
API for Accessing OpenModelica Models from Python

B. Lie1 S. Bajracharya2 A. Mengist2 L. Buffoni2 A. Kumar2 M. Sjölund2 A. Asghar2

A. Pop2 P. Fritzson2

1University College of Southeast Norway, Porsgrunn, Norway {Bernt.Lie}@hit.no
2Linköping University, Sweden {peter.fritzson}@liu.se

Abstract
This paper describes a new API for operating on Modelica
models in Python, through OpenModelica. Modelica is an
object oriented, acausal language for describing dynamic
models in the form of Differential Algebraic Equations.
Modelica and various implementations such as OpenMod-
elica have limited support for model analysis, and it is
of interest to integrate Modelica code with scripting lan-
guages such as Python, which facilitate the needed anal-
ysis possibilities. The API is based on a new class Mod-
elicaSystem within package OMPython of OpenModelica,
with methods that operate on instantiated models. Empha-
sis has been put on specification of a systematic structure
for the various methods of the class. A simple case study
involving a water tank is used to illustrate the basic ideas.

Keywords: OpenModelica, Modelica, Python, PythonAPI

1 Introduction
Modelica is a modern, equation based, acausal language
for encoding models of dynamic systems in the form of
differential algebraic equations (DAEs), see e.g. (Fritz-
son, 2014) on Modelica and e.g. (Brenan et al., 1987) on
DAEs. OpenModelica1 (Fritzson et al., 2006) is a ma-
ture, freely available toolset that includes OpenModelica
Connection Editor (flow sheeting, textual editor with de-
bugging facilities, and simulation environment) and the
OMShell (command line execution, script based execu-
tion). OpenModelica Shell supports commands for sim-
ulation of Modelica models, for use of the Modelica ex-
tension Optimica, for carrying out analytic linearization
via the Modelica package Modelica_LinearSystem2, and
for converting Modelica models into Functional Mock-
Up Units (FMUs) as well as for converting FMUs back
to Modelica models. A tool OMPython has been devel-
oped and communicates with OpenModelica via CORBA,
(Ganeson, 2012; Ganeson et al., 2012). Essentially,
OMPython is a Python package which makes it possi-
ble to pass OpenModelica Shell commands as strings to
a Python function, and then receive the results back into
Python. This possibility does, however, require good
knowledge of OpenModelica Shell commands and syn-
tax. A tool, PySimulator,2 has been developed to ease

1www.openmodelica.org
2https://pypi.python.org/pypi/PySimulator

the use of Modelica from Python, (Pfeiffer et al., 2012;
Ganeson et al., 2012). Essentially, PySimulator provides
a GUI based on Python, where Modelica models can be
run and results can presented. It is also possible to an-
alyze the results using various packages in Python, e.g.
FFT analysis. However, PySimulator currently does not
give the user full freedom to integrate Modelica models
with Python and use the full available set of packages in
Python, or freely develop one’s own analysis routines in
Python.

Modelica and OpenModelica Shell in themselves have
relatively little support for advanced analysis of models.
Examples of such desirable analysis capabilities could be
(i) study of model sensitivity, (ii) random number genera-
tion and statistical analysis, (iii) Monte Carlo simulation,
(iv) advanced plotting capabilities, (v) general optimiza-
tion capabilities, (vi) linear analysis and control synthesis,
etc. Scripting languages such as MATLAB and Python
hold most of these desirable analysis capabilities, and it is
of interest to integrate Modelica models with such script
languages. The free JModelica.org tool includes a Python
package for converting Modelica models to FMUs, and
then for importing the FMU as a Python object. This
way, Modelica models can essentially be simulated from
Python — Optimica is also supported. It is possible to do
more advanced analysis with JModelica.org3 via CasADi,
see e.g. (Perera et al., 2015a,b). However, the possibilities
in the work of Perera et al. use an old version of JModel-
ica.org. It would be more ideal if these possibilities were
supported by the tool developer.

It is thus of interest to develop an extension of
OMPython which enables simulation and analysis of
Modelica models with a better integration with the Python
language, and in particular that such an extension is pro-
vided by the OpenModelica developers. A Python API4

for controlling Modelica simulation and analysis from
Python was proposed in February 20155. Based on this
proposal, a first version of a Python API has been im-
plemented (Bajracharya, 2016), and has then been fur-
ther revised. This paper discusses the API, and illustrates
how it can be used for automatic analysis of Modelica
models from Python, exemplified by a simple water tank

3www.JModelica.org
4API = Application Programming Interface
5Python API for Accessing OpenModelica Models, by B. Lie, Febru-

ary 20, 2015, communicated to P. Fritzson at Linköping University.

EUROSIM 2016 & SIMS 2016

707DOI: 10.3384/ecp17142707 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

model. The paper is organized as follows. In Section 2,
an overview of the API is given. In Section 3, use of the
API is illustrated through simple analysis of a nonlinear
reactor model. In Section 4, the API is discussed, some
conclusions are drawn, and future work is discussed. Ap-
pendices hold details of the nonlinear reactor model.

2 Overview of Python API
2.1 Goal
Modeling and the use of Modelica with Python is of inter-
est to a wide range of engineering disciplines. The com-
puter science threshold of using Modelica with Python
should be low. Ideally, the OMPython extension should
work with simple one-click Python installations such as
Anaconda6 and Canopy7. Furthermore, the extension
should support both 32 bit and 64 bit OpenModelica,
work with both 32 bit and 64 bit Python, with Python
2.7 and Python 3.X, and on platforms Windows, OSX and
Linux. These requirements e.g. imply that results should
be returned as standard Python structures. However, it is
reasonable that the OMPython extension depends on the
NumPy package. Because Python has excellent plotting
capabilities e.g. via Matplotlib, the OpenModelica Shell
facility for plotting results should not be implemented —
this is more naturally handled directly in Python.

2.2 Installing the OMPython Extension
Under Windows, the new OMPython extension will be au-
tomatically installed in a file __init__.py in directory
share\omc\scripts\PythonInterface\OMPython
in the OpenModelica directory when OpenModelica
is downloaded and installed. In order to activate the
extension, the user must next run the command python
setup.py install from the command line in
the directory of the setup.py file, which is in the
PythonInterface subdirectory. It follows that in
order to activate the extension, the user must first install
Python on the relevant computer. Under Linux/OSX,
OMPython is part of pip (pypi) and is not shipped with
the OpenModelica installer.

