ultimate recovery. Owing

to this, it is necessary to manage fluid flow through the

reservoir in order to maximize oil recovery along

horizontal wells. One increasingly popular approach is

to use inflow control devices (ICD) that delay water and

gas breakthrough into the well. Inflow control devices

balance the inflow coming from the reservoir towards

the wellbore by introducing an extra pressure drop. This

paper presents the mathematical models used for the

implementation of ICD in ECLIPSE. A case using

heterogeneous reservoir similar to Troll offshore

Norway was illustrated. The simulation result shows

that ICD could delay water breakthrough for 262days

and water cut after 3000days reduced by 11%. Gas

breakgthrough was also reduced by approximately 51%

with ICD.
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1 Introduction

The challenges introduced by reservoir heterogeneity

with horizontal wells tend to increase with increasing

well length (Birchenko et al, 2011).  Completions with

long intervals often have significantly uneven specific

inflow distribution along their length. These inflow

variations cause premature water or gas breakthrough

and should be minimized (Hallundbæk and Hazel,

2016). Advanced well completions have been

demonstrated as solution to these challenges. Inflow

Control Devices (ICDs) is an established type of

advanced completions that provide passive inflow

control (Henriksen et al, 2006). ICDs are widely used

and can be considered to be a mature well completion

technology. One of the challenges is the variation in

rock properties. Figure 1 illustrates a typical orifice ICD.

Fluid specific inflow rate tends to increase with

increasing well length (Krinis et al, 2009). The

 

performance of ICDs can be analyzed in detail with the 

help of various reservoir simulation tools such as 

ECLIPSE (Birchenko et al, 2011). ECLIPSE includes 

basic functionality for ICD modeling (Birchenko et al, 

2011) and also offers a practical means to capture the 

effect of annular flow. ICDs are static and usually 

installed at the beginning of the production life. An 

alternative technology is the use of autonomous inflow 

control device with the ability of closing off the flow 

interval in an event of water or gas breakthrough 

(Birchenko et al, 2011). 

This paper presents ECLIPSE model for the 

application of ICD in heterogeneous reservoirs. From 

the mathematical models, the parameters that 

substantially reduce the inflow variation can be 

determined. A case study was simulated to illustrate the 

impact of a specific ICD completion on Inflow 

performance at Troll offshore Norway. 

2 ECLIPSE Computational Model 

In ECLIPSE, ICD is used to control the inflow profile 

along a horizontal well or branch by imposing an 

additional pressure drop between the sand face and the 

tubing. The device is placed around a section of the 

tubing and diverts the fluid inflowing from the adjacent 

part of the formation through a sand screen and then into 

a spiral before it enters the tubing (Mathiesen et al, 

2011). 

2.1 Pressure drop 

The pressure drop across the device is calculated from 

calibration data, adjusted to allow for the varying 

density and viscosity of the reservoir fluid flowing  

 

 

Figure 1.  Oriface ICD (Birchenko et al, 2011). 
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through the device. The pressure drop equation is shown 

in (1) below (Schlumberger, 2013). 

∂P  (
ρcal

ρmix
∙

μmix

μcal
)

⁄

∙
ρmix

ρcal
∙∙q2)                 (1)  

Here ρmix is the density of the fluid mixture in the 

segment at local conditions and ρcal is the density of the 

fluid used to calibrate the ICD. µmix is the viscosity of 

the fluid mixture in the segment at local conditions and 

µmix is the viscosity of the fluid used to calibrate the 

ICD. K is the base strength of the ICD defined in (2). 


𝑎𝑆𝐼𝐶𝐷

ρ𝑐𝑎𝑙
  (2) 

where aSICD is defined as the strength of the ICD, q is 

the volume flow rate of fluid mixture through the ICD 

at local conditions, which is equal to the volume flow 

rate through the ICD segment multiplied by a scaling 

factor that depends on the length of the device. 

The density of the fluid mixture at local segment 

conditions is given in (3). 

 ρmix  αoρo  αwρw + αgρg   (3) 

where αo,w,g is the volume fraction of the free oil, 

water, gas phases at local conditions and ρo,w,g is the 

density of the oil, water, gas phases at local conditions 

(Schlumberger, 2013). 