2.3 Status
Currently, the Python API is in a development status and
has been tested with 32 bit Python 2.7 from the Anaconda
installation in tandem with 32 bit OpenModelica v. 1.9.4
under Windows 8.1 and OpenModelica v. 1.9.6 under
Windows 10, and a modified __init__.py file. Open-
Modelica uses CORBA for communication, and CORBA
compatibility needs some refinement. The code is some-
what unstable when run from the Spyder IDE used with
the Anaconda installation, but runs fine from Jupyter note-
books.

6www.continuum.io/downloads
7www.enthought.com/products/canopy

2.4 Description of the API
The API is described in the subsections below.

2.4.1 Python Class and Constructor
The name of the Python class which is used for opera-
tion on Modelica models, is ModelicaSystem. This class
is equipped with an object constructor of the same name as
the class. In addition, the class is equipped with a number
of methods for manipulating the instantiated objects.

In this subsection, we discuss how to import the class,
and how to use the constructor to instantiate an object.

The object is imported from package OMPython, i.e.
with Python commands8:

>>> from OMPython import ModelicaSystem

Other Python packages to be used such as numpy,
matplotlib, pandas, etc. must be imported in a sim-
ilar manner.

The object constructor requires a minimum of 2 input
arguments which are strings, and may need a third string
input argument.

• The first input argument must be a string with the
file name of the Modelica code, with Modelica file
extension .mo. If the Modelica file is not in the cur-
rent directory of Python, then the file path must also
be included.

• The second input argument must be a string with the
name of the Modelica model, including the names-
pace if the model is wrapped within a Modelica pack-
age.

• A third input argument is used if the Modelica model
builds on other Modelica code, e.g. the Modelica
Standard Library.

The result of using the object constructor is a Python ob-
ject.

Example 1 Use of constructor.

Suppose we have a Modelica model with name CSTR
wrapped in a Modelica package Reactors — stored in file
Reactor.mo:

package Reactors
// ...
model CSTR

/// ...
end CSTR;
//

end Reactors;

If this model does not use any external Modelica code
and the file is located in the current Python directory, the
following Python code instantiates a Python object mod:

8The Python prompt >>> is not typed, and does not appear in script
files, in iPython or in Jupyter notebooks.

EUROSIM 2016 & SIMS 2016

708DOI: 10.3384/ecp17142707 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

>>> mod = ModelicaSystem(’Reactors.mo’,
’Reactors.CSTR’)

The user is free to choose any valid Python label name for
the Python object.

All methods of class ModelicaSystem refers to the
instantiated object, in standard Python fashion. Thus,
method simulate() is invoked with the Python com-
mand:

>>> mod.simulate()

In the subsequent overview of methods, the object name
is not included. In practice, of course, it must be included
in order to operate on the object in question.

Methods may have no input arguments, one, or several
input arguments. Methods may or may not return results
— if the methods do not return results, the results are
stored within the object.

2.4.2 Utility Routines, Converting Modelica↔ FMU
Two utility methods convert files between Modelica files
with file extension .mo and Functional Mock-up Unit
(FMU) files with file extension .fmu.

1. convertMo2Fmu() — method for converting the
Modelica model of the object, say ModelName, into
FMU file.

• Required input arguments: none, operates on
the Modelica file associated with the object.
• Optional input arguments:

– className: string with the class name
that should be translated,

– version: string with FMU version,
“1.0” or “2.0”; the default is “1.0”.

– fmuType: string with FMU type, “me”
(model exchange) or “cs” (co-simulation);
the default is “me”.

– fileNamePrefix: string; the default is
\’className\’.

– generatedFileName: string, returns
the full path of the generated FMU.

• Result: file ModelName.fmu in the current
directory

2. convertFmu2Mo(s) — method for converting an
FMU file into a Modelica file.

• Required input arguments: string s, where s is
name of FMU file, including extension .fmu.
• Optional input arguments: a number of op-

tional input arguments, e.g. the possibility
to change working directory for the imported
FMU files.
• Result: Assume the name of the

file is fmuName.fmu. Then file
fmuName_me_FMU.mo is generated in
the current Python directory.

2.4.3 Getting and Setting Information

Quite a few methods are dedicated to getting and set-
ting information about objects. With two exceptions —
getQuantities() and getSolutions() — the
get methods have identical use of input arguments and re-
sults, while all the set methods have identical use of input
arguments, with results stored in the object.

Getting Quantity Information
Method getQuantities() does not accept input

arguments, and returns a list of dictionaries, one dictio-
nary for each quantity. Each dictionary has the following
keys — with values being strings, too.

• Changeable — value ’true’ or ’false’,

• Description — the string used in Modelica to
describe the quantity, e.g. ’Mass in tank,
kg’,

• Name — the name of the quantity, e.g. ’T’,
’der(T)’, ’n[1]’, ’mod1.T’, etc.,

• Value — the value of the quantity, e.g. ’None’,
’5.0’, etc.,

• Variability — ’continuous’,
’parameter’.

When applying the Pandas method DataFrame to
the returned list of dictionaries, the result is a conve-
niently typeset table in Jupyter notebooks. Modelica
constants are not included in the returned quantities.

Standard Get Methods
We consider methods getXXXs(), where XXXs is in

{Continuous, Parameters, Inputs, Outputs,
SimulationOptions, OptimizationOptions,
LinearizationOptions}. Thus, methods
getContinuous(), getParameters(), etc.

Two calling possibilities are accepted.

• getXXXs(), i.e. without input argument, returns a
dictionary with names as keys and values as ... val-
ues.

• getXXXs(S), where S is a sequence of strings of
names, returns a tuple of values for the specified
names.

Getting Solutions
We consider method getSolutions(). Two calling

possibilities are accepted.

• getSolutions(), i.e. without input arguments,
returns a list of strings of names of quantities for
which there is a solution = time series.9

9The reason why a dictionary with every name as key and time series
as values is not returned, is that the amount of data would be exhaustive.

EUROSIM 2016 & SIMS 2016

709DOI: 10.3384/ecp17142707 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

• getSolutions(S), where S is a sequence of
strings of names, returns a tuple of values = 1D
numpy arrays = time series for the specified names.

Setting Methods
The information that can be set is a sub-

set of the information that can be set.
Thus, we consider methods setXXXs(),
where XXXs is in {Parameters, Inputs,
SimulationOptions, OptimizationOptions,
LinearizationOptions}, thus methods
setParameters(), setInputs(), etc. Two
calling possibilities are accepted.

• setXXXs(K), with K being a sequence of keyword
assignments of type quantity name = value.
Here, the quantity name could be a parameter name
(i.e., not a string), an input name, etc.

– For parameters and simulation/optimization/-
linearization options, the value should be a nu-
merical value or a string (e.g. a string of ODE
solver name such as ’dassl’, etc.).

– For inputs, the value could be a numerical value
if the input is constant in the time range of the
simulation,

– For inputs, the value could alterna-
tively be a list of tuples (t j,u j), i.e.,
[(t1,u1) ,(t2,u2) , . . . ,(tN ,uN)] where the
input varies linearly between (t j,u j) and(
t j+1,u j+1

)
, where t j ≤ t j+1, and where at

most two subsequent time indices t j, t j+1 can
have the same value. As an example, [...,
(1,10), (1,20), ...] describes a
perfect jump in input value from value 10 to
value 20 at time instance 1.

– This type of sequence of input arguments
does not work for certain quantity names,
e.g. ’der(T)’, ’n[1]’, ’mod1.T’, be-
cause Python does not allow for label names
der(T), n[1], mod1.T, etc.

• setXXXs(**D), with D being a dictionary with
quantity names as keywords and values as described
with the alternative input argument K.

2.4.4 Operating on Python Object: Simulation, Opti-
mization

The following methods operate on the object, and have
no input arguments. The methods have no return values,
instead the results are stored within the object.

• simulate() — simulates the system with the
given simulation options

• optimize() — optimizes the Optimica problem
with the given optimization options

Figure 1. Driven water tank, with externally available quantities
framed in red: initial mass is emptied through bottom at rate ṁe,
while at the same time water enters the tank at rate ṁi.

To retrieve the results, method getSolutions() is
used as described previously.

2.4.5 Operating on Python Object: Linearization

The following methods are proposed for linearization10:

• linearize() — with no input argument, returns
a tuple of 2D numpy arrays (matrices) A, B, C and D.

• getLinearInputs()— with no input argument,
returns a list of strings of names of inputs used when
forming matrices B and D.

• getLinearOutputs() — with no input argu-
ment, returns a list of strings of names of outputs
used when forming matrices C and D.

• getLinearStates()— with no input argument,
returns a list of strings of names of states used when
forming matrices A, B, C and D.

3 Use of API for Model Analysis
3.1 Case Study: Simple Tank Filled with Liq-

uid
We consider the tank in Figure 1 filled with water.

Water with initial mass m(0) is emptied by gravity
through a hole in the bottom at effluent mass flow rate
ṁe, while at the same time water is filled into the tank at
influent mass flow rate ṁi.

Our modeling objective is to find the liquid level h. This
objective is illustrated by the functional diagram in Figure
2.

The functional diagram depicts the causality of the sys-
tem (“Tank with influent and effluent mass flow”), where
inputs (green arrow) cause a change in the system and is

10This part of the API is not completed at the moment, and may
change.

EUROSIM 2016 & SIMS 2016

710DOI: 10.3384/ecp17142707 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Figure 2. Functional diagram of tank with influent and effluent
flow.

observed at outputs (orange arrow)11. Here, the input vari-
able is the influent mass flow rate ṁi, while the output
variable is the quantity we are interested in, h.

3.2 Model Summary
The model can be summarized in a form suitable for im-
plementation in Modelica as

dm
dt

= ṁi− ṁe (1)

m = ρV (2)
V = Ah (3)

ṁe = K

√
h

hO
. (4)

To complete the model description, we need to specify
model parameters and operating conditions. Model pa-
rameters (constants) are given in Table 1.

The operating conditions are given in Table 2.

3.3 Modelica Encoding of Model
The Modelica code describes the core model of the tank,
ModWaterTank, and consists of a first section where
constants and variables are specified, and a second section
where the model equations are specified.

model ModWaterTank
// Main driven water tank model
// author: Bernt Lie
// University College of
// Southeast Norway
// April 18, 2016
//
// Parameters
constant Real rho = 1 "Density";
parameter Real A = 5 "Tank area";
parameter Real K = 5 "Valve const";
parameter Real h_max = 3 "Scaling";
// Initial state parameters
parameter Real h_0 = 1.5
"Init.level";
parameter Real m_0 = rho*h_0*A
"Init.mass";
// Declaring variables
// -- states
Real m(start = m_0, fixed = true)

11Although Modelica is an acausal modeling language, it is useful to
think in terms of causality during model development.

Table 1. Parameters for driven tank with constant cross sectional
area.

Parameter Value Unit Comment
ρ 1 kg/L Density of liquid
A 5 dm2 Constant cross sectional area
K 5 kg/s Valve constant
hO 3 dm Level scaling

Table 2. Operating condition for driven tank with constant cross
sectional area.

Quantity Value Unit Comment
h(0) 1.5 dm Initial level
m(0) ρh(0)A kg Initial mass
ṁi (t) 2 kg/s Nominal influent mass

flow rate; may be varied

"Mass in tank, kg";
// -- auxiliary variables
Real V "Tank liquid volume, L";
Real md_e "Effluent mass flow";
// -- input variables
input Real md_i "Influent mass
flow";
// -- output variables
output Real h "Tank liquid level,
dm";

// Equations constituting the model
equation

// Differential equation
der(m) = md_i - md_e;
// Algebraic equations
m = rho*V;
V = A*h;
md_e = K*sqrt(h/h_max);

end ModWaterTank;

As seen from the first section of model
ModWaterTank, the model has 4 essential param-
eters (rho-h_max) of which one is a Modelica constant
(rho) while other 3 are design parameters, compare this
to Table 1. Furthermore, the model contains 2 “initial
state” parameters, where 1 of them can be chosen at
liberty, h_0, while the other one, m_0, is computed
automatically from h_0, see Table 2. The purpose of
the “free parameter” h_0 is that it is easier for the user
to specify level than mass. Also, free “initial state”
parameters makes it possible for the user to change the
initial states from outside of model ModWaterTank,
e.g., from Python.

Next, one variable is given with initial value — the state
m — is initialized with the “initial state” parameter m_0.
Then, 2 variables are defined as auxiliary variables (alge-
braic variables), V and md_e.12

12md is notation for m with a dot, ṁ , i.e., a mass flow rate.