The viscosity of the fluid mixture at local segment 

conditions is given in (4) 

 

µ
mix

=(αo+αw)∙µ
emul

 + αg∙µ
g
                   (4) 

where µemul is the viscosity of the oil-water emulsion 

at local conditions and µg is the gas viscosity at local 

conditions. The calculation of µemul is described in 

"Emulsion viscosity" section (Schlumberger, 2013). 

To include a series of these devices in a multi-

segment well, the devices should be represented by 

segments branching off the tubing as shown in Figure 2. 

The grid block connections are located in the ICD 

segments instead of the segments representing the well 

tubing. The ICD segments should be given a very small 

length (of the order, say, of the wellbore radius). This 

length is not used in the pressure loss calculations, but it 

influences the location of the connections of the grid 

block in the reservoir. The ICD segments were given the 

same depth as their ‘parent’ tubing segments, so that 

there will be no hydrostatic head across them (Johnson 

and Oddie, 2004). The pressure loss across an ICD 

segment is reported as the friction pressure loss; the 

acceleration pressure loss is set to zero. 

 

2.2 Emulsion Viscosity 

The emulsion viscosity is a function of the local phase 

volume fractions in the segment and has differing 

functional forms at low water in liquid fractions (when 

oil is the continuous phase) and high water in liquid 

fractions (when water is the continuous phase) 

(Schlumberger, 2013). A critical water in liquid fraction 

as shown in figure 3 is used to select between (5) and 

(6). 
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where µ_wio  is the water-in-oil emulsion viscosity 

(when oil is the continuous phase), µ_oiw  is the oil-in-

water emulsion viscosity (when water is the continuous 

phase) and µ_o  is the oil viscosity at local conditions. 

µ_w is the water viscosity at local conditions, α_wl  is 

the local water in liquid fraction and α_ol  is the local 

oil in liquid fraction. 

The water-in-oil viscosity is subject to an upper limit 

expressed as a maximum ratio of water-in-oil viscosity 

to oil viscosity. This usually results in a ‘plateau’ region 

within which the water-in-oil viscosity is at its 

maximum permitted value as shown schematically in 

Figure 3, with the maximum viscosity ratio set at 5.0 

(Schlumberger, 2013).  

This upper limit also applies to the oil-in-water 

viscosity, but is less commonly encountered. At the 

critical water in liquid fraction there is a jump in 

emulsion viscosity as the continuous phase changes. 

Such a discontinuity would cause stability problems in 

the simulator and a transition region is defined about the 

critical water in liquid fraction to avoid this. In this 

region the emulsion viscosity is linearly interpolated 

between the water-in-oil and oil-in-water viscosities at 

the edges of the region; the viscosity is thus a continuous 

function of the water in liquid fraction. This transition 

region is presented schematically in Figure 3, with the 

linear interpolation shown in red between points B and 

C (Schlumberger, 2013). 

 

Figure 2.  Segments ICDs along the well (Schlumberger, 

2013). 
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Figure 3.  Phase Ttransition region about the critical 

water in liquid fraction (Schlumberger, 2013). 

between the water-in-oil and oil-in-water viscosities at 

the edges of the region; the viscosity is thus a continuous 

function of the water in liquid fraction. This transition 

region is presented schematically in Figure 3, with the 

linear interpolation shown in red between points B and 

C (Schlumberger, 2013). 

3 Case Study 

A study was considered with reservoir conditions 

similar to the Troll field, Norway to illustrate the effect 

of ICD on oil recovery, reservoir sweep, delay in water 

breakthrough and decrease in water cut. Troll is a large 

subsea offshore Norway. The challenge is to drill and 

complete well in a way that gas and water do not have 

easy access to the production well (Henriksen et al., 

2006). The main oil reservoir at Troll is the Late Jurassic 

Sognefjord Formation. This formation consists of 

Sandstone and siltstone with thickness of about 160m.  

The porosity vary between 30 -35% and permeability 

between 1 – 20D. The reservoir driving mechanism is 

mainly gas expansion and water drive. Horizontal wells 

are located close to the oil-water contact in order to 

reduce gas breakthrough (Henriksen et al., 2006). 