EUROSIM 2016 & SIMS 2016

711DOI: 10.3384/ecp17142707 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

One input variable is defined — md_i — this is the
influent mass flow rate ṁi, see Table 2. Inputs are charac-
terized by that their values are not specified in model the
core model — here ModWaterTank. Instead, their val-
ues must be given in an external model/code — we will
specify this input in Python. Finally, 1 output is given —
h.

In the second section of model ModWaterTank, the
Model equations exactly map the mathematical model
given in Section 3.2.

For illustrative purposes, the core model
ModWaterTank is wrapped within a package named
WaterTank and stored in file WaterTank.mo,

package WaterTank
// Package for simulating
// driven water tank
// author: Bernt Lie
// University College of
// Southeast Norway
// April 18, 2016
//
model ModWaterTank

// Main driven water tank model
//
....

end ModWaterTank;
// End package

end WaterTank;

3.4 Use of Python API
First, the following Python statements are executed — we
did this in Jupyter notebook.

from OMPython import ModelicaSystem
import numpy as np
import numpy.random as nr
%matplotlib inline
import matplotlib.pyplot as plt
import pandas as pd
LW = 2

Here, we use NumPy to handle simulation results, etc.
The random number package will be used in a sensitivity/-
Monte Carlo study. The magic function %matplotlib
inline is used to embed Matplotlib plots within the
Jupyter notebook; to save these plots into files, simply
right-click the plots. However, more options for saving
files are available if the magic function is excluded, and
instead command plt.show() is added after the plot
commands have been completed. Pandas are used to illus-
trate presenting data in tables in Jupyter notebook. Finally,
label LW is used to give a conform line width in plots.

3.5 Basic Simulation of Model
We instantiate object tank with the following command:

tank = ModelicaSystem(’WaterTank.mo’,
’WaterTank.ModWaterTank’)

Figure 3. Typesetting of Data Frame of quantity list in Jupyter
notebook.

whereupon Python/Jupyter notebook responds that the
OMC Server is up and running the file. Next, we are inter-
ested in which quantities are available in the model. In the
sequel, Python prompt >>> is used when Jupyter note-
book actually uses In[*] — where * is some number,
while the response in Jupyter notebook is prepended with
Out[*].

>>> q = tank.getQuantities()
>>> type(q)
list
>>> len(q)
11
>>> q[0]
{’Changeable’: ’true’,
’Description’: ’Mass in tank, kg’,
’Name’: ’m’,
’Value’: None,
’Variability’: ’continuous’}
>>> pd.DataFrame(q)

The last command leads Jupyter notebook to typeset a
tabular presentation of the quantities, Figure 3. The results
in Figure 3 should be compared to the Modelica model
in Section 3.3. Observe that Modelica constants are not
included in the quantity list.

Next, we check the simulation options:

>>> tank.getSimulationOptions()
{’solver’: ’dassl’,
’startTime’: 0.0,
’stepSize’: 0.002,
’stopTime’: 1.0,
’tolerance’: 1e-06}

It should be observed that the stepSize is the frequency
at which solutions are stored, and is not the step size
of the solver. The number of data points stored, is
thus (stopTime-startTime)/stepSize with due
rounding. This means that if we increase the stopTime to
a large number, we should also increase the stepSize to
avoid storing a large number of information.

EUROSIM 2016 & SIMS 2016

712DOI: 10.3384/ecp17142707 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Figure 4. Tank level when starting from steady state, and ṁi (t)
varies in a straight line between the points (t j, ṁi (t j)) given by
the list [(0,3),(2,3),(2,4),(6,4),(6,2),(10,2)].

To this end, we want to simulate the system for a long
time, until the level reaches steady state. Possible inputs
are:

>>> tank.getInputs()
{’md_i’: None}

where value None implies that the available input, md_i,
has yet not been set. We could use None as input, which
will be interpreted as zero. But let us instead set ṁi = 3,
simulate for a long time, and change “initial state” param-
eter h(0) to the steady state value of h:

>>> tank.setInputs(md_i=3)
>>> tank.setSimulationOptions\

(stopTime=1e4, stepSize=10)
>>> tank.simulate()
>>> h = tank.getSolutions(’h’)
>>> tank.setParameters(h_0 = h[-1])

Next, we set back to stop time to 10, and specify an
input sequence with a couple of jumps:

>>> tank.setSimulationOptions\
(stopTime=10, stepSize=0.02)

>>> tank.setInputs(md_i = [(0,3),(2,3),
(2,4),(6,4),(6,2),(10,2)])

Finally, we simulate the model with the time varying in-
put, and plot the result:

>>> tank.simulate()
>>> tm, h = tank.getSolutions(’time’,\

’h’)
>>> plt.plot(tm,h,linewidth=LW,
color=’blue’, label=r’h’)
>>> plt.title(’Water tank level’)
>>> plt.xlabel(r’time t [s]’)
>>> plt.ylabel(r’h [dm]’)

The result is displayed in Figure 4.

0 2 4 6 8 10
time t [s]

0.6

0.8

1.0

1.2

1.4

1.6

1.8

h
 [
d
m
]

Tank level sensitivity

h

Figure 5. Uncertainty in tank level with a 5% uncertainty in
valve constant K. The input is like in Figure 4.

3.6 Parameter Sensitivity/Monte Carlo Simu-
lation

It is of interest to study how the model behavior varies
with varying uncertain parameter values, e.g. the effluent
valve constant K. This can be done as follows:

>>> par = tank.getParameters()
>>> K = par[’K’]
>>> KK = K + (nr.randn(10)-0.5)*K/20
>>> tank.simulate()
>>> tm, h = tank.getSolutions(’time’,\

’h’)
>>> plt.plot(tm,h,linewidth = LW,
color = ’red’, label=r’h’)
>>> for k in KK:

tank.setParameters(K=k);
tank.simulate()
tm, h = tank.getSolutions\

(’time’,’h’)
plt.plot(tm,h,linewidth=LW,

color=’red’,linestyle=\
’dotted’,label=’_nolabel_’)
>>> plt.title(’Tank level sensitivity’)
>>> plt.xlabel(r’time t [s]’)
>>> plt.ylabel(r’h [dm]’)
>>> plt.legend()

The result is as shown in Figure 5.

4 Discussion and Conclusions
This paper introduces some ongoing work on extending
OpenModelica with a Python API, so that Modelica mod-
els can be run and analyzed from within Python. The new
Python API is briefly described, and the use of this API
is then illustrated by simulating a very simple model of a
water tank.

Future work will include further testing, e.g., with opti-
mization, extending the API so that it works on more plat-

EUROSIM 2016 & SIMS 2016

713DOI: 10.3384/ecp17142707 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

forms, and extending the API to include analytic model
linearization.

References
S. Bajracharya. Enhanced OpenModelica Python Interface.

Master’s thesis, Linköping University, Department of Com-
puter and Information Science, 2016.

K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numer-
ical Solution of Initial-Value Problems in Differential-
Algebraic Equations. Society for Industrial and Ap-
plied Mathematics, SIAM, Philadelphia, 2nd edition, 1987.
doi:10.1137/1.9781611971224.

P. Fritzson. Principles of Object-Oriented Modeling and Simula-
tion with Modelica 3.3: A Cyber-Physical Approach, second
edition. Wiley-IEEE Press, 2014. ISBN 978-1-118-85912-4.

P. Fritzson, P. Aronsson, A. Pop, H. Lundvall, K. Nyström,
L. Saldamli, D. Broman, and A. Sandholm. Openmodelica
– a free open-source environment for system modeling, sim-
ulation, and teaching. In Proceedings of the 2006 IEEE Con-
ference on Computer Aided Control System Design, Oct 4–6
2006.

A.K. Ganeson. Design and Implementation of a User Friendly
OpenModelica - Python interface. Master’s thesis, Linköping
University, 2012.

A.K. Ganeson, F. Fritzson, O. Rogovchenko, A. Asghar,
M. Sjölund, and A. Pfeiffer. An openmodelica python in-
terface and its use in pysimulator. In Proceedings of the
9th International Modelica Conference, September 3-5 2012.
doi:10.3384/ecp12076537.

M.A.S. Perera, T.A. Hauge, and C.F. Pfeiffer. Parameter and
State Estimation of Large-Scale Complex Systems Using
Python Tools. Modeling, Identification and Control, 36(3):
189–198, 2015a. doi:10.4173/mic.2015.3.6.

M.A.S. Perera, B. Lie, and C.F. Pfeiffer. Structural Observ-
ability Analysis of Large Scale Systems Using Modelica and
Python. Modeling, Identification and Control, 36(1):53–65,
2015b. doi:10.4173/mic.2015.1.4.

A. Pfeiffer, M. Hellerer, S. Hartweg, M. Otter, and M. Reiner.
PySimulator – A Simulation and Analysis Environment in
Python with Plugin Infrastructure. In Proceedings of the 9th
International Modelica Conference, pages 523–536, Septem-
ber 3-5 2012. doi:10.3384/ecp12076523. URL http:
//dx.doi.org/10.3384/ecp12076523.

EUROSIM 2016 & SIMS 2016

714DOI: 10.3384/ecp17142707 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

http://dx.doi.org/10.1137/1.9781611971224
http://dx.doi.org/10.3384/ecp12076537
http://dx.doi.org/10.4173/mic.2015.3.6
http://dx.doi.org/10.4173/mic.2015.1.4
http://dx.doi.org/10.3384/ecp12076523
http://dx.doi.org/10.3384/ecp12076523
http://dx.doi.org/10.3384/ecp12076523

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	Introduction
	Calculation formulas
	Calculation of Intra-Ocular Lens for Non-Normal Eyes

	Back ground of studies
	Artificial Neural Network
	Real data
	Collected Data
	Specification of Patients Data Selected for Collection
	Specification of Preprocessing Parameters

	Results
	Objective
	ANN training
	ANN settings
	Results

	Conclusion
	Future work
	Introduction
	Homeostasis, Disturbance Rejection and Set Point Tracking
	Controller Motifs

	Results
	Dynamic Properties of Controller Motifs
	Tuning of Individual Controllers

	Conclusions
	Introduction
	Modelling the pharmacokinetics of propofol
	The 3-compartmental model
	Effect-site concentration model
	Model parameters

	Model verification
	Simulation results
	Propofol inflow
	Plasmatic concentration
	Effect-site concentration
	Evaluation of the predictive quality of the model

	Conclusion
	Introduction
	Modular Model Predictive Control Concept
	Building Setup
	Modular Predictive Control Concept

	Energy Supply Level - ESS - Models
	Linear Models
	Hybrid Models

	Model Predictive Controllers
	Objective Function
	LMPC
	MI-MPC

	Simulation Results
	Simulation Setup
	Demonstration of MPCC Performance
	Comparison between MPCC and RBC

	Conclusion
	Introduction
	Data Properties
	Macro Money Systems in QEs
	Behavior in QE1=(2008m11,2010m06)
	Behavior in QE2+=(2010m11,2012m08)
	Behavior in QE3=(2012m09,2014m10)

	Transmission Path of Housing Price from Reserve to Economic Activity
	Decomposition of M2 into Transaction and Precautionary Money Demands in (1975m10, 2016m03)
	Estimation of Precautionary Money Demand
	The Role of Business Condition u(t)=napm-50 in Transmission Mechanism of QEMP during QE1, QE2+ and QE3

	Conclusion
	Introduction
	Mathematical Model
	Model Parameters and Geometry
	Results and Discussions
	Conclusions
	Introduction
	Field Excitation Control
	Capability Curve
	Classical Control

	Concept and Formulation of MPC
	MPC as Excitation Control
	Modeling and Control Workflow

	Tuning the MPC Controller
	Time Response
	Open Circuit Conditions

	First-swing Angle Stability Enhancement
	Long-term Voltage Stability Enhancement
	Steady-state Voltage Stability
	Power System Simulator
	LTVS Simulations

	Discussion
	Conclusion
	Introduction
	Grid impedance model
	Impedance-based instability studies
	Practical implementation
	Conclusion
	Aknowledgements
	Introduction
	Literature Review
	Circulating Fluidized Bed Boilers
	Characteristics of RDF
	Agglomeration

	Methodology
	Description of Model
	Mass and Energy Balances
	Hydrodynamics

	Results and Discussion
	Validation
	Agglomerate Prediction

	Conclusion
	Introduction
	Theory
	Stability of Grid-Connected System
	Maximum-Length Binary Sequence