Simulation was carried out for 3000 days. Water 

drive was achieved by connecting analytical aquifer 

(Fetkovich aquifer) at the bottom of the reservoir. 

Frictional pressure drop and variation in permeability 

will lead to non-uniform inflow profile along the 

production well (Aakre et al., 2013). ICDs are set at two 

segments along the production open hole section to 

distribute downhole pressure to optimize fluid inflow 

along the entire production interval. Water saturation 

profile shown in Figure 4 indicates that more water is 

produced at the 225m and 375m positions of the 

production well due to high permeability at these 

positions. To reduce water breakthrough, ICDs were 

placed at these positions. Each ICD joint is about 12m 

in length and about 3mm nozzle diameter. A base case 

without water ICD was considered for reference. 

3.1 Geometry 

Rectangular reservoir geometry was considered with the 

dimension 500m x 450m x 70m. The multi-segment 

horizontal production (PROD) well is of length 450m. 

The reservoir is heterogeneous with varying 

permeability from 1 to 20 Darcy. The areas of high 

permeability represents defeat in the reservoir as shown 

in figures 5 and 6. 

3.2 Reservoir Conditions 

The reservoir is heterogeneous and consists of water-

wetted rock. Although the reservoir fluid consists of live 

black oil, gas production was not considered for 

simplicity. The composition of oil components is 

assumed to be constant relative to pressure and time. It 

is also assumed that the reservoir fluid is Newtonian and 

that Darcy’s law applies. The reservoir conditions used 

for the simulation are summarized in Table 2. 

3.3 Assumptions 

The following assumptions were made regarding the 

inflow: 

1. Darcy’s law applies to the flow through the 

reservoir. 

2. The flow into the well is at steady or pseudo-

steady state. 

3. The flow into the well is at steady or pseudo-

steady state. 

4. The distance between the well and the reservoir 

boundary is longer than the length of the well 

length. 

The following assumptions were made about the ICDs: 

1. There is no flow in the annulus parallel to the 

base pipe. This means that fluid flows from 

reservoir directly through ICD screens into the 

base pipe (Ouyang, 2009). 

2. ICDs installed are of the same strength. This is 

the most common type of ICD application due 

to the relative simplicity of its design and 

installation operation (Henriksen et al, 2006). 

This is done in order to reduce the operational 

risks (Birchenko et al, 2010; Muradov et al, 

2010).  

 

Figure 4.  ICD positions  along the well. 
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3.4 Initial Conditions 

Initially, the reservoir is assumed to be in hydrostatic 

equilibrium consisting of only oil. The initial pressure is 

greater than the bubble point and water has much higher 

mobililty than oil. Table 1 shows the initial conditions 

considered during the simulation. 

4 Result and Discussion 

In this simulation, the effect of ICD completion on oil, 

water and gas production was investigated. Also the 

reservoir pressure trend recovery was discussed. A base 

case without ICD completion was considered as 

reference. 

Table 1. Initial Conditions. 

Initial condition Value Unit 

Reservoir pressure 320 Bar 

Bottomhole pressure 310 Bar 

Bubble point pressure 182 Bar 

Oil saturation 1 - 

Water saturation 0 - 

Gas saturation 0 - 

 

 

Figure 5.  Reservoir geometry showing the distribution of 

X and Y permeability. 

 

Figure 6.  Reservoir geometry showing the distribution of 

Z- permeability. 

4.1 Reservoir Pressure 

Figure 7 shows the simulated reservoir pressure trend. 

The ratio of the total pressure drop without ICD 

completion to the total pressure drop with ICD is about 

52.  The high pressure drop for the case without ICD 

may be due to more reservoir depletion as a result of 

high water production. ICD tends to maintain the 

reservoir pressure by retaining water in the reservoir 

pore spaces. 

4.2 Water Production 

The water cut trend is shown in Figure 8. It is 

observed that water breakthrough is delayed for 262 

days (about 66%) with the installation of ICD. Also the 

water cut is 

Table 2. Reservoir Conditions. 