	Implementation in dSPACE
	System Setup
	Experiment

	Conclusions
	Introduction
	Governing Equation for Flow Modeling
	KP Numerical Scheme
	Simulation of the River Flow
	Results and Discussion
	Simulation Results
	Simulation Results for Numerical Stability Analysis

	Conclusion
	Introduction
	Air preparation process
	Fuzzy identification
	Takagi-Sugeno fuzzy model
	Fuzzy clustering

	Data collection
	Structure selection
	Input and output variables
	Representation of the systems' dynamics
	Fuzzy models granularity

	Fuzzy clustering and model validation
	Comments on resulting model performance

	Control experiments
	PID control
	Supervisory logic

	Conclusions
	Introduction
	First step - DES model
	Second Step - Portfolio optimization

	Stochastic DES model through markovian properties
	Product-Form Networks - Convolution algorithm
	Marginal probability
	Mean response time

	Load-haulage cycle
	DES model: Load-haulage system
	Project portfolio formulation
	Conclusion
	Introduction
	Overview of the Method
	Computing the Encounter Probabilities
	Example

	State Transition Matrix
	Projectile with a Single Sensor Fuzed Submunition
	Example
	Projectile with Two Sensor Fuzed Submunitions

	Failure Probability of the System
	Conclusion
	Hydro-pneumatic Accumulator
	Recent Research
	Purpose of This Study

	Logical Structure of Simulation Model
	Physics of Piston Type Hydro-Pneumatic Accumulator
	Nitrogen gas
	Mechanical Structure
	Hydraulic Fluid

	Conceptual Model

	Mathematical Model
	Equations for Nitrogen Gas
	Equations for Piston
	Equations for Friction
	Equations for Hydraulic Fluid
	Equations for Orifice

	Modelling in MATLAB/Simulink
	Calibration and Validation of the Simulation Model
	Testing Setup
	Laboratory Tests
	Validation

	Conclusion
	Introduction
	Contributions
	Setup for the analysis
	Experimental data
	Compressor Map
	Compressor Isentropic Efficiency
	Corrected Mass Flow
	Data Treatment

	 Pressure Losses in Gas Stand
	Pressure Loss in Straight Pipe
	Friction Factor - Laminar Flow
	Friction Factor - Turbulent Flow
	Pressure Loss In Bend
	Pressure Loss in Inlet Nozzle and Outlet Diffuser
	Adjust Measured Data
	Calculate New Compressor Efficiency

	Effect of pressure losses on measured compressor efficiency
	Compressor and Pipes Dimensions
	Case 1: Straight Pipes
	Case 2: Pipes with Diffuser and Nozzle
	Case 3: Pipes with Diffuser, Nozzle and Bend

	Summary and Discussion
	Future Work
	Conclusion
	Introduction
	Traffic Regulation: Stage selection
	Signal Control Schemes
	Pre-timed network control
	Max-Pressure Practical (MPract)

	Modelling and Simulation Overview
	An event-driven approach
	PointQ design

	Case Study-Data description
	From theory to applications
	System Stability
	Trajectory Delay Measurement
	Queue Delay Measurement
	Varying Traffic Conditions

	 PointQ versus AIMSUN Network Performance
	Evolution of phase (137,154)
	Evolution of phase (254,237)

	Conclusion
	Introduction
	Background
	MVB and Master Transfer
	Multifunction Vehicle Bus
	Mastership Transfer

	Model Checking with temporal logic

	System Modelling
	Bus Administrator Modelling
	basic data structure
	finite state machine of Bus Administrator

	Communication and Timing Modelling
	communication mechanism of BusAdmin
	timing mechanism

	Property Modelling
	Property Classification
	safety property
	liveness property

	Live sequence charts
	Observer Automata modelling

	Experiments
	Conclusion
	Introduction
	Experimental data
	Modeling
	Compressor
	Turbine
	EGR Blowers
	Auxiliary Blower
	Exhaust Back Pressure
	Combustion Species and Thermodynamic Parameters

	Parameterization Procedure
	Complete stationary parameterization
	Dynamic estimation

	Model Validation
	Conclusions
	Nomenclature
	Introduction
	Fundamentals
	Safe Active Learning
	The high pressure fuel supply system

	Design and Implementation
	Training of the hyperparameters
	The discriminative model
	The risk function
	The path to the next sample
	The algorithm

	Evaluation
	Evaluation in simulation
	Evaluation at a test vehicle

	Conclusion
	Introduction
	Modelling
	Centre of Gravity
	Aerodynamic Forces
	Definition of Angles
	Lever Arms
	Catenary
	Equations of Motion
	Velocities
	Self Stabilisation
	Complete Model

	Model Parameters
	Simulation Results
	Gliding Flight
	Towing Process

	Conclusions
	Introduction
	Context
	Compton scattering tomography (CST)

	Modelling of the new CST modality
	Proposed setup by back-scattering
	Direct problem : Image formation
	The half-space Radon transform (HRT)
	Image formation

	Inverse problem : Object Reconstruction
	Inversion of the HRT
	Filtered back-projection

	Simulation of the new CST modality
	Energy resolution of the detector
	Spatial discretization
	Window functions

	Conclusion and perspectives
	Introduction
	Powertrain model
	Problem formulation
	Tip-in problem constraints
	Boundary conditions for the tip-in problem
	Path constraints during tip-in

	Optimal control problem formulation
	Numerical solution of optimal control problems

	Optimal control results
	Extreme transients
	Compromise between time, Jerk and energy
	Jerk-Energy trade-off
	Efficient state and control transients

	Conclusions
	An Improved Kriging Model Based on Differential Evolution
	1 Introduction
	2 Theory of kriging model
	3 Kriging model based on DE algorithm
	3.1 Theory of DE algorithm
	3.2 Kriging interpolation based on DE algorithm
	3.3 Process of kriging Model based on DE algorithm

	4 An engineering example
	4.1 Setting DE algorithm parameters
	4.2 Data preprocessing
	4.3 Model computation and optimization

	5 Conclusion
	Introduction
	Model for slug flow
	Simulation for slug flow
	State estimation
	Control strategies
	Model predictive control
	PI control

	Simulation results and discussion
	Control structure I
	Control structure II
	Control structure III

	Computational time for MPC
	Maximum valve opening
	Conclusion
	Introduction
	Description of the loading bridge
	Modelling with Modelica
	Package of mechanical components Mechanics
	Package of causal components Blocks
	Structure and components of the overall model
	Model of the loading bridge
	World
	Cart
	Pendulum
	Drive

	Controller in Matlab Simulink environment
	Experiments
	Open loop experiments
	Closed loop experiments

	Conclusion
	Introduction
	MMT - Mathematics, Modelling and Tools
	Structure of MMT
	Usage of MMT

	Maple T.A. - Maple Testing and Assessment
	Structure MTA
	Usage MTA
	Mathapps
	MTA - Moodle Connector

	Case Study
	Conclusion
	Outlook
	Introduction
	Signal processing
	DFT and derivatives
	lp-norms and MIT-indices
	Nadaraya-Watson nonparametric regression

	Measurements and gearbox properties
	Load haul dumper front axle
	Water power station gearboxes

	Calculations from the LHD measurements
	Calculations from the WPS measurements
	Conclusion
	Introduction
	Preliminaries
	Problem Statement
	Vector Smoothing Splines

	Trajectory Planning
	Trajectory between Two Lines
	Centerline and Intermediate Time Instants
	Smoothing Spline Trajectory

	Numerical Examples
	Path with Piecewise Linear Boundaries
	Path in Obstacle Avoidance Problem

	Concluding Remarks
	Introduction
	Literature Review
	Dynamic multi-workstation model based on electrical components

	Simulation Model with a PI Controller
	Test and Results
	Final Remarks
	Introduction
	Related Work
	Methodology
	DataSet

	Semantic Identification Through Multiple Classifiers
	Global Feature Extraction through Wavelet Decomposition
	Deep Learning of Neural Network

	Image Retrieval
	Performance Analysis
	Conclusion
	Motivation
	Related work
	Data set and pre-processing
	Defining the curvature of a steel plate
	Experiment
	Discussion
	Conclusion
	Introduction
	New Evolutionary Computation
	Island model parallel distributed in NN-DEGA
	Self-adaptive using Neural Network
	Reconstruction of differential vector
	Elite strategy

	Numerical Experiments
	Benchmark Functions
	Experiment Results
	Comparison for Robustness

	Conclusion
	Introduction
	Classical RF Prediction
	Fuzzy Clustering Prediction
	Analysis
	Conclusion
	Introduction
	Dynamic Artificial Neural Network
	Back Propagation Through Time (BPTT)
	Real Time Recurrent Learning (RTRL)
	Extended Kalman Filter Learning (EKF)

	Experimental Set-up
	Results
	Simulation Study
	Experimental Study

	Conclusion
	Introduction
	Overview of Toolbox
	DANN Main
	Uploading data set
	Division of data set
	Validation check
	Bias
	Learning algorithm
	Learning parameters
	Past inputs and outputs
	Additional parameters

	Parameter Tuning
	Plot Menu
	Performance plot
	Regression plot
	Prediction plot
	Parameter plot
	Error plot

	Additional information
	Installing the MATLAB DANN toolbox

	Case Studies
	Case I: BPTT learning algorithm for flow measurement
	Case II: EKF learning algorithm for temperature measurement
	Case III: RTRL learning algorithm for mortality prediction

	Conclusion
	Modeling and Simulation of Train Networks Using Max-Plus Algebra
	1. Introduction
	2. Max-plus algebra
	3. Scheduled max-plus linear systems
	4. Timetable stability
	4.1 Delay sensitivity analysis
	4.2 Dynamic Delay Propagation
	4.3 Recovery Matrix

	5. Conclusion
	Introduction
	Construction of DBN metamodels
	Utilization of DBN metamodels
	Example analysis - simulated operation of air base
	Conclusion
	Introduction
	Metastable liquids

	Model for two phase flow and phase transition
	The van der Waals equation of state

	Solver
	Stiff pressure relaxation
	Stiff thermodynamic relaxation

	Experiments
	Simulation set-up
	Results and discussion
	Conclusion
	Introduction
	ParModelica
	Previous Research on PDEs in Modelica
	Partial Differential Equations (PDE)
	Explicit Form

	Numerics
	Discretisation
	Runge-Kutta with Variable Step Length

	General-Purpose Computing on Graphics Processing Units (GPGPU)
	PDEs in Modelica
	Algorithmic Modelica and ParModelica
	Solver Framework
	User Defined State Derivative and Settings
	Types Used by the Solver
	Solvers

	Use Case — Heat in Plane
	Poor Insulation and Constant Temperature
	Constant Temperature Depending on Location

	Performance Measurement
	Pros & Cons of Solver Written in Modelica
	Conclusions
	Blood Flow in the Abdominal Aorta Post 'Chimney' Endovascular Aneurysm Repair
	1 Introduction
	2 Methodology
	2.1 Governing Equations
	2.2 Anatomical Model
	2.3 Numerical Model
	2.4 Numerical Discretization

	3 Results
	3.1 Validation
	3.2 Flow Patterns
	3.3 Flow Regime

	4 Discussion and Conclusions
	Introduction
	Spin-Image Algorithm
	The Proposed Parallel Spin-Images Algorithm
	Results and Analysis
	Platform Specification
	Experimental Data
	Results

	Conclusions and future work
	Introduction
	Overview of Python API
	Goal
	Installing the OMPython Extension
	Status
	Description of the API
	Python Class and Constructor
	Utility Routines, Converting Modelica FMU
	Getting and Setting Information
	Operating on Python Object: Simulation, Optimization
	Operating on Python Object: Linearization

	Use of API for Model Analysis
	Case Study: Simple Tank Filled with Liquid
	Model Summary
	Modelica Encoding of Model
	Use of Python API
	Basic Simulation of Model
	Parameter Sensitivity/Monte Carlo Simulation

	Discussion and Conclusions
	Introduction
	Related Work
	Virtual Testing of Open embedded Systems
	Simulator Coupling for Network Simulation
	Network Fault Injection Testing
	Case Study
	Conclusions and future work
	Validation Method for Hardware-in-the-Loop Simulation Models
	1 Introduction
	2 Validation Methods
	2.1 Open-Loop Operation
	2.2 Independent Closed-Loop Operation
	2.3 Compensated Closed-Loop Operation

	3 Related Work
	3.1 Example Circuit
	3.2 Simulation Models

	4 Simulation Results
	4.1 Models with Different Switching Delays
	4.2 Discrete-Time Models
	4.3 Fixed-Point Models

	5 Conclusion
	Introduction
	Control Engineering: The Teacher's Challenge
	New Curriculum For Teaching Automatic Control
	Luma Activity
	Conclusion
	Introduction
	The Activated Sludge Process
	Mass balances and expression for the sludge age
	The settler