Parameter Value Unit 

Components Oil, water, gas - 

Wettability  Water-wetted - 

Porosity 0.30 - 

X Permeability 0.1 - 20 Darcy 

Y Permeability 0.1 - 20 Darcy 

Z Permeability 0.1-1 Darcy 

Rock compressibility  5.0E-5@ 10Bar /Bar 

Oil gravity  35 °Api 

Residual oil sat 0.3 - 

Oil viscosity  10 @ 320Bar cP 

Water Density 1000 kg/m3 

Water viscosity 0.5 cP 

Connate water sat 0.2 - 

Gas density 1 kg/m3 

Well length 450 m 

Target well flow rate 2000 Sm3/day 

ICD Length  12 m 

ICD Strength  0.00021 
bar/(Rm3/

day)2 

ICD nozzle diameter 3 mm 

Simulation time 3000 days 

No of Grids 630 (10x9x7) - 

 

Figure 7.  Reservoir Pressure Trend. 
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reduced with about 11% after 3000 days with the ICD 

completion. This would be attributed to the restriction 

imposed on water flow due to the additional pressure 

drop with the ICD. 

4.3 Oil Production 

Figure 9 shows the oil production rate with and without 

ICD respectively. Although the water breakthrough is 

delayed with ICD, the oil production rate is lower 

compared with the case without ICD. After water 

breakthrough, the production rate drops more rapidly for 

the case without ICD. This may be attributed to rapid 

water production as there is no restriction towards water 

production. Shock wave was propagated at about 690th 

day due to sudden opening of valve to match up the 

production target for the case without ICD. This shock 

wave can lead to very high pressure buildup which could 

make the system to fail.  With the ICD, this phenomenon 

is annulled through its equalization effect on flow 

variation making the system stable throughout the 

production life. 

Although well productivity is reduced by 

approximately 42%, there is an improved degree of 

inflow equalization through ICD completion. The 

accumulated oil production is shown in Figure 10. From 

the slope, production would be sustained more and the 

accumulated oil production expected to be higher over a 

long time with ICD completion. 

 

Figure 8.  Reservoir Pressure Trend. 

 

Figure 9.  Trend of water cut. 

4.4 Gas Production

Figure 11 shows the gas production rate with ICD and

without ICD completions respectively. It can be seen

that gas production rate is less with ICD completion

throughout the production life. This may be attributed to

rapid water production in the case without ICD as there

is no restriction towards water production. Shock wave

was propagated at about 690th day due to sudden

opening of valve to match up production target for the

case without ICD. This shock wave can lead to system

failure as result of high pressure.  This shock effect is

not observed with ICD completion due to the restriction

imposed by additional pressure drop and the

equalization effect on flow variation. With ICD

completion, the system is stable throughout the

production life. There is about 51% decrease in gas

production as depicted in Figure 12 with ICD

completion. This increase in gas production for the case

without ICD may reduce well performance and recovery

significantly as oppose to ICD completion.

5 Conclusions

This paper presents the mathematical models used for

the implementation of ICD in ECLIPSE reservoir

simulator. A case study using similar reservoir

conditions as Troll offshore Norway was simulated to

illustrate the effect of ICD in a heterogeneous reservoir.

Analysis of oil, water and gas production was made

within a simulation period of 3000 days.

 

Figure 10.  Trend of Oil Production Rate. 

 

Figure 11.  Trend of Oil Production Rate. 
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Figure 12.  Trend of Accumulated Oil Production. 

 

Figure 13.  Trend of Gas Production Rate. 

 

Figure 14.  Trend of the accumulated gas production. 

Result shows that with ICD completion, water 

breakthrough was delayed with 262 day and water cut 

after 3000 days was reduced by 11%. Despite the delay 

in water breakthrough, the oil production rate was 

reduced due to flow restriction by additional pressure 

drop with ICD completion. A trade-off between well 

productivity and inflow equalization is important. 

Although well productivity is reduced by approximately 

42%, there is an improved degree of inflow equalization 

through ICD completion. Gas production was decreased 

by approximately 51% with ICD completion. With this 

reduction in gas production, well performance and 

ultimate recovery would improve. Result also indicates 

that the case with ICD completion sustains the reservoir 

pressure as water is forced to occupy the pore spaces of 

the reservoir.  

It would be inferred that although ICD delays water 

and gas breakthrough, it could not stop the 

breakthrough. It would be appropriate to apply 

autonomous inflow control device instead, to stop gas 

and water breakthrough. 
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