	ASP with ideal settler model
	Steady-state solutions
	Substrate input-output relationship for constant sludge age

	ASP with DZC settler model
	Steady-state solutions
	Substrate input-output relation for constant sludge age

	An approximation for S* given 0
	Numerical example
	Theorem 1
	Theorem 2

	Conclusions
	Introduction
	Materials and Methods
	Gaussian Mixture Models
	GMM based fault detection criteria

	Case Study: Monitoring a Secondary Settler
	Results
	Discussions
	Conclusions
	Introduction
	Industrial Process Description
	SIAAP Waste water and sewage Sludge Treatment Process
	Incineration Process
	The Furnace
	The Heat Exchanger

	Identification Process Overview
	Sludge Incineration sub-models: Input-output interaction.
	Identification Strategy

	Validation Methods
	Absolute Criteria
	Relative reference-model criteria

	Results and Discussions
	Relative Reference-Model Criteria Results

	Conclusion
	1 Introduction
	2 Modelling
	2.1 Basic Process Components
	2.2 Boiler Evaporator Loop
	2.3 Test Model

	3 Simulation Tests
	3.1 Comparison of Numerical Solvers
	3.2 Effects of Initial State and Parameters

	4 Conclusions
	Introduction
	TCP-100 solar field description
	Mathematical modeling of TCP-100 solar field
	 Optical and geometric efficiencies
	Characteristics of the heat transfer fluid
	Thermal losses

	Simulations
	Conclusion
	Introduction
	Description of a Basic Gas Turbine Model
	Compressor
	Combustion Chamber
	Turbine Module

	Computational Causality And Conditions for Numerical Convergence
	First Principles Compression and Expansion Maps
	Compression Case
	Expansion Case

	Simulation Results
	Conclusion
	Appendix
	Introduction
	Modelling methodology, libraries and tools
	Plant Description
	Innovative aspects
	OTSG topology

	Device modelling
	Re-used components
	Custom component models
	Separator
	Feedwater heater
	Deaerator
	MS fluid model

	Plant modelling
	OTSG model
	Turbine model
	Feedwater preheaters train
	Plant control system
	Complete plant model

	Simulation objectives - methodology
	Simulation performance
	Conclusion
	Introduction
	Formal Problem Statement and SVM
	SVM by Set-Valued Training Data
	A Modification of the AdaBoost
	Imprecise Updating Weights of Robots
	Conclusion
	Introduction
	Methodology
	Power grid connection
	Electrolyser
	Interim gas storages
	Methanation
	MEA CO2 capture
	CH4 compression

	Control sequences
	CH4 compression
	Start-up
	Power grid connection
	Methanation reactor
	Electrolysers
	Interim gas storages
	CH4 compression

	Shutdown
	Methanation reactor
	CH4 compression
	Interim gas storages
	Electrolysers

	Results
	Conclusion and future work
	Acknowledgment
	Introduction
	Mathematical Model
	Assumptions
	Development of Model
	Material Balance
	Energy Balance
	Heat Exchanger

	Simulation Results and Discussion
	Simulation Results
	Comparison with Previous Work

	Conclusions
	1 Introduction
	2 Herding behavior of rhinos
	2.1 A synoptic model of space use
	2.2 Population size updating model

	3 Rhino herd (RH) algorithm
	3.1 Synoptic model
	3.2 Population size updating model
	3.3 RH algorithm

	4 Simulation results
	5 Discussions and conclusions
	Acknowledgements
	References

	Introduction
	Structure and Kinematics of the Double-Spiral Mobile Robot
	Structure
	Forward kinematics
	Gripper positions
	COG

	NESM
	Numerical Case Study
	Conditions and methods
	Results

	Discussion
	Conclusion
	Introduction
	Data analysis
	Nonlinear scaling
	Interactions
	Uncertainty
	Natural language

	Recursive analysis
	Scaling
	Interactions
	Fuzzy logic
	Smart adaptive systems

	Temporal analysis
	Trend indices
	Fluctuations
	Changes of operating conditions

	Conclusion
	Introduction
	MOEA/D
	Algorithm
	Focused Issue

	Proposed Method: Chain-Reaction Initial Solution Arrangement
	Aim and Concept
	Method

	Experimental Settings
	Results and Discussion
	Search Performance at Final Generation
	Search Performance over Generations

	Conclusions
	Introduction
	Modeling demand-side management
	Markets
	Actors
	Other elements

	Controlling consumption
	Optimizing scheduling
	Controlling (via) frequency

	Discussion and conclusions
	Introduction
	Components and Parameters of Musical Expression
	Learning Support System of Musical Representation
	Generation of Example of Musical Expression
	Construction of Kansei Space
	Image Estimation
	Parameter Values Estimation using Fuzzy Inference
	Interactive Modification of Musical Expression

	Comparison of Parameter of Musical Expression
	Advice for Parameter of Musical Expression

	Range of Learner's Musical Expression on Kansei Space
	Estimation of Range of Musical Expression
	Advice about Impression

	Experiment
	Results and Discussions

	Conclusion
	Introduction
	Formulating the GA Optimization
	The Problem Encoding
	The Objective Function (Fitness)
	Selecting The GA Operators
	Tuning the GA Parameters

	FPGA Implementation
	GA's HDL Entities
	Fitness
	Selection
	Crossover
	Mutation
	Generating Pseudo Random Sequences
	Replacement

	Performance Evaluation
	Functional Verification
	Fitness
	Selection
	Replacement
	Crossover
	Mutation
	LFSRs
	Comparator

	Integrating GA into the SoC
	Interfacing GA with the HPS
	Controlling GA from the Linux host

	Conclusion and Future Work
	Introduction
	Related Work
	Earthmoving Simulator
	Workspace Subdivision with Scoop Area
	High Point and Zero Contour Methods
	Simulation Results and Discussion
	Conclusion and Future Work
	Introduction
	SDNized Wireless LAN Testbed
	 Central Manager
	 Aggregator and Transport Network
	 Network Edge
	 Android Measurement Application
	Experiment Automation

	Mobility Management - A Use-Case Scenario Implementation
	Mobility Handling in Developed Testbed
	Logging
	Running the Experiment
	Parsing and aggregating results

	Conclusion

